
PHYSICAL REVIEW A VOLUME 38, NUMBER 6 SEPTEMBER 15, 1988

Minimum dissipation rates in magnetohydrodynamics

David Montgomery*
Center for Nonlinear Studies, Los A lamos National Laboratory, University of California, Los A lamos, New Mexico 87545

Lee Phillips
Department ofPhysics and Astronomy, Dartmouth College, Hanouer, New Hampshire 03755

(Received 25 January 1988)

Minimum dissipation rate states are explored for a current-carrying channel of magnetofluid, sup-
ported by a dc magnetic field and driven by an applied electric field. The minimization is carried
out subject to the constraints of constant axial (toroidal) magnetic flux and constant time-averaged
rate of supply of magnetic helicity. The solutions of the resulting Euler-Lagrange equations are sen-
sitive to boundary conditions on the current density j. One set of boundary conditions on j leads to
the same consequences as Taylor's "minimum-energy" theory. A different set leads to significantly
different consequences, including a departure from the "force-free" magnetic profile and a toroidal
component of current density that does not reverse at the wall when the toroidal magnetic field
reverses.

I. INTRODUCTION

Nonequilibrium thermodynamics as it has evolved over
the last several decades has returned repeatedly to a prin-
ciple of the "minimum rate of entropy production. " Key
contributions include those of Onsager, ' Prigogine, De-
Groot and Mazur, Glansdorff and Prigogine, and Keiz-
er, whose monograph contains a rather complete bi-
bliography.

For systems other than weakly perturbed thermal equi-
libriurn ones, the minimum —entropy-production —rate
principle appears to occupy a status intermediate be-
tween that of a conjecture and that of a deduction. In
some circumstances, such as problems involving chemical
reaction rates, it seems to lead naturally to convincing
answers. In others, such as static Fourier heat-
conduction problems, it seems to work only with some
difficulty and artificiality.

The purpose of this article is to explore the application
of a closely related principle to plasma physics, and in
particular to the calculation of time-averaged current
profiles for the case of confined magnetofluids. As far as
we are aware, the first suggestion of the applicability of
minimum —entropy-production principles to the inference
of magnetohydrodynamic (MHD) current profiles is due
to Hameiri and Bhattacharjee. The principle we explore
is related to but slightly different from theirs, and will be
seen to lead to somewhat different conclusions.

The principle of minimum entropy production seems
to be a generalization of a more pedestrian and easily ac-
cessible principle due to Helmholtz, Korteweg, and Lord
Rayleigh; a detailed development is given by Lamb.
This earlier principle, which can be proved under rather
restrictive assumptions, is that of the minimum rate of
energy dissipation. The two principles are equivalent for
the case of constant, uniform temperature if the primi-
tive definition of changes in specific entropy is adopted.
The classic formulation given by Lamb was concerned

mainly with the case of incompressible hydrodynamics
with constant, uniform viscosity. The principle has been
proved only for more restrictive boundary conditions
than one would like, but the limits of its applicability are
not known.

The search for simple variational principles derives
from the need to predict at least the time-averaged prop-
erties of fields for fluids or rnagnetofluids whose forma-
tion involves nonlinear time-dependent processes, the de-
tails of which are difficult to follow analytically or numer-
ically. The first important attempt in this direction for
toroidal Z-pinch confinement is the "minimum-energy"
principle of Taylor, ' a (third and distinct) variational
principle used to predict "relaxed" states of toroidal Z
pinches. Key features of laboratory Z-pinch operation
were predicted by this calculation, which inspired several
modifications, applications, elaborations, and computa-
tional tests. A relatively complete bibliography, up to
date as of early 1986, is given by Taylor. ' One of the
present authors has been involved in several attempts to
provide a dynamical basis for this minimum-energy prin-

ple1 3 —16

However, recent high-resolution numerical computa-
tions' ' have indicated certain limitations to the
minimum-energy formulation. In both decaying initial-
value computations and driven, steady-state ones, a drop-
ping ratio of energy to magnetic helicity has indeed been
observed, but the ratio has also been observed to stop
short of its minimum. There has been observed an ac-
companying achievement of a core that is approximately
magnetically "force free, " in the sense that the magnetic
field B and its associated current density j=V &(B are lo-
cally aligned in the interior. However, the ratio j /8
varies considerably with spatial location. This spatial
variation includes, but is not limited to, an irregular
boundary layer near the interface between the
magnetofluid and its (assumed) bounding conducting
wall. In particular, the phenomenon of "field reversal" of
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the toroidal component of mean magnetic field near the
wall shows no tendency to be accompanied by a reversal

of the corresponding component of current density.
What seems to have emerged from the numerical inves-

tigations just described is first of all the zeroth-order
correctness of the Taylor minimum-energy conjecture.
But secondly, features seem to have been consistently
displayed that are not entirely contained in or implied by
the conjecture. This is notably the case for the driven

steady state, in which such global quantities as energy
and magnetic helicity are necessarily supplied, on the
average, at the same rates as those at which they are dissi-

pated, and nothing decays. The purpose of this paper is
to explore the use of the minimum-dissipation-rate prin-
ciple, generalized to MHD, to see what its implications
are for current-carrying bounded channels of
magnetofluid which are magnetically supported.

One of the principal conclusions to emerge will con-
cern the sensitivity of the results to boundary conditions
on the current and magnetic field. For one set of bound-

ary conditions, the minimum-dissipation-rate principle
will be shown to exhibit the same consequences as
Taylor's minimum-energy principle. For other boundary
conditions, the consequences are very different, and in
some cases, closer to what was computationally observed.
Since none of the readily implementable MHD boundary
conditions probably represents very well the complex
processes which go on at the liner of a toroidal Z pinch,
it seems likely to us that most remaining discrepancies
with experimental observations may be attributable to the
sensitivity of the theory to boundary conditions, perhaps
for both theories.

The outline of the paper is as follows. In Sec. II the
principle to be used is stated for dissipative, incompressi-
ble MHD. Its hydrodynamic antecedent is illustrated in

Appendix A by calculating the correct velocity profile for
plane Poiseuille flow as an introductory example. In Ap-
pendix B the extent to which the principle can be deduc-
tively extended to MHD is described. A reader who is
mainly interested in the MHD predictions can safely skip
the appendixes. The variational consequences of the
-principle are derived in Sec. III. In Sec. IV the resulting
Euler-Lagrange equations are derived and solved, using
some of the properties of Chandrasekhar-Kendall func-
tions. The associated magnetic profiles are calculated
in Sec. V. In Sec. VI the minimization problem is solved.
The results are summarized in Sec. VII.

Such subtleties as there are in the treatment revolve
around the not unrelated considerations of boundary con-
ditions and constraints. Most of the attention is directed
to the cases of conducting walls, at which boundary con-
ditions are applied to the magnetic field, and are or are
not applied to the current density. It should be borne in
mind that none of these is a wholly satisfactory represen-
tation of current practice in the laboratory. '

II. DISSIPATION RATES AND CONSTRAINTS

We consider an incompressible, resistive, viscous
magnetofluid. In a well-known set of dimensionless units,
its equations of motion are

Bv +v.Vv=jXB—Vp+vV v,2

dt

V v=O,
BB 2

at
=Vx(vxB)+qV B,

V.B=O .

(2.1)

(2.2)

(2.3)

(2.4)

BA
at

=vxB —riVx(Vx A)+V/ . (2.5)

P is a scalar potential, and can be determined as soon as a
gauge is chosen for A. It is convenient to use the
Coulomb gauge, V A=O, so that P is determined, like p,
as the solution to a Poisson equation,

V'p= —V (vXB),
which determines P as a functional of v and B.

(2.6)

A. Boundary conditions

The greatest single difficulty in applying MHD equa-
tions, such as (2.1)—(2.6), to laboratory magnetically
confined plasmas probably has to do with boundary con-
ditions. None of the readily implementable sets of
boundary conditions for Eqs. (2.1)—(2.6) adequately de-
scribes the boundary of a real confined magnetized plas-
ma. ' This is still true even if kinetic effects such as
particle gain and loss, chemical reactions, radiation, and
steep boundary temperature drops are omitted. Two
cases of interest will be singled out for consideration here.
They are the rigid, perfectly conducting wall, which has
been characterized by v=O, B.n=O, and j)&n=O, where
n is the unit normal to the wall, and the perfectly con-
ducting wall coated on the inside with a very thin layer of
insulating dielectric. The latter has been characterized
both by v=O, B.n=O, and j unrestricted, and also by
v=O, B.n=O, and j.n=O. The content of the theory to
be presented depends sensitively on the choice that is
made, as will be seen later.

The difficulty with all three choices is the unsatisfacto-
ry representation of the applied electric fields which sus-
tain the current. These must be admitted, particularly in
toroidal geometries, through slits and slots cut in the
bounding conductors. The distortions of the slits and
slots will still be present even if the conductor is coated

The symbols in the equations of motion mean the follow-

ing: v is the fluid velocity field, B is the magnetic field,

j=V)& B is the electric current density, p is the mechani-
cal pressure field, v is the kinematic viscosity, and g is the
magnetic diffusivity. p is determined by taking the diver-
gence of (2.1), using (2.2) to eliminate the time derivative,
and solving the resulting Poisson equation for p, subject
to whatever boundary conditions apply. The mass densi-
ty has been assumed uniform throughout. For purposes
of this present paper, v and g are assumed to be indepen-
dent of time and space. Some remarks on the case of
variable dissipation coefficients will be made in Sec. VII.

For many purposes, it is convenient to write B in terms
of a vector potential A, B=V)& A, pull a curl off Eq.
(2.3), and write a time-evolution equation for A,
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on the inside with a thin layer of dielectric or resistive
material. Geometrical complications, together with the
subtleties of the interaction of the plasma with the exter-
nal circuit, make such realism for all practical purposes
impossible to include. Nevertheless, we will represent VP
as the sum of two terms,

VP=VP+E, „, , (2.7)

We are interested in the long-time configuration of the
plasma under the conditions of a finite, constant E,„,.
Though a wide range of possibilities exists for j and 8
profiles in ideal MHD, the existence of finite q and v
greatly restricts the possible steady states that may be ex-
pected. Computational experience indicates strongly
that, at least above certain thresholds in E,„, and below
certain thresholds in g and v, the time-averaged states
are turbulent and time dependent. What we shall explore
here is the rather limited question of what profiles are to
be predicted by the assumption that the time-averaged
profiles are profiles of minimum —energy-dissipation rate,
given analytically by

where E,„,=E,„,e„and E,„, is independent of space; the
spatial average of P is zero. We shall ignore the fact that
the presence of the externally applied electric field E,„, is

incompatible, physically, with our unbroken conducting
boundary. As in the computation, ' E,„, is understood to
drop steeply to zero at the conducting wall.

The boundary will be assumed to be a circular cylinder
with radius a and periodically identified ends; other
toroidal effects will be ignored. The plasma then fills,
with uniform mass density, the region 0&r=(x
+y )'~ &a and 0&z &L„where L, is the periodicity
length in the axial direction. The externally applied elec-
tric field is in the axial direction. All the variables in Eqs.
(2.1)—(2.7) except P will be assumed periodic in z; since
only gradients of P appear, this average linear increase of
P with z is no problem. P will be periodic in z.

B. Variational principles

R = f d x(rij +vcr ), (2.8)

where the integrals will always be, unless otherwise indi-
cated, over the three-dimensional region 0(r & a,
0&z &L, (r.0=VXv is the vorticity. )

The only thing which constrains R away from zero is
that certain time-averaged constants of the motion can be
proved from Eqs. (2.1)—(2.7) when E,„,&0. These clearly
do not include the classical constants of ideal motion
such as energy or magnetic helicity, since both are being
supplied and dissipated simultaneously. The two rates
(supply and dissipation) must on the average be equal, but
the mean energy or helicity that is maintained is not
uniquely predicted by this simple requirement. A similar
statement applies to other prime candidates such as the
total toroidal current. We have been able to discover
only one dynamical constraint which is implied by
(2.1}—(2.7) under the sets of boundary conditions con-
sidered Th. is is the rate of supply and dissipation of mag-
netic helicity The. re is, in addition, also the kinematical
constraint of flux conservation.

—( A B}=—gj B+E,„, B+B VP

+[VX(vXB)] A —g(VXj) A. (2.9)

It is preferable to work with a magnetic helicity 0
defined not as the volume integral of A.B alone, but in
the gauge-invariant way, '

H —= f ABd x —)Adl)Ads,
where the two line integrals run, respectively, from z =0
to z =I., at r =a and azimuthally around the cylinder at
r =a. Integrating (2.9) over the volume of the cylinder,
and using some vector identities,

C. Constraints

Dot Eq. (2.5) with B, (2.3) with A, and add the results;
since VX(VX A)=j, we get

H= rif j—Bd'—x+2E,„, fBd'x+ fd'x V [(vXB)XA]+ f (VX A) (vXB)d'x

—fd'x V (rijx A) —f (VX A) gjd'x+ fd'x V (Bp) . (2.10)

Using the divergence theorem three times, the resulting
surface integrals vanish for the boundary conditions con-
sidered. [For the surface integral resulting from the
V (gj X A) integral, a limiting argument with variable g
is necessary for the case of the dielectric-coated conduc-
tor, but presents no serious difficulty. ] The result is

the left-hand side vanishes. The last term on the right-
hand side of (2.11) is time independent and equal to
2E,„,Bona L„where 80 is the (constant) average
toroidal magnetic field; era Bo —=4z is the constant
toroidal magnetic flux. The content of Eq. (2.11) is then

H= —2g f j.Bd—x+2E,„,.fBd3x . (2. 1 1)
2g j Bd x =2Eext~a Lz~o (2.12)

We now time average Eq. (2.11) over a very long time in-
terval, the operation of which we indicate by a bar over
the quantities. If the magnetic helicity H remains
bounded (not a significant restriction), the time average of

In the most general case, j and 8 will have time-averaged
values and temporally fluctuating parts, so that j=j+5j,
B=B+68, and j.B=j 8+6j.58, since the cross terms
vanish upon time averaging.

If the turbulence level is sufficiently low (a typical rms
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value for 6B/8 might be estimated at ~10%, for re-
versed field pinches), the 5j 5B may be neglected com-
pared to j.B and we shall restrict ourselves to this limit
hereafter. The strongly turbulent case, in which 5j 5B is
comparable to j 8, is considerably more formidable and
will be deferred to future consideration. Hereafter, we
shall assume that we are dealing with time averages, and
drop the bars over all the various variables. The content
of (2.12) is now (hereafter, ( ) indicates a spatial average)

(j B)=(BOE,„,)/(ri)=const, (2.13)

f d x B VS=const, (2.14)

where eV is a general function not of time but of spatial
position, and VS' is periodic in z. The temporal constan-
cy of the expression (2.14) can be readily demonstrated by
applying (2.3), integrating by parts, and invoking the B-
field boundary conditions. The apparently more general
content of the expression (2.14) is illusory; it will be seen
to restrict only the toroidal flux. The advantage of writ-
ing flux conservation in this way is that it leads to Euler-
Lagrange equations that are of a form general enough to
permit the satisfaction of both the boundary conditions
on j and on B. [See also the remarks between Eqs. (3.2)
and (3.3).]

In terms of two Lagrange multipliers, say a and 2p, the
variational problem can then be given the compact and
economical statement

which is our main constraint. The reader will be able to
convince himself that a similar argument involving, say,
energy will fail, because the integrals corresponding to
the rightmost term of (2.11) do not reduce to constants of
the motion.

Whether other undiscovered dynamical constants
beyond (2.13) exist is, of course, an open question, as is
usually the case for nonlinear systems with many degrees
of freedom. In the past, numerical evidence has proved
to be the most useful method of determining the answer;
it is anticipated that the same will be true here.

Since the system is not mechanically driven, it seems
that nothing will constrain the time-averaged v away
from zero. Again assuming that time averages of fluctua-
tion products are negligible compared to products of time
averages, the problem has been reduced, from (2.8), to
minimizing g( j ) subject to the constraint (2.13) and a
kinematical constraint yet to be discussed. (Notice that
the analogous statement of the Taylor problem is mini-
mizing ( B ) subject to the constancy of H; the
difFerences in the implications have mainly to do with the
boundary conditions. )

The toroidal flux is a kinematic constant of the motion
for a magnetofluid surrounded by a perfect conductor.
This functions as a second constraint which can be intro-
duced into the formalism in more than one way. It is use-
ful to introduce it into the formalism here by setting

determination of 4 follows, in a way illustrated in Sec.
III, from the need to satisfy boundary conditions.

III. EULER-LAGRANGE EQUATION

The variations implied in (2.15) are of a standard type.
We let the fields acquire small variations,

B~B+5B, j~j+6j, (3.1)

where j=VXB, 5j=VX5B, and 5B=O at r =a. 5B is
also assumed periodic in z with period L, . Integrating by
parts twice and collecting the first-order part of the in-
tegral in (2.15) gives (independently of which boundary
conditions on j are imposed)

fd'x 5B (VXj+aj+pVS)=0 .

The vanishing of (3.2) for any such 5B is necessary that
the integral (2.15) be stationary.

The vanishing of a volume integral fV 5B1 x, for a
solenoidal vector field V and for an arbitrary solenoidal
5B which vanishes at r =a (or even only satisfies n 5B=0
there) and is periodic in z, does not imply that V=0, but
only that V is the gradient of a periodic scalar U, say. U
and pS, since they are still to be determined, may be
combined into a single scalar s. The states of minimumjd x j are then contained among the solutions of the
Euler-Lagrange equations

V X j+aj+Vs =0 . (3.3)

V s=O. (3.4)

In the geometry considered, this will mean that s is al-
most completely determined by imposing the boundary
conditions on j in Eq. (3.3).

It is to be emphasized that the role of s in Eqs. (3.3)
and (2.14) is to be able to impose boundary conditions on
j. If j is regarded as unrestricted at the wall, we may
simply choose s =0, so that V X j+aj=0 and the bound-
ary conditions are only to be imposed upon B. At this
level, the content of the theory seems to be equivalent to
that of Taylor's Euler equation, V &(B=kB. Indeed, one
Euler equation may be obtained from the other by taking
the curl, and the present principle appears as an alterna-
tive basis for Taylor's theory. (We may also note the
disarmingly simple solution, j= —Vs /a =const X e, .)

A richer set of solutions emerges if we require j to obey
the perfectly conducting boundary condition at the wall,

j&(n=0, and the rest of this paper will explore this case.
As will be seen in Sec. IV, there are still an infinite num-
ber of solutions, each with its own nonzero s.

The possibilities for the solutions to (3.3) appear very
wide, but are greatly restricted by the observation that
both j and V)& j are solenoidal fields. Taking the diver-
gence of Eq. (3.3) gives Laplace's equation for s,

5f d x(j +aj B+2PB VS)=0, (2.15) IV. SOLUTION OF EQ. (3.3)

where all field variables are to be hereafter considered as
time averages, and a and p are to be chosen to be compa-
tible with specified values of (j B) and (e, B). The

In order to save space, we shall not reproduce the
deductive path by which Eqs. (3.3) and (3.4) may be
straightforwardly solved, but will simply state the solu-
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tions. The solutions are identified by a triple of integers
nmq, where n =0 +1+2, . . . , m =0 +1 +2, . . . ,
and q =1,2, 3, . . . . For each n, m, q there is a solution

0j=jnmq&

VSnmq
Jnmq =0nmq nmq+

nmq

(4.1)

and the symbols are now to be explained. The amplitude

g„» is an arbitrary real number. J„will be understood

as the (real part of the) expression

=—y„+kn. The y„are determined by boundary
conditions in a way yet to be described. The Jn are the
eigenfunctions of the curl introduced by Chandrasekhar
and Kendall,

V + Jnmq ~nmq Jnmq (4.3)

as can be determined by direct differentiation of Eq. (4.2)
and use of the fact that (V +A.„q )(1(i„q ) =0.

For s„m in Eq. (4.1), we have a general solution of
Laplace s equation (3.4} for which Vs is periodic in z,

J„,=A,„,VXe,1(„,+VX(VXe,p„,), (4.2)

where g„q J(y—„qr)exp(imy+ik„z). We are in cy-
lindrical coordinates r, y, z, and J is the Bessel function
of the first kind, of integer order. k„ is 2nnIL, and

I

nmq Pnmqz +dnmq X m imqr e, n=0

and

(4.4a)

(d„q/ik„)VX[VXe, I (k„r)e " ], n&0
(4.4b}

The Lagrange multiplier a has been renamed as
I (k„r) is the modified Bessel function,

which obeys

and

nmq nmq

V [I (k„r)e " ]=0. (4.5) =0 . (4.7b)
Real parts are understood to be taken throughout Eqs.
(4.1) through (4.6). P„» and id„are real numbers
which are determined by imposing the boundary condi-
tions. When the boundary conditions are all imposed, it
will be seen that the only arbitrary number left in the
solution (4.1) is the amplitude g„

The boundary conditions on j are imposed by requiring
that j and j, both vanish at r =a, for arbitrary n, m, q.
These provide a pair of simultaneous, linear, homogene-
ous, algebraic equations for the g„and id„We can.
solve for the one in terms of the other consistently only if
the determinant of the system vanishes; this is what
determines the ynmq and the knmq.

Written out by components, the Jn are

dJo(yoo a) =0 for m =0=n,
da

o()'„oqa) =0 for m =0 and n&0,
da

(4.8a)

(4.8b)

and

J (yo»a)=0 for m&0 and n =0, (4.8c)

Without losing generality, we may set idoo ——0 and

P„=O, unless n =m =0.
The condition that the system (4.7) be soluble reduces

to

im
nmq r ~nmq m(7 nmq )+ikn

r

dJ (y„qr)
dr

kn ~nmq

dJ (y„a} mk
+

da a
J (y„qa)

dJ (y„qr)
+eg ~nmq

mk„ J (y qr)
r

+e,[y„J (y„qr)] exp(imy+ik„z) . (4.6)

+—y„J (y„a)=0,
a

(4.8d)

for both m and n different from zero. Equation (4.8d) can
be manipulated to read

The equations obtained by requiring that each j and j,
vanish at r =a are, respectively,

m ~nmqy„aJ' (y„a)+ J (y„a}=0,
n

(4.9)

0= 0nmq

dJ (y„ a)
nmq

mk„ J (y„ qa)a

(4.7a)
I (k„a), n&0

~nmq

which rather interestingly guarantees that Jn .e„=0 at
r =a (but not that j„q.e„=O there); this property is in
fact shared by all cases in Eqs. (4.8).

Having determined the y„by Eq. (4.8), the id„can
be straightforwardly determined, in the cases in which
they are nonzero, and are proportional to g„.The only



2958 DAVID MONTGOMERY AND LEE PHILLIPS 38

nonvanishing P„» are the Poo, which are straightfor-
wardly obtained from setting the z component of jpp

——0
atr=a,

pooq = —0ooq~ooq Jo(~oo, } . (4.10)

There are two possible signs of A,„q—— (y„q+k„)'
for each y„q )0. It will be seen in Sec. V that the sign
of A,„ is fixed by the sign of (j B). The y„are or-
dered in q as ascending positive values, with q = 1 always
identifying the lowest nonzero y„q for any n and m.

The determination of the possible jn which satisfy all
the boundary conditions is now complete, up to the
overall multiplicative amplitude g„. The constraint of
constant helicity supply rate will be expressed as

I

V. ASSOCIATED MAGNETIC FIELD PROFILES

For each j„ofthe form of Eq. (4.1), there is a B„q
for which

nmq
nmq jnmq nmq +

nmq

(5.1)

It is useful to write Vs„mq in the form of Eq. (4.4b) and
identify

(j„B„)=const where B„ is the magnetic field to
be determined in Sec. V.

nmq

(d„q/ik„)Vxe, I (k„r)e n&0
for '„

pooq&
5„o5 oe~,

Opq

(5.2)

where some of the symbols remain to be defined. Bp is a
constant, uniform magnetic field in the z direction, Bpe„
and accounts for all the toroidal flux Bp~a, since all the
other functions are "fluxless. " Pnmq is a solution of
Laplace's equation V Pnmq 0, and is written

X„q——'ibo qr e' q', n =0 and m&0

0, n=O=m .

(5.3)

The real numbers bnmq and bpmq are determined by the
boundary condition B n=O at r =a. The last term of
(5.2) is a poloidal contribution whose curl leads to the
average toroidal current contribution that follows from
(4.10).

All terms in (5.2) are thus completely determined ex-
cept the overall amplitude g„q. Since the ib„q will be
proportional to the id„q, notice that every term in (5.2)
except Bo contains a multiplicative factor of g„mq. pooq is
responsible for all the toroidal current, and there is none
for modes with n +m )0. Bp is responsible for the to-
tal toroidal flux, which is always Bp7Ta regardless of m
and n.

First, consider the case n +m &0. Substitute (4.1)
into fj„B„dx to get (real parts understood before

multiplication}

f jnmq Bnmqd x

1

~nmq

nmq

1
0nmq nmq + g nmq Bnmq

nmq

(6.2)

The larger parentheses in (6.2) is j„,so we have proved
that

=fd'x g„»J„»+ " ' B„. (6.1)
nmq

The last term in (6.1) vanishes upon conversion to a sur-
face integral and using the boundary conditions; for the
rest, we may write

3X 0nmq nmq nmq

VI. SEARCH FOR THE MINIMUM-DISSIPATION
STATE

The only undetermined number in jn q
and Bn q

is
now the overall amplitude g„q, given n, m, and q. The
problem has been reduced to finding the minimum value
of ( j„q), subject to a given value of K:—( j„q B„q),
with j„and B„given by (4.1) and (5.2). It is possible
to prove a very useful relation between these volume
averages, which we now demonstrate.

fd x(VXj q) B
q

~nmq

+ V&(B„.j„d x
nmq

3 .21
+ jnmq

nmq

f jnmq nmq
nmq

f V (j„»XB„»}dx

(6.3)
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because the surface integral of ( j)&B).n vanishes, so that

f j2 d3x =k„ fj„B„dx, n +m &0 . (6.4)

The relation (6.4) applies to all nmq except those with
n =0=m, which are a special case. For those, the sur-
face integral contribution from 00q does not vanish, be-
cause of the Poo z term in sooq. The extra term gives,
upon using (4.10), and a similar development,

f j', d'x=z, fJ, B,d'x

where the coefficients A and B are

A =Zoo [2Jo(A, a)+[/', (A. a)] I &0,
8 = —Zoo BoJo(Aooqa)

(6.12a)

(6.12b)

In particular, Bi ——AooiBo i Jo(kooia) i
&0, since

Jo(k,z»a) =Jo(goo, a) (0. In (6.12a) and elsewhere,
primes on Bessel functions mean differentiation with
respect to the argument.

We will also need the integral [from (6.5)]

+goo n'a L Bok.oo Jo(A,ooqa) (6.5)

If it were not for the extra term in (6.5), the problem
would be trivial. Equation (6.4) shows that (for
m'+n'&0)

f j',d'x
= & jooq ) =~ooq & —Cq 0ooq

ma L,

where

(6.13)

&j'„q)
& jnmq Bnmq )

(6.6)

so that the minimum-dissipation state would be simply
the state of minimum A,„.[Equation (6.6) shows that
the sign of A, „ is always that of & j B), which we take
hereafter to be positive. ] It is known that, given Eqs.
(4.8) and (4.9), the minimum A,„q is given by

(A,„+, ia),„=3.11, (6.7)

and is achieved when (k„a) =1.52. If the discrete k„do
not permit this value to be achieved exactly, then the
closest k„'s to this value are candidates for the minimum.

In contrast to (6.7), )i,ooia is —=3.83, and all the other
axisymmetric states have higher A.. The question of im-
portance is now, under what circumstances can the extra
term in (6.5) Pull f jooqd x below the (fixed, given) value

(~n+i, i )min ,f jn+, &Bin, —i, id,
=(A. ~i i) f jooq Booqd x, (6.8)

if any? The answer, as we shall now see, is that for low
enough &j B), the 001 state is always the minimum-
dissipation state.

To determine the effect of the extra term in (6.5), we
need to solve for goo in terms of E =

& joo Boo )
=(na L, )

' jd x joo Boo . We have

C = —Zoo 8 Jo(k a) .

In particular, Ci ——k.oo,Bo
~
Jo(kooia) &0.

The minimum dissipation will clearly occur for q =1;
hereafter we concentrate on this case. Solving (6.11),

gooi ———(2A i ) '[8
i + (8 i +4A, E)'i ] . (6.15)

since A,ooia =—3.83.
The 001 state will be the minimum-dissipation state

when the right-hand side of (6.16) is less than
()i,„+, , );„K=—3. 11K/a. The crossover occurs when H~
drops to the value for which

Only the upper sign (positive goo, ) is physically relevant,
and we consider it hereafter.

The solution (6.15) plugged into (6.13) can be rear-
ranged to give (Aooi ——yoo, & 0)

&j', )=A, ,EI1+H [1—+1+(1/H )]j . (6.16)

The dimensionless parameter II& determines all the im-
portant physical ratios,

Bo (~ooia)Jo(~ooia)

«2[2Jo(Zoo, a)+[Ji(Zoo,a)] ]

(Aooia) Bo Bo=0.64 (6.17)aE aK

and

jooq
—

gooq Jooq —
gooq~ooq Jo(~ooqa ge, (6.9) 1+H [1—+1+(2/H )]= (~n, +1, i)min 3. 11

3.83

0ooq ooq
Ooq

Ooq

2
Pooq ooq

2
Jo(A~ a)e +Bo . (6.10)

Dotting joo with 800 and integrating over the basic
volume, we find that all the various definite integrals can
be done in closed form. The result is

fj,B,d'x
-=&j, B,) =SC=q, A, +q,B, ,

era L,

(6.11)

(6.18)

and the solution to (6.18) is H~ =0.022. Thus, for helici-
ty supply rates K for which K & 29BO/a, the 001 state is
the minimum —energy-dissipation state. Above that criti-
cal value, the present calculation suggests only that seri-
ous complications set in, since there is no net toroidal
current in the n +m )0 solutions.

A predicted F-8 diagram may be expressed in terms of
Hz by solving (6.10) for the field-reversal parameter
F=B,(a)/Bo and the pinch parameter 6=8 (a)/Bo
%e have
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koolroolJ0(roola)F= +1
80

Jo(roola) [1—+I+(2/Ila)]=+1+
I2Jo(roola)+ [J'l (roola)]']

= I+ —,'[1—+1+(2/Hs)] .

This follows from

Bool(r).e, /Bo

(6.19)

=1+(—,')[1—Ql+2/Hg)]'Jp(rpplr)/Jll(rppla) '

2.2

1.8

CQ

~O14

0 10

0
0.6

N

also

(«ool) Jo("oola)e=
4I2Jo(koola)+[JI(i~, a)] ]

X [—1+V 1+(2/"&)]
=0.32[ —1++1+(2/II )] .

Combining these two expressions gives

(6.20)

0.2

-0.2
0.4 0.8 1.6

FIG. 1. B,(r) vs r, for the case a =~/2 Bp =
2 Hg =p.p25

and 8—=2. 56. [All graphs are in the dimensionless units of Eqs.
(2.1)-(2.4).]

F=1—0.526 . (6.21)

Field reversal occurs at 8=1.9 (instead of 1.2, as in the
"minimum-energy" formulation), and the minimum—
energy-dissipation state ceases to be the 001 state at

8—=0.32[ —1+~1+2/(0.022)]=2.75

(instead of 1.6, as in the minimum-energy formulation).
The toroidal current density of the 001 state is

jool e=ko'olrool[J0(roolr) Jo(roola)] (6.22)

Bool'e =koolroolJ0('ool")+B0 . (6.23)

which remains always positive and goes smoothly to zero
at r =a. The toroidal magnetic field is given by

j.B/jB, which measures the departure from the force-
free condition. Note the presence of a force-free core sur-
rounded by a region which is less so centered just above
r =1. Finally, Fig. 5 is a plot of the ratio j B/B, which
varies considerably more than the alignment cosine. Fig-
ures 4 and 5 are in qualitative agreement with the results
of dynamical computations.

VII. SUMMARY

We have explored the consequences of the assumption
that time-averaged magnetic profiles in a current-
carrying conducting magnetoAuid may be determined by
minimizing the rate of energy dissipation. For the case of

Equation (6.23) is the magnetic field of the "Taylor state"
plus a a constant. Whether or not it reverses before r =a
depends upon II~ (or 8), as we have already seen. Up to
an additive constant, (6.22) is also the toroidal current as-
sociated with the "Taylor state;" the constant is the con-
stant necessary to bring j,(r) smoothly to zero at r =a.

Some typical profiles of the 001 minimum-dissipation
state are illustrated in Figs. 1-5. Figures 1 —5 refer to the
case Bo=0.5, a =~/2, H~ =0.025. This is a state close
to the upper limit in e of the "window" in which the
minimum-dissipation state is the field-reversed 001 state.
Figures 1 —5 are obtained by numerically evaluating Eqs.
(6.9) and (6.10) for q = 1, and plotting the evaluated quan-
tities versus r.

Figure 1 is B,(r) as a function of r Figure 2. isj,(r) as
a function of r. Figure 3 is the radial component of jXB
as a function of r, and is the only nonvanishing com-
ponent of that vector. Note that the magnitude of jXB
is much less than

~ j ~ ~

B ~, indicating proximity to a
force-free state. Figure 3 is a direct measure of the radial
pressure gradient that the minimum-dissipation state will
support. Figure 4 is a plot of the "alignment cosine"

6.0

5.0

~ISSRQ0"
Z'.

Z 3.00

~ 2.0

1.0

1.2

FI&. 2. j,(r) vs r, same case as Fig. 1.
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FIG. 3. (j )& B), vs r, same case as Fig. 1. FlG. 5. Plot of A:—j B/B' vs r, same case as Fig. 1.

a uniform, incompressible magnetofluid with constant
dissipation coeScients, to which these calculations are
limited, this is equivalent to the principle of minimum en-
tropy production, if the primitive definition of entropy is
adopted.

The variational equation which results, for perfectly
conducting boundaries with the current density unre-
stricted at the wall, or normal to the wall, is Eq. (3.3),
with s a solution of Laplace's equation. The range of pos-
sible solutions to (3.3) is wide. For the case of the current
unrestricted at the wall, the implications of the theory
seem to be those of Taylor's "minimum-energy" theory.
For the case in which the tangential component of the
current vanishes at the wall, the results differ in several
respects. It seems likely that any other possible boundary
conditions will result in predictions which differ in other

1.000

0.990

O.98OZ'
CO0

0.970

Z'.

O.96O
Z'.

O.95O

0.940

0.930
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

FIG. 4. Alignment cosine, j.B/jB, same case as Fig. 1.

ways. One result that the current boundary conditions
do yield is a finite value of (jXB) e„, providing some
confinement.

A time-averaged pressure, to go with each magnetic
profile, may be inferred from Eq. (2.1). One takes the
divergence before time averaging, and solves the resulting
Poisson equation for p. If jX B&0, Vp will in general be
nonzero. It is interesting that below the value of 8 for
which field reversal occurs, (jXB) e„develops a positive
"hook" below r =a, which is an expelling, rather than a
confining, force.

The principle itself is in the not entirely satisfactory
position of having been proved, but under less than gen-
eral conditions, that do not fully cover the cases to which
we wish to apply it. This issue has been worried about by
others ' in the hydrodynamic context, and we do not
expect an easy or early resolution to it. For purposes of
this paper, it stands only as a conjecture, though poten-
tially a numerically testable one. (See also Jaynes. )

Notice that the principle as given does not demand
that the profiles calculated be stable or even time station-
ary. All that is required is that the fluctuations about
them be fractionally small. There is also no reliance upon
inverse cascade processes, or their close relatives, "selec-
tive decay" and "dynamic alignment. "

The axisymmetric state, 001 [Eqs. (6.9) and (6.10)], is
predicted up to a value of the pinch parameter 8-=2.75,
and the toroidal magnetic field [Eq. (6.23)] reverses above
8=—1.9, for the jX n =0 boundary conditions. The re-
sulting F-6 diagram, F=1—0.526, lies above points
which have been observed in several experiments (cf. Tay-
lor, ' for example, Figs. 3, 5, and 6). The experimental
points, however, consistently lie we11 above the F-8 curve
predicted by the minimum-energy principle, whose "win-
dow" of axisymrnetric reversed-field operation lies
between 8= 1.2 and 1.6. It seems likely that the region
between the two curves is accessible to more exotic
boundary conditions. The toroidal current [Eq. (6.22)]
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never reverses.
We also intend to explore the case of a radially varying

Yi(r}, a feature both of laboratory experiments and the
driven computations' which have been done. The
Euler-Lagrange equations for this case are a generaliza-
tion of Eq. (3.3),

VX(qj)+aug+(a/2)VgXB+Vs =0, (7.1)
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APPENDIX A: HYDRODYNAMIC EXAMPLE

Consider a one-dimensional Navier-Stokes shear flow,
bounded by infinite parallel planes at y = —a and

y = +a. Let the velocity field be v = u (y)e„with the

which is a considerably more difficult relation than (3.3),
and may require numerical treatment.

With perfectly conducting boundaries and j)&n=O,
the present theory is not much of a guide as to what hap-
pens above e=—2.75, when the axisymmetric (001) state
ceases to be the state of minimum dissipation. Unlike the
minimum-energy theory [or Eq. (3.3) with j(r =a) unre-

stricted], there is no continuous variation of the eigenval-
ues A,„,and we have not seen our way through to a for-
mulation in terms of "mixed" states. The helical states
are currentless and are thus not good candidates for
states of operation above 6-=2.75. What seems most
likely to us is that above this threshold and in the vicinity
of it, the fractional variations about the time-averaged
quantities are no longer negligible, and the whole theory
breaks down: Eq. (3.3) itself no longer applies. This
would seem to be qualitatively consistent with the numer-
ical results' ' (which are for the not entirely coinpara-
ble case of a square, rather than a circular, channel).

A final interesting observation is the necessity of a
small but nonzero (in fact, first order in the resistivity)
fluid velocity that is required in the steady state. This
can be seen by time averaging Eq. (2.3) to get
0=VX(vXB)+riV B. As long as VX(VXB)=V
X j+0, a velocity is required for a time-averaged steady
state. Its contribution to Eqs. (2.8) and (82) may be re-
garded as of higher order in the dissipation coefficients,
so that its contribution can be neglected in the variational
calculations. This may not be the case in other flows, in
which a significant amount of cross helicity ((v 8)) is

present; these also seem to fall within the scope of the
present method. We are not unaware of the possible ex-
tensions of the method to other hydrodynamic and mag-
netohydrodynamic cases, and plan to explore some of
these in the future.

boundary conditions that u(+a) =0. The energy dissipa-
tion rate is (v is the viscosity}

R =v J d x [du (y)/dy] (Al)

where v is the viscosity and the region of integration is a
large volume between the parallel planes. Periodic
boundary conditions may be assumed in the x and z
directions. The region of integration is a large volume
between y = —a and y =+a.

The minimum value of R is constrained away from
zero by the requirement that a constant average flow rate
be maintained. This can be represented as

f u (y}d x =const . (A2)

The constraint may be taken into account by a Lagrange
multiplier 2a. After an integration by parts, the minimi-
zation of R leads to the Euler-Lagrange equation

v +a=0.d u(y)
(A3)

The general solution to Eq. (A3) is

u (y) = —(a/2v)y'+c, y +c2, (A4)

where c& and c2 are constants of integration. Imposing
the boundary conditions at y =+a gives

u (y) = Uo(a —y ), (A5)

the familiar parabolic Poiseui11e profile. Uo can easily be
expressed in terms of u and v.

This is probably the simplest case in which the
minimum-dissipation principle leads to a known flow
profile. The problem may be worked assuming less at the
outset, without changing the answer; for example
[du (y)/dy] may be replaced in Eq. (Al) by the vorticity
of a general three-dimensional velocity field squared,
(VXv) . The reader may readily convince himself that
the same method leads to the correct flow profile for
plane Couette flow, rotating Couette flow or pipe flow.
All these have the property that the curl of the vorticity
is the gradient of a scalar. It can also be made to give
Hartmann flow, which does not satisfy the conditions of
the proof.

The intuitive content of the minimum-dissipation-rate
principle is that spatial gradients of the fields tend to
smooth themselves out as much as they can. They are
prohibited, however, from becoming uniform by bound-
ary conditions and constraints. The extent to which this
becomes true when gradients exceed instability thresh-
olds is an open (and interesting) question.

APPENDIX B: MINIMUM MHD DISSIPATION
RATE

It is painful to admit that the minimum —disspation-
rate principle, like the minimum-energy principle, is a
conjecture and not a theorem. It can be proved, follow-
ing Lamb, and the proof is given below, but the condi-
tions the proof requires are stronger than those which ap-
ply to the current profiles in Sec. V: They are that the
curls of the current density and vorticity are gradients of
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scalars.
We dot Eq. (2.1) with v, (2.3) with 8, add the results,

and perform some integrations by parts. Invoking no
boundary conditions yet, the result is

jp 5ji in (B4) can be shown to be zero, the theorem is
proved, since R(5v„58, )&0. The physical solution is
always, then, one which makes R a minimum.

If it is possible to write V& jp
——Vmp and V&cop=V:-p,

we may write

d 3 U 8
„—f d'x

2

do'' —v p +
S 2

—f d x(vco +zij ),
v

—vcoXv — der EXB
S

(81)

f d x jo 5j,=f d'x jo VX58,
v v

= f V (5B,Xjp)d x

+ f (VX jp) 58id x,
v

=0,

R(v, B)—= f d x(vco +rji)
v

(B2)

is the rate of energy dissipation, viscous and resistive.
In a steady state, which we now represent by subscript

zero (vo, Bo,Pp, jp, . . . ), the left-hand side of (Bl) van-

ishes, and

2
Up

S
do'' vp pp+ +vcopXvp

2

+f do"(EoXBo)=R(vo, Bp) . (B3}
S

Now imagine any other possible solution of (1.1)—(1.4)
which is close to vp Bp ~ ~ . , and obeys the same bound-

ary conditions. That is, let vp~vp+5vi Bp~Bp+58i,
etc. , where the perturbed fields 5v &, 5B„.. . are zero over
the boundary (in our case, r =a and z =0 and L, ). The
surface integrals are unaffected, and the dissipation func-
tion becomes

R (vo+5v„Bp+58i )

=R (vo, Bp)+2f d x (vtoo 5toi+rijo 5j, )
v

+R(5v, , 58, ) . (84)

If the cross terms involving integrals of cop 5coi and

where E= —vXB+gj is the electric field. In Eq. (Bl),
which is a statement of conservation of energy, the first
two integrals are surface integrals over the closed surface
S bounding the volume V. They represent the rates of
feeding mechanical and magnetic energy into the system.
The last integral is the "dissipation function"
R =R(v, B}:

Using Eq. (3.3), this is

f 58, .
v

VX Jo Vso (VX58, ) jpd x =03

V

'f 5-j, j,d'x=0,
v

(86)

and, of course, ~p=0 is enough for our purposes. Unfor-
tunately, a complete proof seems to require dealing with
the second-order terms in f j 8 d x also, which we have
been unable to do. Finally, note that one solution of (3.3),
with j unrestricted, does satisfy all the conditions of the
theorem, namely, the uniform current density solution

j=const Xe, .

since 58, =0 over S. An identical proof suffices for

f ~ coo. 5cod x, and the cross terms then drop out of Eq.
(84). Since R is positive definite, the theorem follows.

In a time-dependent steady state in which products of
fluctuations are negligible compared to products of time
averages, an equation [Eq. (83)] applies to the time aver-
ages, and one may demonstrate a similar theorem among
time averages.

We have invested considerable effort in proving the
theorem without requiring that the curls of jp and cop be
gradients of scalars, without quite succeeding. If only
perturbed fields 5v&, 5B&, . . . are allowed which are com-
patible with the constraints jj Bd x =const, then to
ftrst order in the perturbations

f (jp 58, +5j, Bp)d x =0=2f jo 58,d x .
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