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We show that dephasing-induced nonlinear-optical effects whose amplitudes are proportional to
trinomials of dephasing rates, I;,+I,k

—I;k, exist in all nonlinear orders of perturbation theory.
To do this, we derive a new form for the perturbation expansion of the susceptibility, equivalent to
the currently used expansion, but which writes each order as a sum of (1) terms due to single-sided

diagrams, and (2) correction terms, all of which are proportional to trinornials of dephasing rates
The proof of this result utilizes a diagrammatic approach involving a new type of double-sided dia-

gram for the latter terms. These diagrams immediately yield the terms proportional to trinomials of
dephasing rates in all orders without the need for algebraic manipulation. This approach also re-

veals some general properties of the ¹h-order susceptibility.

I. INTRODUCTION

While expressions for the nonlinear-optical susceptibil-
ity that correctly incorporate damping have existed for
over 20 years, ' only a decade ago did researchers dis-
cover in them the class of "dephasing-induced" or
"pressure-induced" resonances. One reason for this de-

lay is that the full expression for P' ' for a four-level sys-
tem, for example, contains 1152 terms, although if the
sum over all state perrnutations is not performed, the
number of terms falls to 48. Not surprisingly, even the
48-term expression was not explicitly written down until
1977. It was then that the required algebraic manipula-
tion of this expression was performed to reveal the class
of dephasing-induced resonances.

These nonlinear-optical resonances have zero or nearly
zero strength in the absence of collisional dephasing be-
cause the two or more quantum-mechanical amplitudes
potentially contributing to signal radiation add coherent-
ly and cancel out. In the presence of collisional dephas-
ing, however, these amplitudes cease to cancel out, result-
ing in resonances whose strength increases with pressure.
An example of a dephasing-induced effect is a resonance
between initially unpopulated states. ' After algebraic
manipulation of the third-order terms that contain these
initially-unpopulated-state resonances, their strengths are
seen to be proportional to trinomials of dephasing rates:

where I
&

is the total dephasing rate between states a
and P. Typically, this quantity vanishes when pure de-
phasing can be neglected, i.e., when the pressure is zero.
When pure dephasing cannot be neglected, an approxi-
mately linear pressure dependence results. Prior et al.
have observed such a resonance between the 3P3/2 and

3P, i2 levels of sodium.
Several other third-order dephasing-induced phenome-

na have been observed experimentally. Bloembergen and
co-workers have observed collisional-dephasing-induced

population gratings ' and collisional-dephasing-induced
resonances between equally populated ground electronic
states (hyperfine and Zeeman levels). ' Grynberg and

co-workers have demonstrated dephasing-induced oscilla-
tion"' and self-focusing. ' Additional processes that
have been shown to have dephasing-induced components,
and which have been observed, include coherent emission

between different initially unpopulated excited electronic
states, ' Auorescence, ' ' saturation spectroscopy, and18

the Hanle effect. '

Extension of this work to higher order and to satura-
tion regimes has also begun. Grynberg's dressed-state
calculations have revealed dephasing-induced resonances
between initially unpopulated states even in the presence
of strong two-photon coupling. Furthermore, even in
this regime, the resonance amplitude retains its propor-
tionality to I; k. Agarwal and co-workers have cal-
culated expressions for dephasing-induced effects in the
presence of saturating fields and have shown that
dephasing-induced effects exist in higher-order wave mix-

ing. In addition, researchers have experimentally ob-
served higher-order dephasing-induced resonances.
Dagenais ' has observed a 2', —co2 process, resonant
between populated excited states, using a collisiona1-
redistribution process to populate these states, which
yielded an overall fifth-power dependence on intensity.
Trebjno and Rahn ' have seen subharmonics of
hyperfine resonances, which appear to be due to
dephasing-induced nonlinearities at least as high order as

Agarwal has modeled subharmonics with a two-
oscillator model, a dressed-state picture, and higher-order
perturbation theory. Of these three approaches, the last
is, perhaps, the most intuitive because subharmonics are
clearly evident in higher-order perturbation-theory dia-

grams. Thus these experiments would benefit from a
higher-order perturbation-theory treatment. Indeed, it
would be useful in general to understand the nature of
dephasing-induced phenomena in all orders of the pertur-
bative nonlinear susceptibility.

In their original paper, Bloembergen et al. performed
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algebraic manipulations of the second- and third-order
perturbative susceptibilities, which led them to discover
dephasing-induced processes in those orders. Working
with expressions for these susceptibilities that correctly
included damping (rather than incorrectly including it by
allowing frequencies to become complex in the final re-
sult), they rearranged terms. For the 48-term expression
for P' ', for example, they obtained another 48-term ex-
pression, which contained two types of terms. It con-
tained the 24 terms usually obtained by neglecting damp-
ing until the final result. (We will refer to these terms as
the "principal terms" because they adequately describe
most of the nonlinear-optical processes that have been
observed to date, see Sec. III.) It also contained 24
"correction terms" proportional to trinomials of dephas-
ing rates, I, k. All resonances between initially unpopu-
lated states occurred in these latter terms.

In order to understand higher-order dephasing-induced
effects, it would be useful to perform analogous algebraic
manipulations for higher orders. The number of terms in
the Nth-order susceptibility increases as 2 Nt, however.
It is thus apparent that, in higher order, the algebraic
manipulation required to separate out terms whose
strength depends on dephasing becomes much more com-
plex. The problem is that the usual nonlinear-optical per-
turbation expansion involves a one-to-one correspon-
dence between terms and quantum-mechanical propaga-
tors. ' This expansion is physically intuitive, but it
cannot conveniently describe dephasing-induced reso-
nances, which in 7' ' necessarily involve partial sums of
more than one propagator. Thus, to best describe
dephasing-induced phenomena in all orders, an expansion
that involves appropriate rearrangements of potentially
very many terms is required.

In this paper we perform this rearrangement in all or-
ders and describe the new perturbation expansion for the
nonlinear-optical susceptibility that results. This new ex-
pansion is equivalent to the currently used expansion,
valid in the impact approximation, assuming isolated
lines, monochromatic radiation, steady-state operation,
and no initial system coherence. It reveals dephasing-
induced phenomena with amplitudes proportional to tri-
nomials of dephasing rates, I; k, in all orders and has the
advantage that it explicitly displays the terms proportion-
al to I;& in all orders —no algebraic manipulation is
necessary to obtain them. Specifically, in this expansion,
the nonlinear-optical susceptibility is written as the sum
of (1) principal terms, obtainable from single-sided dia-

grams ' and (2) correction terms, all of which are pro-
portional to trinomlals of dephasing rates, I;.p. As a re-
sult, we also refer to the correction terms as "trinomial-
dephasing terms. " We find that, as the order increases,
trinomial-dephasing terms dominate the expression for
the susceptibility in the sense that their relative fraction
of the total number of terms approaches unity.

The proof of these statements involves a new diagram-
matic approach for writing down the above expansion for
the nonlinear-optical susceptibility. This approach uses
single-sided diagrams to yield the principal terms and a
new type of double-sided diagram, which we call a
"trinomial-dephasing diagram, " to yield the correction

terms. The latter type of diagram yields dephasing-
induced effects proportional to a trinomial of dephasing
rates directly and immediately in any order, without the
need for algebraic manipulation.

The expansion and corresponding diagrammatic ap-
proach are not only useful for the above proof, but in ad-
dition, they also appear useful for understanding the non-
linear susceptibility in general. They may also be useful
for calculations.

II. BACKGROUND AND NOMENCLATURE

Several authors ' ' ' describe general ("integral" )

approaches to writing the Nth-order density matrix as
sums of time-ordered N-dimensional integrals over prop-
agators and perturbation Hamiltonians, correctly includ-
ing damping. Most calculations of theoretical expres-
sions, however, require a few simplifying assumptions.
Typically, one assumes the impact approximation, mono-
chromatic radiation, isolated spectral lines, steady-state
operation, negligible population transfer, and zero initial
values for off-diagonal density-matrix elements.
We will refer to these approximations as the "standard
approximations. "These approximations allow the relaxa-
tion of the off-diagonal density-matrix elements, p;, to be
written as exp( —I, t), where I;, the total dephasing
rate, is given by

I;,= —,'(y;+y, )+I (j~ . (2)

In this expression, y; and y are the longitudina1 relaxa-
tion rates (including decay due to spontaneous emission
and inelastic collisions ) of levels i and j, respectively,
and I ~& is the pure dephasing rate between levels i and
j. These approximations allow the time-ordered N-
dimensional integrals over the propagators and Hamil-
tonians to be performed. As a result, each propagator
yields a resonant denominator of the form
1/[co;~ —(g, cu; ) i I;~ j,—where co;~ is a transition frequen-

cy and g,.co, is a sum of up to N input light frequencies.
Bloembergen, ' Lynch, and Flytzanis have written down
expressions for the Nth-order nonlinear-optical suscepti-
bility within these approximations.

Whether the standard approximations are made or not,
a double-sided diagrammatic approach can be used to de-
scribe the terms in the expression for the Nth-order
nonlinear-optical susceptibility. Borde and co-workers
describe diagrammatic approaches for the integral ex-
pressions (and for other problerns3 ' ); Yee and co-
workers ' and Omont et al. give descriptions of di-
agramrnatic interpretations in both regimes; and Prior
reviews the approach under the standard approximations,
showing explicitly all 48 of the diagrams and correspond-
ing terms for 7' '. Prior also describes the relation of
double-sided to single-sided diagrams, the latter of which
do not correctly describe collisional dephasing. The
conventions and formalism used by Prior wi11 be adopt-
ed in this paper, as we also work within the standard ap-
proximations.

We include here a note on nomenclature. In addition
to collisional dephasing, dephasing due to longitudinal re-
laxation can also lead to noncancelling nonlinear-optical
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amplitudes. "Decay-induced resonances" have been ob-
served. This effect can be seen in trinomial-dephasing
terms by separating dephasing due to longitudinal relaxa-
tion from pure dephasing using Eq. (2):

(3)

Thus, unless the lifetime of state j is infinite, there will be
a component due to longitudinal relaxation. It is for this
reason that we use the general adjective "dephasing in-
duced" instead of the more common terms "pressure in-
duced" or "collision induced, " which ignore this contri-
bution. Additional nomenclature issues arise when we
consider that correction terms can add coherently to a
resonance that results from one or more principal terms.
In this case, dephasing perturbs an already existing reso-
nance, rather than inducing the resonance itself, so that a
better noun for the general class of effects might be "phe-
nomena" or "effects." To further complicate the matter,
many third-order nonlinear-optical effects have been
shown to be related to the presence of dephasing, al-
though not through I; k terms. ' Most of these effects
have amplitudes proportional to a single dephasing rate
I, or to a positive-weighted sum of dephasing rates,
without the possibility of cancellation. Consequently, it
might be useful to distinguish between these two types of
effects. With these points in mind, we henceforth adopt
in this work the general names, "dephasing-induced phe-
nomena, " for the general class of effects owing their ex-
istence to dephasing and, specifically, "trinomial-
dephasing phenomena" for the effects of terms propor-
tional to I";k. We will refer to terms in the nonlinear sus-

ceptibility proportional to I; A. as "trinomial-dephasing
terms, "as mentioned earlier.

III. CORRECTION TERMS IN g' '
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tained all of the principal terms (due to single-sided dia-
grams), plus an equal number of correction terms (all pro-
portional to trinomial-dephasing factors).

We now describe this rearrangement in some detail for
a particular process. Consider a four-wave-mixing pro-
cess of the form coo=co, +~2 —co3, involving the states g,
k, t, and j, with g populated. Figure 1 shows a triplet of
double-sided diagrams, having the same matrix elements
in their numerators. Also shown in Fig. 1 are the terms
resulting from these diagrams. We can algebraically
manipulate the three terms in Fig. 1 to yield three new
terms that sum to the same value. They consist of the
following principal term:

In this section we review the rearrangement of the 48-
term expression for g' ' due to Bloembergen et al. , and,
using this order as an example, introduce concepts neces-
sary to treat the Nth order. Familiarity with the single-
sided and double-sided diagrammatic approaches, as re-
viewed by Prior, would be helpful in understanding the
discussion that follows.

Bloembergen et al. observed that, for a given
nonlinear-optical process, the expression for 7' ' contains
several triplets of terms with the same dipole-moment
and density-matrix elements in their numerators. As a
result, each triplet of terms could be algebraically ma-
nipulated without reference to a particular atomic or
molecular system. For each triplet, they obtained two
correction terms, proportional to trinomial-dephasing
factors, and a principal term, which could be written us-
ing a single-sided diagram. Twelve triplets produced 24
correction terms, each proportional to a trinomial-
dephasing factor, and 12 principal terms. The remaining
12 terms of the original 48 each have unique products of
matrix elements in their numerators and so cannot be
manipulated. These last 12 terms result from the remain-
ing 12 single-sided diagrams. Thus the manipulation did
not reduce the number of terms in the expression for g' ',

but it did produce another 48-term expression that con-
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FIG. 1. Three double-sided diagrams and the terms obtained
from them for the four-wave-mixing process coo —c0$+co2 f03.
The states are labeled g, k, t, and j; p'&' is the dipole-moment-
matrix element between states a and P for the polarization of
the beam at the frequency co~, and p~~' is the population density
of state g. co & is the transition frequency between states a and
P. In all diagrammatic approaches considered in this work, a11

transition frequencies co & are understood to be complex, that is,
to include the dephasing rate between a and p:
co ~~co &

—iI &. A detailed description of the construction
and interpretation of double-sided diagrams is given in Ref. 37.
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and two correction terms:
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This rearrangement is similar to, but not exactly the same
as, that of Bloembergen et al.

Figure 2 shows a single-sided diagram for the
6)]+Q)2 103 process. It is the only single-sided diagram
for this process that has the same matrix elements as the
terms in Eqs. (4)—(6). Figure 2 also shows the term cor-
responding to the single-sided diagram, which is identical
to Eq. (4). That is, the term obtained from the single-
sided diagram is identical to the principal term obtained
after algebraic manipulation of the three double-sided di-
agrams. Indeed, Prior has verified for X' ' that the 24
principal terms generated by algebraically manipulating
terms are precisely the terms obtained from the 24
single-sided diagrams. This fact suggests rigorous gen-
eral definitions of the words "principal term" and
"correction term" in all orders. We therefore define prin-
cipal terms to be those terms obtainable from single-sided
diagrams (i.e., from perturbation theory in which darnp-
ing is only included by allowing transition frequencies to
become complex in the final result). All other terms re-
quired to yield the correct expression for the susceptibili-
ty will be called correction terms.

At this point, we introduce diagrams that give the
correction terms in P' ' and I' '; they are described in de-
tail in the Appendix. Two of these "trinomial-dephasing
diagrams" are shown in Fig. 3 for the above X' ' process,
and Fig. 4 shows diagrammatically the relationship be-
tween the double-sided, single-sided, and trinomial-
dephasing diagrams for the three terms we have been
considering for the co&+co2 —co3 process. In words, for
7' ', a term from a single-sided diagram plus two terms
from trinomial-dephasing diagrams sum to yield the three
terms from the double-sided approach. Such a relation
also holds for all other triplets of terms in 7' '. The
remaining 12 terms in the 48-term expression for g' ' can
be rewritten using the remaining single-sided diagrams.

k j

g g

FIG. 3. (a) A trinomial-dephasing diagram and its corre-
sponding term for the four-wave-mixing process
+ c02 c03 Observe that the term generated by this diagram is
identical to the correction term given by Eq. (5). (b) The addi-
tional trinomial-dephasing diagram [obtained by sliding an in-
teraction vertex from below to above the dashed horizontal line
in (a)] and its corresponding term for the same four-wave-
mixing process. Observe that the term generated by this dia-
gram is identical to the other correction term given by Eq. (6).
A detailed description of the construction and interpretation of
trinomial-dephasing diagrams is given in the Appendix.

2Q
t jy

Thus, for the o]]+p]2 —p]3 process, the sum of all of the
terms obtained from double-sided diagrams equals the
sum of all the terms obtained from single-sided diagrams
plus all the terms obtained from trinomial-dephasing dia-
grams. Finally, since there is nothing unusual about the
above third-order process, it is not difficult to see that the
preceding statement is true for all third-order processes.

This algebraically rearranged set of terms is often
preferable to the terms directly obtainable from the

(3) (2) (o) (l) (o)
~gk~kt ~tj ~jg I gg

(m„+ m3) [m, —(m2 —m )j (m,.—m, )
OQ,
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sg
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FIG. 2. A single-sided diagram for the X' ' process
coo —67 l + co2 c03 A detailed description of the construction
and interpretation of single-sided diagrams is given in Ref. 37.

FIG. 4. Diagrammatic sum showing that three double-sided
diagrams sum to yield one single-sided diagram and two
trinomial-dephasing diagrams.
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double-sided diagrams because it clearly separates
trinomial-dephasing terms from principal terms. In addi-
tion to this conceptual advantage, there are other advan-
tages as well to this arrangement. It should simplify
some computations, which typically involve adding to-
gether many terms. Clearly much of the algebra required
to describe trinomial-dephasing phenomena has already
been done in deriving this arrangement. Also, for the
case of very low pressure (i.e., weak dephasing) and long-
lived populated states, correction terms do not contrib-
ute, which results in a reduction from 2 N! to (N+1)!
terms for a given state ordering. Whether all state order-
ings are considered or not, the reduction is by a factor of
2 (N+1) (see Table I), .which is significant for N) 3.
Neglect of all correction terms in this case should thus
save considerable time and effort. In addition, as the
pressure (dephasing) increases, correction terms can be
included as a perturbation. Another advantage of this ar-
rangement is that it better displays the relative strengths
of correction terms themselves, since, within the set of
correction terms, some are stronger than others. For ex-
ample, dephasing between electronic levels is generally
much stronger than within an electronic level (e.g. , be-
tween Zeeman or hyperfine levels), so correction terms
proportional to a trinomial-dephasing factor involving
the former rates will generally be stronger than those in-
volving the latter rates. (One should be careful, however,
to consider resonant denominators, as well, in such deter-
minations. )

It is, however, not obvious at this point whether
single-sided diagrams plus trinomial-dephasing diagrams
yield a result equivalent to that obtained with double-
sided diagrams in all orders. Section IV is the proof that
this is the case. For now, we precisely state the theorem
that is the subject of this paper. In all orders, the non-
linear susceptibility in the standard approximations can
be written as the sum of (1) all of the terms from single-
sided diagrams, and (2) all of the trinomial-dephasing
terms (all proportional to factors of the form, I;~1, ), given

by trinomial-dephasing diagrams. That is, in all orders,
the set of all correction terms is equivalent to the set of
all terms obtained from trinomial-dephasing diagrams.

This expansion is physically equivalent to the well-known
expansion obtained using double-sided diagrams.

IV. PROOF

The proof is diagrammatic. That is, we will begin with
the set of double-sided diagrams for an arbitrary order of
the susceptibility, and, by manipulating them, we will
show that the terms generated by them sum to the same
value as do the terms generated by the single-sided dia-
grams plus the terms generated by the trinomial-
dephasing diagrams. Since there is always a one-to-one
correspondence between diagrams and mathematical
terms, we use the words "term" and "diagram" inter-
changeably in this discussion.

We first point out that it is only possible to manipulate
algebraically terms that all have the same matrix ele-

ments in their numerators; to do more would require spe-
cial knowledge regarding the atomic system, which is

only available in specific situations. We thus need to con-
sider only the set of all Nth-order double-sided diagrams
that yield the same dipole-moment-matrix elements and
density-matrix element. Henceforth, we refer to such a
set of diagrams with the same dipole-matrix and density-
matrix elements in the double-sided approach as a
"class." Diagrams in the same class have the same states
and photons on the bra (right) and the same states and
photons on the ket (left). The relative heights of states
and photons on the bra are the same for diagrams in the
same class; the same can be said about the ket. Where di-

agrams within a class differ is in having different heights
of interactions on opposite sides. For example, the dia-
grams in Fig. 1 form a class. In third order, there are 24
classes (for a given state ordering). Twelve contain three
diagrams each, as that shown in Fig. 1, and the other 12
contain only a single diagram each. Diagrams in the
latter set of classes are parametric; that is, they have all
of their interactions on one side. In fifth order, where
there are 3840 terms (for a given state ordering), there are
720 classes in all, with 240 containing ten diagrams,
another 240 containing five, and another 240 containing
one diagram each. As with 7' ', diagrams in the last set

TABLE I. Number of diagrams (terms) for various orders before summing over state orderings or
states. After the sum over state orderings is performed, the numbers of terms above must be multiplied

by (N + 1)t, yielding, for example, 1152 double-sided diagrams for 7' '.

Order

pl 1)

y(2)

y(3)
y(5)
y(7)

y( N)

Number of
double-sided

diagrams

2
8

48
3840

645 120

2~et

Number of
single-sided

diagrams

2
6

24
720

40 320

(N+1)!

Number of
trinomial-dephasing

diagrams

0
2

24
3120

604 800

(N+ 1)![2 /(N+1) —1]

Fraction of terms
due to

trinomial-dephasing
diagrams

0%
25%
50%
81%
94%

1 —[(N+1)/2 ]
(~1 as N~~)
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m-1

0

m-1

m-2

m-1

m-1

m-2

of classes are parametric.
Since, it is only possible to manipulate algebraically di-

agrams within a class, we observe that it is sufficient to
show that the single-sided-plus-trinomial-dephasing di-
agrammatic approach yields the same result as the
double-sided approach within each class of diagrams. (It
is also necessary to verify that the two approaches have a
one-to-one correspondence of classes, but this is easily
verified, recalling that the rules for the determination of
matrix elements are identical for double-sided diagrams
and trinomial-dephasing diagrams; see Table I.) This ob-
servation simplifies the calculations considerably.

We will need to separate all classes into two types.
"Parametric" classes will be those containing only para-
metric diagrams. Such classes contain one diagram each.
"Nonparametric" classes will be those containing only

nonparametric diagrams (with interactions on both sides).
Nonparametric classes have more than one diagram each.
Parametric and nonparametric classes comprise all
classes and, hence, all diagrams, as well. This is because
no class contains both parametric and nonparametric dia-
grams.

We begin by considering parametric classes. Figure 5
shows two generic diagrams representing two different
parametric classes. Figure 5 also shows two single-sided
diagrams. We immediately observe that the term gen-
erated by each double-sided diagram in Fig. 5 can be gen-
erated identically by a single-sided diagram. Thus each
parametric double-sided diagram can be replaced by a
single-sided diagram. This completes the part of the
proof for parametric classes.

Now consider nonparametric classes. This case will re-
quire significantly more effort, occupying the remainder
of this section, because all of the algebra occurs in these
classes. Observe that, to generate an entire non-
parametric class of diagrams from a given diagram, it is
only necessary to move interactions up or down on each
side, without changing the order of the interactions on a
given side. Figure 6 shows a generic double-sided dia-
gram for a class of diagrams corresponding to a 7' ' pro-
cess. We consider this diagram in detail during the
remainder of this section. It has m interactions on the
ket and m' interactions on the bra. In the figure, the or-
der of interactions on a given side is determined, but no
attempt has been made to distinguish relative heights be-
tween interactions on opposite sides because all possible
orderings are intended to be represented by this diagram.

We now outline the remainder of the proof. We will
derive the result that every nonparametric class of
doub1e-sided diagrams can be algebraically rewritten as
an equal number of diagrams: one single-sided diagram

m'

m-2

m-2
m-1

m-1

m-2

m'-1

m-2 rrr
2'

0

FIG. 5. Parametric double-sided diagrams and the corre-
sponding single-sided diagrams that yield the same terms. In
these diagrams, we have for simplicity drawn all input photons
pointing upward to the right, i.e., as absorbed photons. It is
clear, however, that the conclusions hold for emitted photons,
also. (In Figs. 6—8 the same simplification is used. )

FIG. 6. Generic diagram for a class of double-sided diagrams
for a 7' ' process with m interactions on the ket and m ' interac-
tions on the bra (N = m +m'). While the order of the interac-
tions on a given side is assumed to be the same for all diagrams
in this nonparametric class, the relative order of interactions on
opposite sides varies from diagram to diagram in the class.
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plus its corresponding trinomial-dephasing diagrams.
We will use the principle of mathematical induction. Our
method will be to factor out a resonant-denominator fac-
tor involving the signal frequency from every term in a
sum of terms generated from a nonparametric class of
double-sided 7 diagrams. This is equivalent to remov-
ing the uppermost interaction from each diagram. The
remaining parts of all terms will then be written diagram-
matically as those from two 7' " processes. Next, we
will assume the theorem for aH 7' " processes, as re-
quired by mathematical induction. This will allow us to
replace expressions for each 7' " process with a
single-sided 7' " diagram and its corresponding
trinomial-dephasing g( "diagrams. Performing a sim-
ple algebraic manipulation, we will find that the expres-
sion for the class of double-sided diagrams for the 7'
process can be written as one single-sided 7' ' diagram
plus a set of trinomial-dephasing g( ' diagrams. This will

complete the inductive step, and examination of the
lowest-order case establishes the initial step of the induc-
tive process and completes the proof.

Before continuing, we define

'(0;1,2, . . . , I;m', m' —l, . . . , l')

as the sum of terms over a class with the following state
ordering: state 0 is the base state, states I through m are
the states on the ket, reading upward, and states 1'

through m' are the states on the bra, reading upward.
The photon ordering is determined only on each side: as
usual, within a class, the photon ordering on the bra is
the same for all diagrams, as is the case for the ket; rela-
tive orderings of photons on opposite sides is where dia-

I

grams in this sum differ.

n(N)(0;1, 2, . . . , m;m', m' —1, . . . , 1')

is a function of the states, their ordering, and the light
frequencies and polarizations. It is a sum over all possi-
ble relative heights of interactions on opposite sides of
the diagrams. We suppress all arguments of 23( ' except
for the states because, once the states are specified, the
light frequencies and polarizations in our calculations
will be clear from Fig. 6. It is also useful to define analo-
gous sums over single-sided diagrams S' ' and for
trinomial-dephasing diagrams V' ', where "classes" of
these diagrams are defined analogously. The same con-
ventions apply for the state arguments for 7"N', and for

', the order of the state arguments is from bottom to
top. [Of course, 4( '(0;1,2, . . . , m;m', m' —1, . . . , 1')
consists of only a single diagram for all values of m and
m'. ] In this notation, then, the theorem can be stated:

~(N) g(N)++N)

where the state arguments of all three quantities in
Eq. (7) are assumed to be the same:

(0;1,2, . . . , m;m', m' —1, . . . , 1') .

We now return to the class of diagrams containing the
generic diagram shown in Fig. 6. We separate this class
of diagrams into two subclasses, the first containing the
diagrams having their uppermost interaction on the ket
and the second containing all the diagrams having their
uppermost interaction on the bra. We will break up the
sum of all diagrams in the class into sums over these
subclasses. Xl' ' can then be written

2)( '(0; 1,2, . . . , )n; m ', m ' —1, . . . , 1' ) =
(N —1)!

(tuoI
' ' P 1, )P (IJ '—,

' 1' Pl'0 )—Ppp

N —2

(co —Cop)[co 1
—

(reap CO )]—g d~J
j=1

( N —1)!
( 1 ) ( 1 ) (p( 1 ) p( ) )p(0) (p( ) p( 1 ) )p(0)

(0) —(Op)[CO 1
—(010 Ct) ')] g d Jj=1

where the first sum is over diagrams with the uppermost
interaction on the ket and the second is over diagrams
with the uppermost interaction on the bra. As required,
each term contains the same matrix elements. In addi-
tion, each term in the first sum contains the two resonant
denominators (co ~

—(op) and [(0 ) .—(cop —co )],
which result from the two uppermost interactions. They
have been explicitly written down; two similar factors
have been written in the second term. The continued
products represent different combinations of additional
resonant denominators for each term. The only quanti-
ties varying from term to term in the sum are the addi-
tional resonant denominators d; and d, ', , where d;~ (d ~. )

is the jth resonant denominator of the ith term of the first

I

(second) sum. No particular order of these resonant
denominators or of the terms in the sum is specified, as
none will be needed.

The critical step in this proof is the observation that,
by factoring out the resonant denominator corresponding
to the uppermost interaction from each term (i.e., by re-
moving the uppermost interaction), we create two sums
corresponding to two classes of diagrams for processes of
order X —1. (The matrix elements are slightly different,
however. This is easily remedied by multiplying and di-
viding by the appropriate matrix elements. ) Thus the
sum of the 7' '

diagrams in this class is equal to two
sums of g' "diagrams:
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Xl' '(0;1,2, . . . , m;m', m' —1, . . . , 1')=
(m) (0)

Pm —1,mPm, m'

(~mm ~o)Pm —i I(0')

(m') (0)

(oimm '~o)pmm ,
'i—

"(0;1,2, . . . , m —1;m', m' —1, . . . , 1')

(9)

where we have substituted 2)' "s for the appropriate
sums. Observe that each 2)' "has different state argu-
ments. In addition, we have temporarily defined polar-
izations (0' and 0") and nonzero matrix elements
(p' ', ~ and p' ', ) for "signal" radiation of these
lower-order processes. (These matrix elements have no
physical significance and will cancel out later. ) The fac-
tor of —1 in the second term comes about because there
is one less interaction on the bra side of these lower-order
diagrams than in the g( ' diagrams because the interac-
tion factored out is on the bra.

We now use the principle of mathematical induction
and assume the validity of the theorem for the value
N —1, and proceed to demonstrate the validity of the
theorem for the value N, using this assumption. Thus we
can replace the sums of double-sided X' "diagrams by
the appropriate single-sided diagram and its correspond-
ing trinomial-dephasing diagrams using S'
+7 ". Having done this, we must next show that the
above relation is also true for 2)' '. The beauty of di-
agrammatic computations will be evident in the ease with
which this is done.

To recreate diagrams for the 7' ' process we multiply
through by the matrix elements and resonant denomina-
tor that we removed earlier. This operation has the effect
of adding back the interaction on the top of each
trinomial-dephasing diagram that we removed earlier be-
cause, at the top, trinomial-dephasing diagrams are dou-
ble sided and have an identical interpretation there as do
double-sided diagrams. This operation creates all of the
trinomial-dephasing diagrams for the 7( ' process, except
for the one with all interactions below the line. For the
two single-sided diagrams, however, this operation does
not yield the two 7 ' single-sided diagrams, as required
to prove the theorem, because single-sided-diagram inter-
pretation is different from that of double-sided diagrams.
Thus, we are left with two terms (the first two terms in
Fig. 7), which must be shown to sum to the required
single-sided 7( ' diagram and the trinomial-dephasing di-
agram with all interactions below the line (the last two
terms in Fig. 7). Doing some simple algebra, it is easy to
verify that this is the case (see Fig. 7). As a result, we
have shown, assuming that 2)' "=4' "+7 ", it
is also true that 2)' '= 4' '+ N '. This completes the in-
ductive step.

For the final step, we must verify that the theorem i.s
true for the lowest order. We may check the case N =1,
where there are no trinomial-dephasing diagrams, and
the susceptibility contains only single-sided diagrams. As
a result, the theorem is trivially true for N =1. We must
also verify the case N =2, however, because the inductive
step of the proof is valid only for values of N —1 that
have at least one trinomial-dephasing diagram; the

minimal case for which this is true, N =2, yields one
trinomial-dephasing diagram in each nonparametric
class. Checking this case is not dificult, and the theorem
is proved.

V. COROLLARIES

(m) (0)
Pm-1, m Pm, m'

(o')
(Mmm' 0) Pm-1, m'

rrr
m+

og
(m') (0)

( &) 4m', m'-1 Pm, m'

(ag
(mm —+0) Vm, m-1

0
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m'g)
m'-1

og

rr
mQ
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m'-i gI'-1
I-2 r
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FIG. 7. Diagrammatic relation (required in the proof) show-

ing that the two single-sided diagrams obtained from the 7(
processes in the mathematical induction process can be corn-
bined to yield the appropriate P' ' single-sided diagram and
trinomial-dephasing diagram.

(1) The most obvious and most important consequence
of the new expansion is that dephasing-induced phenome-
na, and, specifically, trinomial-dephasing phenomena, ex-
ist in all orders of perturbation theory. In addition, in-

terestingly, all of the correction terms, which give rise to
these effects, are proportional to factors of the form I; k,
and not a more complex expression. This result follows
from rule (e) of the Appendix.

(2) A consequence of rules (c) and (e) that follows by in-

spection of the trinomial-dephasing diagrams is that any
term proportional to I; k contains a resonance between

the states i and k and is proportional to pj . Thus, while

a trinomial-dephasing effect involves dephasing rates be-

tween all pairs of a set of three states, at least one of them
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must be populated initially. Furthermore, the initially
populated state is the state whose longitudinal relaxation
may contribute to the strength of the effect. This is be-
cause of the y, term in I,jk ——y J. + ( I ~~. + I J~k

—I ('k ).
(3) Another result that follows easily is that, in all or-

ders, resonances between initially unpopulated states are
dephasing induced. To see this, observe that single-sided
diagrams correspond only to terms with resonances in-
volving the base state, which must be populated initially
to contribute. Thus, resonances between initially un-

populated states can only originate from trinornial-
dephasing diagrams, which carry the proportionality con-
stant I;.k. Of course, such resonances exist in all orders.

(4) Soine results follow from the fact that trinomial-
dephasing diagrams must have at least one interaction
below the line on each side. Two-photon resonances be-
tween initially unpopulated states then must correspond
to trinomial-dephasing diagrams with only one interac-
tion on each side below the line, with the two initially un-
populated states of the resonance both occurring at the
line. (The state at the base must be populated. ) As a re-
sult, for two-photon resonances between initially unpopu-
lated states, the states i and k in the factor I;k must
represent the two initially unpopulated states. For
three-photon resonances between initially unpopulated
states, the third interaction may be above or below the
line. Thus, for three-photon resonances between initially
unpopulated states, only one of the states i or k must
represent one of the initially unpopulated states of the
resonance, although both may. And for four- or higher-
photon resonances between initially unpopulated states,
neither the state i nor the state k must necessarily be one
of the relevant unpopulated states, although one or both
may.

(5) Finally, as the order increases, the fraction of the
terms that are trinomial-dephasing terms approaches
100%. Table I enumerates the terms and diagrams for
various orders, neglecting different state orderings. Note
that the total number of diagrams for a given order in-
creases as 2 S!, while the number of single-sided dia-
grams increases only as (N + 1)!. In fifth order,
trinomial-dephasing terms comprise 81% of the terms; in
seventh order, this fraction increases to 94%; in thir-
teenth order, it is 99.8%. The computational simplicity
resulting when these terms can be neglected is evidently
significant.

summed in a given trinomial-dephasing diagram are ele-
rnents of the same nonparametric class that cancel identi-
cally (except for one principal terin) in the limit of low
pressure and infinite lifetime of the populated state(s).
Thus trinomial-dephasing diagrams represent combina-
tions of highly related propagators. For example, the top
two double-sided diagrams of Fig. 1 contribute to the
trinomial-dephasing diagram of Fig. 3(b), while all three
double-sided diagrams of Fig. 1 contribute to the
trinomial-dephasing diagram in Fig. 3(a). Thus
trinomial-dephasing diagrams mix time orderings in a
manner that is easily seen from their geometry.

It was hoped originally that this new approach would
simplify the computation of expressions for dephasing-
induced ground-state resonances. This is not the case.
The reason for this failure is quite interesting, however.
Trinomial-dephasing diagrams represent effects that re-
sult from the addition of potentially many double-sided
diagrams having the same photons on the bra and the
same photons on the ket. It is the time orderings of the
photons that differ (see Fig. 1). Ground-state resonances,
on the other hand, represent the antithetical situation.
Here, pairs of diagrams add together, one of which has
its lowest (earliest) two photons on the bra, while the oth-
er has them on the ket. In additon, these two diagrams
maintain the same photon time orderings (see Fig. 8).
Another difference between these two types of effects is
that the former involves terms from a single state order-
ing; the latter involves two terms from different state or-
derings. Consequently, the algebra used to generate
trinomial-dephasing terms is not useful for generating ex-
pressions for ground-state resonances in any order.
Indeed, it is not difficult to check that double-sided dia-
grarns are better than trinomial-dephasing diagrams for
calculating expressions for ground-state resonances.
These observations reAect the physics that distinguishes
ground-state resonances from initially unpopulated-state

VI. DISCUSSION

In general, diagrammatic approaches to physical prob-
lems provide several benefits. They simplify algebra, give
a clearer picture of the physics, and, in the cases of Feyn-
rnan diagrams in quantum electrodynamics and other
nonlinear-optical approaches, represent the quanturn-
rnechanical time propagators in a relatively obvious
way. The approach described herein simplifies algebra
and clarifies some physics, but trinomial-dephasing dia-
grams do not represent propagators in a simple manner.
Instead, they represent partial sums of propagators, rath-
er than individual propagators as in the usual approach.
This is, of course, a necessary result of the need to de-
scribe trinomial-dephasing effects. The propagators

FIG. 8. Two double-sided diagrams that combine to yield
ground-state resonances between states g and t. Note that these
diagrams differ mainly in that the lowermost two interactions
appear on the bra on one and on the ket on the other. Note that
the time ordering of the photons is the same on each diagram.
This is the antithesis of the situation that occurs in the genera-
tion of the terms that yield initially unpopulated-state reso-
nances, in which all diagrams have the same interactions on
their bras and kets but different time orderings of the interac-
tions appearing on opposite sides (see Fig. 1).
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resonances, which, in contrast, are more naturally de-
scribed by trinomial-dephasing diagrams.

A natural question that arises is whether the expansion
derived in this work can be generalized. Double-sided di-
agrams are useful in two regimes: (I}in the standard ap-
proximations and (2} in the more general integral regime,
wherein these approximations are not made, and different
rules are used for interpretation (see Sec. II). While the
rearrangement of the double-sided diagrams is algebrai-
cally straightforward in the standard approximations,
generalization of this approach to the more general in-
tegral regime does not appear to be so straightforward.
The algebraic operation that makes this rearrangement
simple (see Ref. 4) depends on the precise mathematical
form of the resonant denominators, which results from
the standard approximations. If it is possible to rear-
range the terms of the more general multiple integrals
over propagators and perturbation Hamiltonians in the
spirit of approach of this work, then the relaxation-
induced component of the physics will be isolated from
the non-relaxation-induced component in a general re-
sult. We are at present considering the possibility of this
generalization.

The assumptions made in this work require that relaxa-
tion involving off-diagonal density-matrix elements be
limited to a simple decay of coherence. More general re-
laxation processes have, however, been considered and
observed. Coherence cross-relaxation effects, in which
coherence between levels i and j decays to coherence be-
tween levels k and l or to another state m, can be con-
sidered. Extension of this approach to these more
general regimes may be possible. Most likely,
dephasing-induced phenomena will not be represented by
such simple expressions in this more general regime.

VII. CONCLUSIONS

In conclusion, we have developed a new perturbative
expansion for nonlinear optics and, with it, we have
shown that dephasing-induced phenomena exist in all or-
ders of the nonlinear-optical susceptibility. In this expan-
sion, the Xth-order nonlinear-optical susceptibility is
written as the sum of two types of terms: (I) principal
terms, obtained from single-sided diagrams, and (2)
correction terms, obtained from a new type of diagram
that we call a trinomial-dephasing diagram. In all orders,
the correction terms are proportional to trinomials of de-
phasing rates, I; k

—=I; +I z —I;k. This approach re-
veals some general properties of dephasing-induced phe-
nomena in all orders, and it appears useful for calcula-
tions of dephasing-induced phenomena, especially in
higher order, where the number of terms is large.
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APPENDIX: TRINOMIAL-DEPHASING DIAGRAMS

Trinomial-dephasing diagrams look much like double-
sided diagrams and are constructed like double-sided dia-
grams, except for a (dashed) horizontal line, which
separates trinomial-dephasing diagrams into two regions.
At and above the line, the rules for interpreting double-
sided diagrams are used. Below the line, however, rules
for interpreting single-sided diagrams are used. Thus rel-
ative heights of interactions on opposite sides below the
line are not important. Another distinguishing feature of
the interpretation of trinomial-dephasing diagrams is that
a factor of —i I, k, where j is the state at the base of the

diagram and i and k are the states at the line, multiplies
each term corresponding to a trinomial-dephasing dia-
gram.

To construct a trinomial-dephasing diagram is quite
simple: draw a double-sided diagram, and draw a hor-
izontal line across it, leaving below the line on each side
as few as one interaction and as many as all of the in-
teractions. Figure 3 shows two examples of trinomial-
dephasing diagrams.

To write down a term in the Nth-order susceptibility
corresponding to a trinomial-dephasing diagram, we fol-
low these rules.

(a) Ignoring the horizontal line, use the double-sided
rules (see Prior ) for determining the density-matrix ele-

ment, the dipole-moment matrix elements, the constant,
and the overall sign of the term. For the diagrams in Fig.
3, this rule yields the factor

( I )[pg /(2fgN
—1)]p(3)p(2)p(0)p(1)p(0)

where n is the density, p'~&' is the dipole-matrix element
between states a and P for the polarization of the beam at
co&, and pgg' is the ground-state population density.

(b) For interactions below the horizontal line, write
down one resonant denominator for each state using the
single-sided-diagram rules (see Prior ). A slight varia-
tion must be remembered, however. For states on the bra
(right) side, we now define the transition frequency of the
resonant denominator by taking the frequency difference
between the base state and the state above the interaction
on the bra, rather than vice versa, as in the usual single-
sided diagrams. Thus, on the bra, the order of the sub-
scripts on the transition frequency is the reverse of that
used for states on the ket. For the diagram in Fig. 3(b),
this rule generates the factor (cokg+co3) for the interac-
tion on the ket and ((og. —co) ) for the interaction on the
bra. For the diagram in Fig. 3(b), this rule yields the res-
onant denominators (coks+(o3} and (cog, —co) ).

(c) Use the rules for double-sided diagrams to write
down a resonant denominator for the interaction formed
by the two states active at the dashed line. In Fig. 3(b)
this rule yields the resonant denominator [cok. —((o(
—C03 ) ].

(d) In addition, use the usual double-sided-diagram
rules (ignoring the dashed line) to write down the reso-
nant denominators for interactions above the dashed line.
For the diagram in Fig. 3(b), the resonant denominator
for the interaction above the dashed line is (co,j. —('o0).

(e) Now multiply this result by the correction factor
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—iI;.k, in which i is the active state at the dashed line on
the ket, j is the base state, and k is the active state at the
dashed line on the bra. This rule gives the factor
( i I—kgj ) for the diagram in Fig. 3(b).

As with other diagrammatic approaches, ' ' all
transition frequencies co &

are understood to be complex,
that is, to include the dephasing rate between a and P:
CO~p~N~p —l I ~p.

To calculate the 1Vth-order susceptibility in this ap-

proach, the terms obtained from trinomial-dephasing dia-
grams should be added to those obtained from the
single-sided diagrams for the given process. As with the
other approaches, it is also necessary to sum over all pho-
ton orderings and state orderings. An additional summa-
tion occurs if other states can contribute; if so, we must
sum over all possible sets of X+ 1 states.

For simplicity, we have omitted the constant factor
[n /(2' ')] from expressions in the text.

'N. Bloembergen, Nonlinear Optics (Benjamin, New York,
1965).

2C. Flytzanis, in Quantum Electronics, edited by H. Rabin and
C. L. Tang (Academic, New York, 1975), Vol. 1, Pt. A.

N. Bloembergen, H. Lotem, and R. T. Lynch, Indian J. Pure
Appl. Phys. 16, 151 (1978).

4R. T. Lynch, Jr., Ph.D. dissertation, Harvard University, Cam-
bridge, MA, 1977.

5G. Grynberg, J. Phys. B 14, 2089 (1981).
Y. Prior, A. R. Bogdan, M. Dagenais, and N. Bloembergen,

Phys. Rev. Lett. 46, 111 (1981).
~A. R. Bogdan, Y. Prior, and N. Bloembergen, Opt. Lett. 6, 82

(1981).
L. J. Rothberg and N. Bloembergen, Phys. Rev. A 30, 2327

(1984).
A. R. Bogdan, M. W. Downer, and N. Bloembergen, Opt. Lett.

6, 348 (1981).
' L. J. Rothberg and N. Bloembergen, Phys. Rev. A 30, 820

(1984)~

D. Grandclement, G. Grynberg, and M. Pinard, Phys. Rev.
Lett. 59, 40 (1987).
G. Grynberg, E. Le Bihan, and M. Pinard, J. Phys. (Paris) 47,
1321(1986)~

G. Grynberg and P. Verkerk, Opt. Commun. 61, 296 (1987).
E. Giacobino and P. R. Berman, Phys. Rev. Lett. 58, 21
(1987).
G. S. Agarwal, Opt. Commun. 57, 129 (1986).
J. L. Carlsten, A. Szoke, and M. G. Raymer, Phys. Rev. A 15,
1029 (1977).

S. Reynaud and C. Cohen-Tannoudji, in Laser Spectroscopy V,

edited by A. R. W. McKellar, T. Oka, and B. P. Stoicheff
(Springer-Verlag, Berlin, 1981),and references therein.
S. Le Boiteux, D. Bloch, and M. Ducloy, J. Phys. (Paris) 47,
31 (1986).

W. Lange, R. Scholz, and A. Gierulski, and J. Mlynek, in
Laser Spectroscopy VI, edited by H. P. Weber and W. Luthy
(Springer-Verlag, Berlin, 1983).

2 W. Lange, Opt. Commun. 59, 243 (1986).
Y. H. Zhou and N. Bloembergen, Phys. Rev. A 33, 1730
(1986).
M. S. Kumar and G. S. Agarwal, Phys. Rev. A 33, 1817
(1986).
G. S. Agarwal and N. Nayak, Phys. Rev. A 33, 391 {1986).
G. S. Agarwal, Opt. Lett. 13, 482 (1988).
M. Dagenais, Phys. Rev. A 24, 1404 (1981).
M. Dagenais, Phys. Rev. A 26, 869 (1982).
R. Trebino and L. A. Rahn, Opt. Lett. 12, 912 {1987);R. Tre-
bino and L. A. Rahn, in Laser Spectroscopy VIII, edited by S.
Svanberg and W. Persson (Springer-Verlag, Berlin, 1987).
L. A. Rahn and R. Trebino (unpublished).
S. Y. Yee, T. K. Gustafson, S. A. J. Druet, and J. -P. E. Taran,

Opt. Commun. 23, 1 (1977).
3oT. K. Yee and T. K. Gustafson, Phys. Rev. A &8, 1597 (1978).

J. F. Ward, Rev. Mod. Phys. 37, 1.(1965).
32G. L. Eesley, J. Quant. Spectrosc. Radiat. Transfer 2?, 507

(1979).
Ch. Borde, in Advances in Laser Spectroscopy, edited by F. T.
Arecchi, F. Strumia, and H. Walther (Plenum, New York,
1983).

J. Borde and Ch. J. Borde, J. Mol. Spectrosc. 78, 353 (1979).
A. Omont, E. W. Smith, and J. Cooper, Astrophys. J. 175, 185

(1972).
3sS. A. J. Druet and J. -P. E. Taran, Prog. Quantum Electron. 7,

1 (1981)~

37Y. Prior, IEEE J. Quant. Electron. QE-20, 37 (1984).
SJ. Liu, J. T. Remillard, and D. G. Steel, Phys. Rev. Lett. 59,

779 (1987).
There is a decision procedure that yields the rearrangement.
It is as follows: Always combine pairs of terms. Begin by
finding a pair of terms that have all but one resonant denomi-

nator in common. It is also necessary that the two noncom-
mon resonant denominators contain transition frequencies of
the form ~„ in one and co,q in the other, where the common
state j is the state at the base of the diagrams. As a result, the
sum of these two terms will be proportional to the sum of the
two noncommon denominators:

~~i Xi~~ + ~» Xg~i

=cd, l,
—g, co; —pied, (iI;, +i—I,„iI'k)—

cd@, — g;cd;+g cdi —/I, &k,

where g, cd, and g cd, are the sums of input light frequencies

in the two noncommon denominators. Also, as usual, we in-

terpret all of the transition frequencies to be complex, con-

taining implicit terms equal to —i I &. From this simple ma-

nipulation, it is easy to see that trinomial-dephasing terms re-

sult. It is also possible to find the decision procedure for
which pairs of terms to combine, and in what order, for any

given wave-mixing process.
~M. S. Kumar and G. S. Agarwal, Phys. Rev. A 35, 4200

(1987).
4'W. Gawlik, J. Phys. B 10, 2561 (1977).

M. I. Dyakonov and V. I. Perel, Opt. Spektrosk. 20, 472 (1966)
[Opt. Spectrosc. (USSR) 20, 257 (1966)].

~3C. Cohen-Tannoudji, Applications of Lasers in Atomic and

Molecular Physics, Proceedings of Les Houches Summer

School of Theoretical Physics, 1975, edited by R. Balian, S.
Haroche, and S. Liberman (North-Holland, Amsterdam,
1976).


