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In this paper a technique consisting of measuring the Fourier transform QF of the time-interval
photon statistics distribution is studied when applied to laser Doppler velocimetry. It is supposed
that a device that changes the Gaussian intensity profile of the laser beam into a uniform intensity
profile is used. A theoretical model for a fluid with a constant velocity is obtained and verified by
two ways: experimentally and by a computer-simulation method. Then the experimental conditions
for which the signal can be approached to a Lorentzian curve and the error involved in the deter-
mination of the fluid velocity are studied from the theoretical model. It is concluded that the mea-
surement of QF is a useful technique for very low intensities.

INTRODUCTION

In laser Doppler velocimetry (LDV) experiments where
a low scattered intensity is obtained, correlators are fre-
quently used to process the signal. ' As the intensity of
the analyzed light beam decreases, shot noise increases
and a larger error is involved in obtaining information
about the light beam from the intensity autocorrelation
function g' '(r). However, for very small intensities the
time interval 0 between two consecutive photopulses can
be measured with good accuracy. Since for a light beam
whose intensity oscillates with a period P the time-
interval probability W(8) oscillates with the same period,
the measurement of the Fourier transform of W(8) seems
to be a more appropriate technique than the intensity
correlation one to measure P.

The advantage of this technique was proved for light
beams with a square-wave intensity. Later it was experi-
mentally verified that this technique can be applied to
process the signal in a LDV experiment. The aim of this
paper is to make a more complete study of this technique
when applied to LDV experiments. Since the technique
is simplified if a device that changes the Gaussian inten-
sity profile of the laser beam into a uniform intensity
profile is used, in this paper we shall suppose uniform in-
tensity light beams are used.

THEORY

Let us consider a fluid with a constant velocity that is
measured by means of a differential Doppler system,
where two laser beams with uniform intensity produce an
interference fringe system. When a seeded particle enters
into the fringe system at the instant t the scattered inten-
sity oscillates as a function of time as

I(r) =Ip I 1+ V cos[ru, (t r, )+6] ) (r, & r & t, +~)—,

where I& is the mean intensity in an oscillation, V the
visibility of the fringes, coo the angular frequency of the
oscillations, 6 a phase factor that indicates the phase
difference between the two laser beams at the beginning

W(8) =I&exp( Ip8) Y(8), —
where

Y(8)=[1+V cos (coo8/2)]In(Z)

—[2Vcos(coo8/2)+ V /Z]It(Z),

Io and I& being modified Bessel functions and

Z =ZM sin(ruo8/2),

where

(3)

(4)

Z~ =2' V/coo

For a low scattered intensity the values of Z are small
and we can use an approximate expression for Y(8) as in-
dicated in the Appendix. Since W(8)=0 for 8) w, the
Fourier transform of W(8) can be calculated from

QF(ru}= I W(8)cos(ru8)d8 (7)
0

if Eqs. (3), (A7), and (A8) are taken into account. The re-
sulting expression for QF(ro) is

of the fringes, and r the time that it takes the particle to
cross the fringes.

We shall use a simple model where v. is a constant for
all the particles. We shall suppose that only one seeded
particle can be found in the fringe system. Since the
detection of light by a photomultiplier is a Poisson pro-
cess, the time-interval probability W(8) does not depend
on 5. Bearing the preceding assumptions in mind, it is
obvious that W(8) must coincide for 8& r with the time-
interval probability that corresponds to a sinusoidal func-
tion

I(t)=Ip[1+V cos(coot+5)] ( —ac &t &+ac) . (2)

For very low intensities ~ can be assumed to be much
smaller than t +, —t . Therefore time intervals corre-
sponding to photons scattered by two different seeded
particles can easily be eliminated and consequently
W(8}=0for 8) r

For a sinusoidal signal such as the one in Eq. (2) it is
found that

38 2910 1988 The American Physical Society



38 DETAILED STUDY OF THE FOURIER TRANSFORM OF THE. . . 2911

Qp(co)= 1+(1~V /2) g A)r —(V /2) g B~ Fo(co)+(V /4) 1+ g A)r [F )(co)+F((co)]
K=1 K=1 K=1

oo 2I(—(Z~V/4) 1+ g B~ [G )(co)—G((co)]+—,'(1+ V /2) g C)r g( —1)' ~ l [F ((co)+F((co)]
K=1 K=1 1=1

2K—(V'/4) g Dxg( —1)'
& l [F ((~)+F((~)]

K=1 1=1

2E
+(V /8) g C)r g( —1)' ~ l [F ((+))(~)+F((+))(~)—F ((,)(a))—F(( ))(a))]

K=1 /=1

2K—(ZM V/8) g D~ g ( —1) ~ l [G (, +))(co)—G((+))(co) G—(( )) (co )+G(( )) (co )],
K=1 1=1

(8)

L'"'(co) =Ip/[Ip+(co neo )0],—

D "'(co)=Ip(co neon)/[Ip+ —(co nero) ] .— (12)

For very low intensities ZM is small and the terms in

Eq. (8) that contain G„ functions are negligible. If this
condition is accomplished and the number of interference
fringes in the LDV system is large, exp( Ipr) is sm—all
and then the dispersion term in I"„ is negligible. As an
example, let us consider a signal where Iplvo 0. 1 and-—
r= 50/vo (there are 50 interference fringes); in this case
ZM =2.86X 10 and exp( Ipr) =6.74&& 1—0 . There-
fore for low intensities and a large number of interference
fringes QF(co) becomes a linear expansion of Lorentzian
functions centered at co=+ncaa (n =0, 1,2, . . .).

EXPERIMENTAL SETUP

where AK, BK, CK, and DK are defined in the Appendix
and

F„(co)= [1—exp( Ipr)c—os[(cu ncuo)r—] IL'"'(co)

+exp( —Ip r )sin[(co —n coo }r]D '"'(~ ),
G„(m) =exp( Ipr)sin[—(co ncoo)r]L—'"'(co)

+ [1—exp( Ipr)co—s[(co ncoo)r—] I
D'"'(cu),

(10)

L'"' and G'"' being Lorentzian and dispersion curves
defined as

ter (FM) to measure the signal photocount rate.
The values of P =1/vo, 5, and r for the signal generat-

ed by the simulator [Eq. (1)] can be varied in the follow-
ing way: 10.0 ps&P &99.9 ps, —ir &5&0, r=(l+x)P,
where 1=9+10K (K =0, 1, . . . , 9), and —0.5&x &0.5.
The arrival times t are random. The difference t +, —t~

has an exponential distribution' and the mean value

(t~+) t ) can —be varied. In order to measure Ip [Eq.
(I)] the simulator was provided with a switch that
changes the simulated LDV signal into a sinusoidal signal
[Eq. (2)] with the same values of Ip, V, and coo. The mean
value of the intensity of this signal gives us Ip. The
time-interval meter can measure 10 consecutive samples
of the time interval L9 that are transferred to COM and
processed to obtain Qp(ru)

EXPERIMENTAL AND COMPUTER-SIMULATION
CHECK OF THE THEORETICAL MODEL

To verify the validity of the theoretical model we made
experimental measurements ~'' the time interval 0 for
different experimental situations. In four cases we used
these values of 0 to calculate the histogram

H(l, l) )=I W(8)d8 (1=1,2, . . . , N, ) (13)
(I —1)h

and in six cases we used the values of 0 to calculate
Qp(v(), with v( ——v, +(l —1)hv (l =1,2, . . . , N, ). In or-
der to make a more complete verification of the theoreti-
cal model validity we used a computer-simulation

In order to show the validity of the theoretical model
studied in the preceding section we used the experimental
setup schematized in Fig. 1. To obtain a light beam with
an intensity such as the one in Eq. (1) we designed an
electronic simulator (SIM) that supplied a current that
was observed in the oscilloscope (OSC} and fed it into the
light emitting diode (L). The intensity of the emitted
light beam was attenuated by the filter (F) and two linear
polarizers P, and P2 and detected by a photon correla-
tion system consisting of the photomultiplier (PM),
amplifier-discriminator (AD), time-interval meter (TI,
controlled by the computer, COM), and a frequency me-

SIM
L

F PPg

AD:- FM

COM

FIG. 1. Experimental setup: SIM, simulator; OSC, oscillo-
scope; L, photoemission diode; F, filter; P& and P2, linear polar-
izers; PM, photomultiplier; AD, amplifier discriminator; FM,
frequency meter; TI, time-interval meter; COM, computer.
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TABLE I. Cases for which N samples of 8 were used to evaluate H (I,6) with V =0.9. The intensity

I~ is measured in photopulses/s.

Case

(AI)
(A2)
(A3)
(A4)

Ip (pulses/s)

10000
10000
10000
12 500

vo (Hz)

10010
10010
10010
50000

0

r/P

9
8.5
9.25

49

10'
10'
10'

3X 10'

Nc

100
100
100
500

b, (ps)

4
4
4
0.5

th (a)
th
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FIG. 2. Histograms [Eq. (13)]for the case (Al) in Table I: (a)
experimental curve; (b) simulated curve.
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FIG. 4. Histograms for the case (A3) in Table I: (a) experi-
mental curve; (b) simulated curve.
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FIG. 3. Histograms for the case (A2) in Table I: (a) experi-
mental curve; (b) simulated curve.

FIG. 5. Theoretical curve that corresponds to the results
shown in Figs. 2—4.
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~ ~

~ ~

(a)

method to obtain values of 0 from which H(l, h) and

QF(vI ) can be obtained.
Table I shows the cases used to obtain H(l, b ). The

theoretical model used in this paper is based on the as-
sumption that for a LDV experiment with uniform inten-
sity beams W(H) is not phase sensitive and therefore the
time-interval probability that corresponds to an indefinite
sinusoidal function can be used for 0 (~. Cases
(Al) —(A3) are devoted to show this. In cases (Al) and
(A2) the phases at t =t [Eq. (I)] are different and the
phases at t =t, +r are equal. In cases (Al) and (A3) the
phases at t =t are equal and the phases at t =t +~ are
different. In these cases we have chosen small values for
r to allow us to determine the effect of phase on W(8)
with good accuracy. We used the smallest value of vp
(that corresponds to P =99.9 ps) because the phase of the
signal generated by the simulator we designed can be con-
trolled better for small values of vp. The results for
H(l, h) corresponding to cases (Al) —(A3) are shown in
Figs. 2 —5. It can be observed that H(l, h) and therefore

TABLE II. Cases for which N samples of 8 were used to
evaluate QF(v&) with V=0.9, vo —50000 Hz, 5= —m, and
N = 10'. The intensity Ip is measured in photopulses/s.

Case

(Bl)
(B2)
(B3)
(B4)
(B5)
(B6)

I& (pulses/s)

50 800
48 500

5200
5200
5300
5300

9
29

9
29
99
99

Nc

101
101
101
101
101
500

hv (Hz)

1000
1000
200
200
200
200

W(0) are not phase sensitive and that there is accordance
between experimental, simulated, and theoretical results.
Case (A4) corresponds to a lower value for It, P and a
larger value for r/P than the ones corresponding to cases
(A 1)—(A3). A larger value of vo was used in this and the
following cases to diminish the effect of dark photo-
counts. Figure 6 shows the accordance between experi-
mental, simulated, and theoretical curves.

Table II shows the cases used to obtain QF(v). In these
cases IJ, and ~ are varied to check the theoretical model
for different experimental conditions. Once the experi-
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FIG. 6. Histograms for the case (A4) in Table I: (a) experi-
mental curve; (b) simulated curve; (c) theoretical curve.

FIG. 7. Results for QF(vi ) that correspond to the case (Bl) in
Table II: (a) experimental curve; (b) simulated curve; (c)
theoretical curve.
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mental and simulated curves for these cases were ob-
tained we found that for small values of II, r they were
wider than the theoretical ones. This is because the value
of Ip is measured for an indefinite sinusoidal function,
but when measuring QF(v) for LDV signals the values of
0 larger than r are rejected and the mean intensity
I~=(9) ' is larger than Ip. When we replaced the
values of Ip in the theoretical model for the correspond-
ing values of I& a good agreement between experimental,
simulated, and theoretical results was obtained. Figures
7 —12 show these results. It can be observed that the
theoretical model for QF works well when the correction
for the theoretical intensity is taken into account. There-
fore the value of Ip in the theoretical model must be
changed into Iz. In Figs. 9—11 we can see that QF(v) ap-
proaches a Lorentzian curve as Ipr increases. In Figs. 7,
8, and 11 we can see the peaks around v=0 and v=vo.
The peak around v=2vo is not observed because its
height is of the order of ZM, whereas the height of the
peak around v=vo is of the order of ZM [Eqs. (8) and
(A8)] and Zsr g& 1 for low intensities.

STUDY OF THE PROPERTIES OF QF(v)

Once the validity of the theoretical model was proved
in the preceding section, we wanted to study in this one
the experimental conditions for which the theoretical ex-
pression of QF(v) becomes easy. As we observed in the
section devoted to theory, for low intensities and a large
number of interference fringes QF(v) becomes a linear ex-
pansion of Lorentzian functions centered at v=+n vo. It
is interesting to determine exactly the experimental con-
ditions that allow us to use this expansion and to know
how many values of n must be taken into account. To
achieve this we studied QF(v) for the cases shown in
Table III, where 2 is the minimum value for the mean
number of photons recorded when a seeded particle
passes through the fringe system.

%hen the heights ho, h &, and h2 of the peaks around
v =0 v = vp and v =2vo were calculated we found that
the changes in lt, /ho and h2/h „when r/P is varied and
I&P remains constant, are negligible. These relative
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FAG. 8. Results for QF( v, ) that correspond to the case (B2) in
Table II: (a) experimental curve; (b) simulated curve; (c)
theoretical curve.

FIG. 9. Results for QF(v& ) that correspond to the case (B3) in
Table II: (a) experimental curve; (b) simulated curve; (c)
theoretical curve.
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heights are shown in Fig. 13 for the different values of
I&P. We can see that h, /ho always takes a constant
value, whereas h2/h

&
decreases as I&P decreases, in ac-

cordance with the theoretical model. We can also see
that for low intensities the peak around v=2vo, and
therefore the peaks around v=nvo for n &2, can be
neglected. So the peak of QF around v=vo must be used
to obtain vo and hence the velocity of the fluid. Table IV
shows the errors involved in the determination of vo

when it is supposed to coincide with the maximum of the
peak (e„) or with the maximum of a Lorentzian curve
fitted to QF (ez„). It can be observed that e„„e2„&0. 1 go

for I&P (0.1. So I&P (0.1 must be used to avoid sys-
tematic errors larger than 0.1% in the measurement of

vo. If a larger error may be allowed this technique can be
used for larger values of IO.

To find the experimental conditions that allow us to
consider QF(v) as a Lorentzian curve for v near vo we
calculated the width of the peak of QF for these values of
v (w, ) and the width of the Lorentzian curve fitted to it
(w2). The results are shown in Table V. It can be ob-
served that there are a variety of experimental conditions
for which the difference between m, and mz is small and
where QF can be considered as a Lorentzian curve.
When

~
( w, —w 2 ) /w,

~

(0.01 this approximation can be
used with a good accuracy. The corresponding experi-
mental conditions are approximately I&P (0.2 and
Igw) 4.
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FIG. 10. Results for QF(vi) that correspond to the case (B4)
in Table II: (a) experimental curve; (b) simulated curve; (c)
theoretical curve.

FIG. 11. Results for QF(v, ) that correspond to the case (B5)
in Table II: (a) experimental curve; (b) simulated curve; (c)
theoretical curve.
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STUDY OF THE ERRORS TABLE III. Cases for which the properties of QF(v) were
studied from theory, for v./P = 10" (n =n„n;+ &, . . ~, 10).

e„=[var(vo)]'~ /vo, (14)

(a)

Another interesting subject is to know the accuracy
with which the frequency in a LDV experiment is ob-
tained from QF(v). The relative error involved in the
determination of the frequency vo of the signal can be cal-
culated as

IHP

0.50
0.40
0.30
0.20
0.10
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02

n,

1

1

1

1

2
3

3

3
4
4
5

7
10

tII

C

a
Qp ~

(3
~ ~
~ ~
~ ~

50 100
V, (I Hz)

where var(vo) is the variance of vo. If the experimental
values of QF(v) are called QF" when v takes on the values
v; (i =1,2, . . . , L), we can obtain vo by minimizing the
expression

(15)

Ill

C

(b)

To obtain the value of v0 that minimizes 6 we must
make

~ ~

~ ~

~ ~

~ ~

w L
50 100

'Vi(k Hz)

aQ,(, )
& [QF"—QF(v; ) 1 (16)

From Eq. (16) we can deduce vo as a function of QF(v; )

(i = 1,2, . . . , L ). Hence if the law of error propagation is
applied, var(vo) can be easily obtained as

(c)

OJ
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Qp ~ 0.1 0.2
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FIG. 12. Results for QF(v, ) that correspond to the case (B6)
in Table II: (a) experimental curve; (b) simulated curve; (c)
theoretical curve.

FIG. 13. Values of log(hl/hp) and log(hz/hp); hp, h&, and
hz being the heights of the peaks of QF around v=O, v= vo, and
V= 2Vp.
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t)QF(v; )
var(vp) =

Bvp

t)QF(v; )

X
t)Q (;)

var[QF(v, )]+ g
ij=1 0Bv

BQF(v, )
cov[Q~(v, ), QF(vj )]

t)vp

where cov[Q~(v; ),QF(vj )] is the covariance of QF(v; ) and QF(v~ ).
If we recall that an estimation QF(v) of Qz(v) is obtained by making N samples of 0 and performing the operation

N

QF(v)= —g cos(2nv&x),
K=1

then the covariances can be evaluated using the definition, that is,

o [Q (;),Q (,)]=&[Q (;)—&Q (;)&][Q (, ) —&Q„(,)&]&=&Q (;)Q (, )& —Q (;)Q (, ) .

We obtain immediately

(18)

(19)

N N

&QF(v, )Q~(v )&= g &cos(2mv;Hx)cos(2mv, 8x)&+ g &cos(2nv;Hx)cos(2mv OI)&
K=1 K, l =1

K~l

1 N
N2

—[QF(v; —v, )+QF(v;+ v, )]+&(&—1)QF(v; )QF(v, ) (20)

TABLE IV. Errors involved in the determination of vo when obtained from the maximum of QF(v) around vz (e&„) or from the
maximum of a Lorentzian curve fitted to Q„(v) (e2„).

r/P

0.50

0.40

0.30

0.20

0.10

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.73
1.17

0.57
0.79

0.47
0.50

0.41
0.34

20

0.62
1.17

0.40
0.77

0.25
0.44

0.15
0.21

0.10
0.09

30

0.61
1.17

0.40
0.77

0.23
0.44

0.11
0.20

0.05
0.06

0.05
0.05

0.05
0.04

0.05
0.04

0.61
1.17

0.40
0.77

0.23
0.44

0.10
0.20

0.04
0.05

0.03
0.04

0.03
0.04

0.03
0.03

0.03
0.02

0.03
0.02

50

0.61
1.17

0.40
0.77

0.23
0.44

0.10
0.20

0.03
0.05

0.03
0.04

0.02
0.03

0.02
0.03

0.02
0.02

0.02
0.02

0.02
0.01

60

0.61
1.17

0.40
0.77

0.23
0.44

0.10
0.20

0.03
0.05

0.02
0.04

0.02
0.03

0.02
0.03

0.01
0.02

0.01
0.01

0.01
0.01

0.61
1.17

0.40
0.77

0.23
0.44

0.10
0.20

0.03
0.05

0.02
0.04

0.02
0.03

0.02
0.02

0.01
0.02

0.01
0.01

0.01
0.01

0.01
0.01

80

0.61
1.17

0.40
0.77

0.23
0.44

0.10
0.20

0.03
0.05

0.02
0.04

0.02
0.03

0.01
0.02

0.01
0.02

0.01
0.01

0.01
0.01

0.01
0.01

90

0.61
1.17

0.40
0.77

0.23
0.44

0.10
0.20

0.03
0.05

0.02
0.04

0.02
0.03

0.01
0.02

0.01
0.02

0.01
0.01

0.01
0.01

0.01
0.01

0.61
1.17

0.40
0.77

0.23
0.44

0.10
0.20

0.03
0.05

0.02
0.04

0.02
0.03

0.01
0.02

0.01
0.02

0.01
0.01

0.01
0.01

0.00
0.01

0.00
0.00

Error (%)

e&v

e2v

e&„

e2v

e&„

e2v

e&„

e2v

e&„

ezv

e&v

v

e]v
e2v

e&„

eZv

eiv
e2v

ei
e2v

ei
e2„

e lv

eZv

e&,

e2v
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From Eqs. (19) and (20) cov[QF(v, ), QF(v )] and there-

fore vargF(v; ) can be evaluated.

By using Eqs. (17), (19), (20), and the theoretical ex-
pressions for QF(v}, we calculated e„ for the cases in

0

Table III, when QF(v) is obtained from 1000 time inter-
vals (N =1000) for 100 values of v (L =100). The results
are shown in Table VI. It can be observed that the
changes in e as ~/P is varied are generally negligible.

0

Furthermore, the values of e are small and decrease as
0

IP does. The values of e, can also be calculated as a
0

function of Ip (the mean intensity in an oscillation of the

LDV signal). To do this we must obtain the value Ie of
the corrected intensity. To obtain these values of I&
(I& ((9) ——') we made computer simulations of the corre-
sponding LDV signals. The results are shown in Table
VII. It can be observed that e, decreases as ~/P and IpP

0

do and that these values of e, are small.
0

CONCLUSIONS

In this paper we have obtained a theoretical model for
the Fourier transform QF(v) of the time-interval proba-

bility corresponding to the signal from a differential LDV
system where two laser beams with a uniform intensity
are used to study a fluid with a constant velocity. The va-
lidity of this model was verified experimentally and by
means of a computer-simulation method. From the
theoretical model it was found that for low intensities
there is a wide variety of experimental situations for
which QF(v) can be expressed with good accuracy as a
linear expansion of two Lorentzian curves. One of these
Lorentzians is centered at the frequency vo of the LDV
signal and can be used to measure vo and therefore the
velocity of the fluid. The expected values of the error in
the determination of vo when a low number of time inter-
vals are measured (%=1000) are small and decrease as
the intensity of the light beam does. Since the error in-

volved in the information obtained from the intensity au-
tocorrelation function (used in LDV for low intensities}
increases as the intensity decreases, we can conclude
that the measurement of QF(v) is a useful technique in

LDV for very low intensities.
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TABLE V. Relative widths of the peak of QF around v= vo (w, } and of the Lorentzian curve fitted to this peak (w, }.

IBP

0.50

10

0.1641
0.1728

20

0.1642
0.1727

30

0.1642
0.1727

0.1642
0.1727

50

0.1642
0.1727

r/P
60

0.1642
0.1727

70

0.1642
0.1727

80

0.1642
0.1727

90

0.1642
0.1727

0.1642
0.1727

Relative
widths

Wi

W2

0.40

0.30

0.20

0.10

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.1310
0.1351

0.1045
0.1010

0.0845
0.0730

0.1301
0.1341

0.0967
0.0986

0.0648
0.0649

0.0425
0.0363

0.1300
0.1347

0.0966
0.0986

0.0640
0.0646

0.0347
0.0328

0.0326
0.0300

0.0307
0.0274

0.0289
0.0249

0.1300
0.1347

0.0966
0.0986

0.0640
0.0646

0.0323
0.0321

0.0297
0.0290

0.0272
0.0260

0.0250
0.0232

0.0230
0.0205

0.0212
0.0181

0.1300
0.1347

0.0966
0.0986

0.0640
0.0646

0.0318
0.0320

0.0287
0.0288

0.0258
0.0257

0.0232
0.0226

0.0209
0.0197

0.0188
0.0169

0.0170
0.0145

0.1300
0.1347

0.0966
0.0986

0.0640
0.0646

0.0318
0.0320

0.0286
0.0287

0.0254
0.0256

0.0225
0.0224

0.0197
0.0193

0.0174
0.0164

0.0154
0.0137

0.1300
0.1347

0.0966
0.0986

0.0640
0.0646

0.0319
0.0320

0.0287
0.0287

0.0254
0.0255

0.0223
0.0223

0.0193
0.0192

0.0166
0.0161

0.0143
0.0132

0.0124
0.0107

0.1300
0.1347

0.0966
0.0986

0.0640
0.0646

0.0319
0.0320

0.0287
0.0287

0.0255
0.0255

0.0223
0.0223

0.0191
0.0191

0.0162
0.0160

0.0136
0.0130

0.0115
0.0103

0.1300
0.1347

0.0966
0.0986

0.0640
0.0646

0.0318
0.0320

0.0287
0.0287

0.0255
0.0255

0.0223
0.0223

0.0191
0.0191

0.0160
0.0160

0.0132
0.0129

0.0109
0.0100

0.1300
0.1347

0.0966
0.0986

0.0640
0.0646

0.0318
0.0320

0.0287
0.0287

0.0255
0.0255

0.0223
0.0223

0.0191
0.0191

0.0159
0.0159

0.0129
0.0128

0.0105
0.0098

0.0085
0.0072

Wl

W2

Wl

W2

Wl

W2

Wi

Wp

Wl

N2

Wl

W2

Wl

W2

Wi

W2

Wl

Ng

Wl

W2

Wl

Wp

Wl

W2
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TABLE VI. Values of e, for L = 100 and X = 1000, when ~/P and I&P are varied.

IgP

0.50
0.40
0.30
0.20
0.10
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02

10

1.12
0.88
0.66
0.49

20

1.13
0.88
0.65
0.42
0.24

30

1.13
0.88
0.65
0.42
0.21
0.20
0.18
0.17

40

1.13
0.88
0.65
0.43
0.21
0.19
0.17
0.15
0.14
0.12

50

1.13
0.88
0.65
0.43
0.21
0.19
0.17
0.15
0.13
0.11
0.10

60

1.13
0.88
0.65
0.43
0.21
0.19
0.17
0.15
0.13
0.11
0.09

70

1.13
0.88
0.65
0.43
0.21
0.19
0.17
0.15
0.13
0.11
0.09
0.07

80

1.13
0.88
0.65
0.43
0.21
0.19
0.17
0.15
0.13
0.10
0.09
0.07

90

1.13
0.88
0.65
0.43
0.21
0.19
0.17
0.15
0.13
0.11
0.08
0.07

1.13
0.88
0.65
0.43
0.21
0.19
0.17
0.15
0.13
0.10
0.08
0.06
0.05

ject No. CB 2/85). The authors wish also to express their
sincere thanks to Dr. J. Tornos for help in experimental
measurements and to Mr. M. Sevilla for help in electronic
simulator building.

APPENDIX

1)r —1 r —1

sin " '(X)=
z z g ( —1)'

s=0

2r —1

sin[2(r —s) —1]
S

To evaluate the powers of Z we can use the well-known
expressions

XX(r )0), (A3)

Io(Z)= y (Z/2) /(Kl)',
K=0

(Al)

For small values of Ip [Eq. (1)] the values of Z [Eq. (5)]
are small and we can use the expansions 2E'

XX(r )0) . (A4)

2r
( 1)rr —1

sin "(X)=
22r 1 22r —1 s+ g ( —1)' cos[2(r —s)]

s=0

I, (Z) = g (Z/2) +'/[Kt(K+1)i]
K=0

(A2) From the preceding relations the following expression is
easily obtained:

(Z /2)2K
Io(8)=1+ ga=i

2K
( 1)&&—

& 2K
zz K + zz, g ( —1)' cos[(K —s)co08] (A5)

TABLE VII. Values of e, , for L =100 and X = 1000, when ~/P and IpP are varied.

v./P
IHP

0.50
0.40
0.30
0.20
0.10
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02

10

1.42
1.20
1.00
0.89

20

1.26
1.02
0.77
0.56
0.43

30

1.21
0.97
0.73
0.50
0.31
0.30
0.29
0.28

40

1.19
0.94
0.71
0.49
0.28
0.26
0.24
0.23
0.21
0.21

50

1.18
0.93
0.70
0.47
0.26
0.24
0.22
0.20
0.19
0.17
0.17

60

1.17
0.92
0.69
0.46
0.25
0.23
0.21
0.19
0.17
0.15
0.14

70

1.16
0.92
0.68
0.46
0.25
0.22
0.20
0.18
0.16
0.14
0.13
0.12

80

1.15
0.91
0.68
0.45
0.24
0.22
0.20
0.18
0.16
0.14
0.12
0.11

90

1.15
0.91
0.67
0.45
0.24
0.22
0.20
0.17
0.15
0.13
0.11
0.10

1 ~ 15
0.91
0.67
0.45
0.23
0.21
0.19
0.17
0.15
0.13
0.11
0.09
0.08
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I&(8)=(Z~/2)sin(roo8/2)

r

(ZM /2)2x
1 2K ( 1 p' & —

& 2K
X ' 1+ g, , 2x K + zx, g ( —1)' cos[(K —s}roo8]

K l(K + 1)f 22K K 22K —j (A6)

If l =K —s is used in Eqs. (A5) and (A6), Y(8) [Eq. (4)] can be expressed as

Y(8)=1+(1+V /2) g Ax —(V /2) g BIr+(V /2) 1+ g Ax cos(coo8)
K=1 K=1 K=1

oo 2K—(ZM V/2) 1+ g Bg sin(roo8)+(I+ V /2) g Cg g ( —1)'
K l cos(lroo8)

K=1 K=1 1=1

2K 2K—(V /2) g Dgg( —1}'
K l cos(lroo8)+(V /2} g Cxg( —1)'

K l cos(roo8)cos(lroo8)
K=1 1=1 K=1 I=I

2K—(Z~V/2) g Dg g( —1)'
K l sin(coo8)cos(lroo8),

K=1 1=1

where

(Z~/4) (2K)! (Z~/4) (2K)! 2(Zsr /4) 2(Zsr /4)
AK ——

(K!) (K!) (K+1)! (K~)2
' K!(K+1)!

(A7)

(AS)
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