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Expressions of various joint probability distributions of photoelectrons in terms of the photo-
count distribution P(n, t„t, ) in which n photoelectrons are registered between tI and t2 are sys-

tematically obtained with extensive use of an introduced simple notation. The expressions obtained
are used to find two pairs of expressions of the second-order and associated intensity correlation
functions in terms of P(n, t„t, ). Some applications to quantum optics are also made to obtain re-

sults in agreement with previous work.

I. INTRODUCTION

Investigation of coherence properties of an optical field
was limited to effects of the second-order field correla-
tion, such as interference and diffraction phenomena, un-
til the experiments by Hanbury Brown and Twiss, ' who
observed the correlation between intensity fluctuations of
light beams; this proves the existence of the fourth-order
field correlation. Since then experiments of this type '

and experiments which measure higher-order field corre-
lation have been performed by many investigators. A
general theory of coherence which describes the statisti-
cal properties of the electromagnetic field including these
higher-order effects has developed in both classical and
quantum terms by the combination of the Maxwell wave
theory with the stochastic theory and of quantum electro-
dynamics with the density operator.

On the other hand, statistics of an optical field are usu-
ally detected with photodetectors in which incident pho-
tons are stochastically converted into photoelectrons
with a certain photodetection efficiency. Photon statis-
tics are therefore converted to photoelectron statistics '
which, in general, are not simply a scaled-down version
of the original photon statistics"' and can be character-
ized with various time distributions of photoelectrons;
they may be joint probability distributions or the photo-
count distribution P(n, t, , t~) in which n photoelectrons
are registered between t, and t2. (For stationary process
this photocount distribution depends on time difference
t2 t, alone and can—be written as P(n, t~ t, ) since the—n
the photocount distribution does not change as a result of
time displacements. ) Some equations which relate joint
probability distributions to P(n, t &, t& ) have been found
for example, Glauber' obtained an expression of the
joint probability distribution of time intervals between
two consecutive photocounts and that of the probability
distribution of waiting times in terms of the photocount
distribution P(n, t&, t2). However, no exact equation has
been presented which relates the second-order intensity
correlation function, which has played a fundamental
role in revealing statistical properties of an optical field,
to one of the most commonly used photocount distribu-

tions, P(n, t, , tz), to the best knowledge of the author.
The main purpose of this paper is to derive systemati-

cally the expressions of various joint probability distribu-
tions of photoelectrons in terms of the photocount distri-
bution P (n, t „t2 ). In particular, an exact relation be-
tween P (n, t „t2) and the second-order intensity correla-
tion function is obtained. Some applications to quantum
optics are also made, to obtain results in agreement with
the previous work.

In Sec. II we first present some definitions and assump-
tions used in this paper. Second, on the basis of these as-
sumptions a simple but useful notation on various joint
probability distributions of photoelectrons is introduced.
These distributions include the generalized forms of the
probability distribution of time intervals between two
consecutive photoelectrons and that of residual waiting
times. Last, with extensive use of the introduced nota-
tion, various joint probability distributions are systemati-
cally expressed in terms of the photocount distribution
P(n, t„t~). In Sec. III the expressions obtained in Sec. II
are used to find two pairs of the second-order and its as-
sociated intensity correlation functions in terms of the
photocount distribution P(n, t, , t2). Two interrelations
between these probability distributions are indicated. In
Sec. IV some applications to quantum optics are made to
demonstrate the validity of our theory.

II. BASIC RELATIONS

A. A simple but useful notation

Suppose that times when photoelectrons are emitted at
a photocathode are registered with a resolving time dt,
(i =1,2, . . . ). Here we do not set resolving times dt, at.
different times t, equal for mathematical convenience.
We assume that dt, are set much shorter than the average
time interval between two consecutive photoelectrons so
that the probability of more than one photoelectron being
registered within dt; (i =1,2, . . . ) is negligible. It is easy
to show that this condition is satisfied even when radia-
tion shows photon bunching.

Next, we define three basic probabilities ~ 0(t), 1(t),
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and e(t), each meaning the probability of zero, one, and

either zero or one count being registered during t to
t+dt, respectively. Since zero- and one-count events
occur exclusively, and, by assumption, more than one
count never occurs in dt, we have

0(r)+1(r)=e(r)=1 .

On the basis of this notation, we introduce a series of
generalized joint probability distributions such as
(1(t, ), n, 1(tz ) ) and (0(t, ), n, 1(tz ) ), etc. (1(t, ),n, 1(tz ) )

denotes the joint probability distribution that one photo-
electron, n photoelectrons, and one photoelectron are
registered during t, to t~+dt, , t~ +dt, to tz, and tz to
dtz +dtz, respectively. This joint probability distribution
may be regarded as a generalized form of the probability
distribution of time intervals between two consecutive
photoelectrons. (0( t, ), n, 1( tz ) ) denotes the joint proba-
bility distribution that no photoelectron, n photoelec-
trons, and one photoelectron are registered during t, to
t, +dr, , t, +dt, to tz, and tz to tz+dtz, respectively. It
is convenient to assume that (1(t, },n, 1(tz))=0 if n (0.
In a similar way, we can introduce joint probability dis-
tributions (1(t&),n, e(tz)) and (0(t& ), n, e(tz)), etc. , where
the symbol e (tz ) denotes that either zero or one photo-
electron is registered during tz to tz+dtz. In what fol-
lows we will derive basic equations which express the
photocount distribution P(n, t„tz), its first- and second-
order time derivatives in terms of the generalized joint
probability distributions introduced above. Then we will
solve its inverse problem, that is, we will obtain expres-
sions of various joint probability distributions in terms of
the first- and second-order time derivatives of the photo-
count distribution. This problem is nontrivial and of
some intrinsic interest from the physical and mathemati-
cal points of view; some applications to quantum optics
will be made in Sec. IV to demonstrate the validity of our
theory.

B. Basic relations

The photocount distribution P(n, t, , tz) of n photoelec-
trons being registered between t

&
and t2 can be expressed

as a sum of generalized joint probability distributions,

P(n, t, , tz)=(1(t, ), n —l, e(tz))+(0(t, ), n, e(tz)) .

The symbol e (tz ) on the right-hand side of this equation
appears because we impose no condition on a photocount
during tz to tz+dtz. For P(n, t, +dt&, tz), we impose no
condition on a photocount during either t, to t, +dt, or
t2 to t2+dt2. Therefore we have

P(n, t& +dr&, tz )={1(t|),n, e(rz) }+(0(t&), n, e(tz) },
where

(I(&, ), n, e(&z ))={1(t,), n, 1(tz ) }+(1(t,), n, O(tz )) .

In a similar manner, we have two more equations as fol-
lows:

P (n, t „tz+dtz ) =(1(t, ), n —2, 1(tz ) )

+(1(r, ), n, O(rz }}

+(0(t, ), n —1, 1(&z))

+ (0(r, ), n, O(rz)},

P (n, t, +dt, , tz+dtz ) =(e(t, ), n, O(tz) )

+(e(r, ), n —1, 1(rz)} .

On the other hand, the first-order time derivative of
P(n, t„tz) with respect to t, can be expressed as a
difference of generalized joint probability distributions,

a P(k, r, , rz}dr, =P(k, r, +dr„rz}—P(k, r„rz}
Bt]

=(1(r, ), k, e(rz))

—(1(r, ), k —l, e(rz)) .

This equation is correct to first order in dt, . The expres-
sion, when summed up over k, leads to the expression of
the generalized joint probability distribution (1(t, ), m,
e(tz)} as a linear combination of time derivatives of
P (k, t, , tz ), that is,

{1(t,), m, e(rz)}= g P(k, t, , rz)dr, ,
k=o ~r&

where we have used the assumption that (1(t&),—1,
1(tz))=0. In a similar manner, the first-order time
derivative of P(n, t~, tz) with respect to tz can be ex-

pressed as

a P(k, t), tz)dtz =P(k, t„tz+dtz) —P(k, t„tz)
at2

= [( 1(r, ), k —2, 1(rz ))

—( 1( t, ), k —1, I( rz ) }]

+ [(0(t, ), k —1, 1(tz ))

—(0(r, ),k, 1(rz))] .

This expression is correct to first order in dt2. The ex-
pression, when summed up over k, leads to the following
expression:

(1(t, ), m —1, 1(tz))+(0(t, ), m, 1(tz))
m

P(k, r„rz)drz .
I& =0 2= at

The joint probability distribution (1(t, ), m —1, 1(tz)) ap-
pearing as the first term on the left-hand side of Eq. (2)
may be regarded as a generalized for~ of the probability
distribution of time intervals between two consecutive
photoelectrons, including the latter probability distribu-
tion as a special case (m =1). This generalized joint
probability distribution can be expressed as a double
summation of the second-order time derivative of
P(n, t„tz ). To obtain this expression let us express the
second-order time derivative of P(n, t, , tz) in terms of
generalized joint probability distributions,
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a P(k, t, , t2)dt, dt2

(0(t, ), n, 1(tz))= —g P(k, t„t2)dt,
k=0
n —1 m

P(k, t„t, }
m=0 k=o 1 2at at

Xdt, dt2 .

Further, using Eqs. (3) and (4), we obtain

(e(t, ), n, 1(tz))=(0(t, ), n, 1(t, ))

+(1(t, ), n, 1(t, ))
n

P(k, t„t,)dt,
k=0 2at

(4)

n

P(k, t, , t2)dt, dt2 .
k 0 tl t2

(5)

Equations (1) and (3)—(5) are the generalized expressions
of joint probability distributions of time intervals between
two consecutive photoelectrons and residual waiting
times and other associated joint probability distributions.
The last terms in Eqs. (4) and (5) are of second order in
dt, and dt2, and therefore can be neglected in compar-
ison with other terms which are of first order in these
small quantities. Thus we will omit these terms in the
discussion below.

III. EXPRESSIONS OF THE SECOND ORDER
AND ITS ASSOCIATED JOINT PROBABILITY

DISTRIBUTIONS OF PHOTOELECTRONS
IN TERMS OF P ( n, t i, t 2 )

Now, let us use the obtained equations to find expres-
sions of the second-order and its associated joint proba-
bility distributions of photoelectrons in terms of
P(n, t &, tz ). In general, correlation functions of all orders

=P(k, t, +dt, , t2+dt~ } P—(k, t, +dt, , t, )

P—(k, t, , t, +dt, )+P(k, t, , t, )

= [(1(t, ), k —1, 1(t, ) }

—{1(t,), k, 1(t, ))]
—[(1(t, ), k —2, 1(t~))

—(1(t, ), k —1, 1(t, ))] .

By taking a double summation of this equation, we obtain
the required expression as follows:

(1(t, ),n, 1(t, ))
n m a P(k, t„t, }dt,dt, . (3).=. .=. at at

The joint probability distribution (0(t, ), n, 1(tz)) can be
obtained by the substitution of Eq. (3) in Eq. (2),

are needed for the complete description of statistical
properties of the fluctuating system. However, consider-
able attention has been focused upon the second-order
and its associated intensity correlation functions, since
they have played a fundamental role in revealing the sta-
tistical properties of an optical field in the fluctuating sys-
tem; it discriminates pseudothermal and gas discharge
light from coherent light and is used for the study of laser
operation near threshold, ' ' photon bunching, ' anti-
bunching, and squeezed states. ' The second-order and
its associated correlation functions can be characterized
with the following twofold and associated joint probabili-
ty distributions.

(1) P, i, (t, , t2)dt2. the probability of the second
photoelectron's being registered during t2 to t2+dt2,
given that the first photoelectron was registered at t, .

(2) P„&(ti, t2 )dt2. the probability of the first
photoelectron's being registered during t2 to t2+dt2 after
an arbitrary time t, .

(3) P, »(t, , t2)dtz. the probability of another
photoelectron's being registered during tz to t2+dt2,
given that a photoelectron was registered at t, .

(4) P„,(t„t2)dt2. the probability of a photoelectron's
being registered during t2 to t2+dt2 after an arbitrary
time t, .

P„,(t „t2 ) is sometimes called the probability distribution
of the residual waiting time, or forward recurrence
time. P,»(t„t, ) is proportional to the second-order in-

tensity correlation function. By comparing P, »( t „t2 )

with P„,(t„t2) or P„,(t„t2) with P„&(t&,t2) we can ob-
tain information on the second-order correlation of pho-
toelectrons. These probabilities can be expressed in
terms of the generalized joint probability distributions in-
troduced in Sec. II. To show this, let us consider the
joint probability distribution (1(t, ),0, 1(t2)). This proba-
bility distribution is the product of two independent
probability distributions, that is, (i) the probability
w(tl )dt& of an initial count being registered during t& to
t&+dt&, where w(t& ) is the average number of counts at
time t, per unit time, and (ii) the probability
P, »(ti, t2 )dt2 of the second count being registered during
t2 to t2+dt2, given that the first count was registered at
ti,

w(t, )dt, P, »(t, , t2}dt2 .

By equating this probability distribution to
{1(t&),0, 1(t2)} and dividing both sides by w(ti }dt,dt2,
we obtain

P„,(t„t2)= (1(t, ),0, 1(t~)) .
1

w( t i )dt|dt's

In a similar manner, we can express the remaining three
probability distributions in terms of the generalized joint
probability distributions,

P„,(t, , t, )= {e(t,),0, 1(t, )),1
1 1 2 dt



MASAHITO UEDA

1 8 8
P, ll(tl, t2) = — P(O, tl, t2),

w tl Bt1 Bt2

aP„l(t„t2)= — P(O, t„t2),
at2

n m

P„,(t„t,)=-
n=O m=0 k=O 1 2

(6)

XP(k, t, , t2), (8)

1
Qo

P„,(t, , t2) = g (1(t, ), n, 1(t, ) ),
w (tl )dtl dt2

1P„,(t, , t, )= g {e(t, ), n, 1(t, )) .
dt2 „

The right-hand sides of these equations, when replaced by
Eqs. (3) and (5), yield the desired expressions in terms of
the time derivatives of P (n, t 1, t2 ),

From this equation we see that the two joint probability
distributions P, ll(r) and P, ll(r) do not, in general, in-

clude the same information on photoelectron statistics.
From Eqs. (11} and (13) we obtain an interrelation be-
tween P„l(r) and P„,(r) as follows:

Qo m

P„,(r)=P„,(r)+ g g — P(k, r) .
m=1 k=O d7.

(15}

From this equation we a1so see that the two joint proba-
bility distributions P„,(r) and P„,(r) do not, in general,
include the same information on photoelectron statistics.

tween P, »(r) and P, »(7), and between P„,(r) and

P„,(r). From Eqs. (10) and (12) we obtain

n m
1 d2

P„,(r)=P„,(r)+ g g g — P(k, r} .
n=1 m=O k=O d

(14)

P„,(t, , t2)= —g g P(k, t, , t2),
m=O k=O r)t

(9) IV. APPLICATIONS TO QUANTUM OPTICS

1 d
P, 1 1(r)=— P (0,r), (10)

P„,(r) = — P(0, r),d
d7.

where we have omitted terms of higher order in dt;. It
should be noted that P„,(t„t2) does not, in general,
equal the average number of photoelectrons since the
process we are considering is not necessarily stationary.
For stationary processes whose statistical properties are
not changed by time displacements, time distributions de-
pend on time intervals alone. All corresponding relations
in stationary processes can be obtained if only we replace
P(n, t„t2) by P(n, t2 t, ) and w(t, ) —by the total average
number of counts w per unit time. As special cases, we
derive time distributions of doubly correlated photoelec-
trons and other associated distributions in stationary pro-
cesses to demonstrate that our theory leads to results
consistent with the previous work. For stationary pro-
cesses P, ll(tl, t2), P 1( 1 2}, P 11( 1 2} eel( 1 2} and
P(n, tl, t2) depend only on time difference t2 t, and can-
be written as P, »(r), P„l(r), P, ll(r), P„,(r), and P(n, r),
respectively, where ~=t2 —t1. The expressions of these
tilne distributions in terms of P(n, r) can be obtained
from Eqs. (6)-(9) by replacing l}/l}t 1 by —8/ar, a/at2 by
1}/l}r, w(tl ) by w, and P(n, t, , t2) by P(n, T),

We apply Eqs. (10)—(13) to the fundamental statistics,
that is, the Poisson and Bose-Einstein statistics, to
demonstrate the validity of our theory. For the Poisson
statistics, the probability distribution P(n, r) in which n

photoelectrons are registered during ~ is given by

(wr)"
P(n, r) =exp( —wr)

n!
(16)

where w is the average number of photoelectrons per unit
time. Substituting (16) in (10)—(13), we obtain

P„,(r) =P„,(r) =w exp( —wr),

P, ll(r) =P„l(r)=w .

(17)

The expressions of P, »(r) and P„l(r) are consistent with
the experimental results of Arecchi et al. The facts that
P, l, (r) and P, »(r) are equal to P„,(r) and P„l(r), re-

spectively, indicate that no two photoelectrons in the
Poisson process are correlated.

On the other hand, for the Bose-Einstein statistics two
photoelectrons are correlated or bunched if their time in-
terval is comparable to or shorter than the coherence
time of light. This so-called "bunching" effect of photo-
electrons can be visualized by comparison of P, ll(i) to
P„l(r) or P, »(r) to P„,(r). The photocount distribution
P (n, r) for the Bose-Einstein statistics is given by

Qo n m
1 d2

P„,(r}=g g g — P(k, r),
n=O m=O k=O d

(12)
P(n, r}= (wr)"

(1+wr)"+' (19)

m

P„,(r)= g g — P(k, ~) .
m =0 k=O d~

(13)

Equations (10) and (11) are identical to those obtained by
Glauber. ' Since the twofold joint probability distribu-
tion P,»(r) is proportional to the second-order intensity
correlation function, Eq. (12) shows an exact expression
of the second-order intensity correlation function in
terms of P (n, ~)

We end this section by indicating two interrelations be-

P„,(r) =
(1+w~)

2w
P, 1 1(r)=

(1+we)

(20)

(21)

These equations were first obtained by Glauber. ' For

where ~ is required to be much shorter than the coher-
ence time of light. The substitution of Eq. (19) into Eqs.
(10) and (11)yields the former pair of the joint probability
distributions,
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short time intervals such that wr «1, P, »(r) is twice as

large as P„,(r), which shows that photons which obey
the Bose-Einstein statistics tend to be registered in
bunches. The latter pair of the joint probability distribu-
tions can be obtained by the substitution of Eq. (19) into
Eqs. (12) and (13). After some algebraic manipulation,
we obtain

P, »(r) =2to,

P„,(7.) =W

(22)

(23)

P, »(r) is twice as large as P„t(r) so long as Eq. (19)
holds,

P„,(r) =2P„,(r) . (24)

Equation (24) is another expression of photon bunching
in a Gaussian field well known in the semiclassical
theory,

P„,( r « r, ) =2P„,( r' ))r, ), (25)

where ~ is taken much shorter than the coherence time v.,
of light, while ~' is taken much longer than v, . It is noted
that there is an apparent difference between Eqs. (24) and
(25)—that is, Eq. (24) connects two probability distribu-
tions for the same time interval under different initial
conditions, while Eq. (25) connects two probability distri-
butions under the same initial condition but for different
time intervals. However, both equations express the
same content from the different points of view: from the
standpoint of conditional probability P, »(r) is an initial-
ly conditioned probability distribution which can carry
phase information on the two relevant detected photons,
while P„t(r) is not initially conditioned so that it cannot
carry the phase information. From the standpoint of
time, this situation can be restated as follows: two pho-
tons can carry information on phase correlation if the
time interval between the two photons is not much longer
than the coherence time of light.

Finally, let us derive the expressions of time distribu-
tion P„~(r), P„,(r), P, »(r), and P„,(r) in terms of the
cycle-averaged intensity of light I(t) using Eqs. (6)—(9).
Since these expressions are well known, ' ' this demon-
stration makes it clear that our theory is consistent with
the previous work. The probability P (1,t, t +dt ) of a
photoelectron's being registered during t to t+dt is pro-
portional to the cycle-averaged intensity of light at time
t Zs

a f I(t)dt
P(n, t„t2)=exp —a f I(t)dt

l n!

(27)

However, this is not the probability distribution that can
be obtained experimentally, for the intensity I(t) gen-
erally fluctuates at random. The ensemble average of the
right-hand side of Eq. (27) is an observable,

a f I(t)dt
P(n, tz —t, )= exp —a f I(t)dt

1 n!

(28)

where the symbol ( ) denotes the operation of the en-
semble average over the integrated intensity distribution

~ ~

'2
I(t)dt, and we assume the stationarity of the field.

I

Substituting Eq. (28) in Eqs. (6)—(9), and replacing t2 —t,
by ~, we obtain

P„,(r) =
a I(t)I(t+r)exp —f I(t')dt'

t

(I(t))
(29)

P„,(t) =a I(t) exp —f I(t')dt'
t

(30)

a(I(t)I(t + r) )
(I(t))

P„,(t) =a(I (t) ) = to .

(31)

(32)

All these results are in agreement with the previous
work, ' ' which shows the validity of our theory.

V. CONCLUSIONS

We present a systematic theory which relates various
joint probability distributions of photoelectrons to one of
the most commonly used probability distributions,
P(n, t, , t2), in which n photoelectrons are registered be-
tween t, and tz. The expressions obtained are used to
find two pairs of expressions of the second-order and its
associated intensity correlation functions in terms of
P (n, t„t2 ). Two interrelations between P„~(r) and
P„i(r), and between P„,(r) and P„,(r) are indicated.
Some applications to quantum optics are also made, to
obtain results in agreement with the previous work.

P (1,t, t +dt ) =aI(t)dt, (26)
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