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Coherence-population interdependence in nonlinear optics
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Two-level systems are widely used in nonlinear optics; some authors have considered larger sys-

tems, but in most of these descriptions the additional levels participate in the dynamics of the two
main levels through kinetic rate constants only. Here, we adopt a different point of view. Knowing
that two-level models treated in a perturbational approach show peculiar relations between popula-
tions and coherences, we analyze the effect of a third perturbating level on these relations. An esti-
mate of the extra contribution to the third-order coherence is made. The role of the dephasing pro-
cesses on this contribution is analyzed.

I. INTRODUCTION

Nonlinear optical responses of molecular media are be-
ing extensively studied. Most of these experiments, in-
cluding decay as well as dephasing processes, have been
successfully described by the optical Bloch equations.
While this theoretical framework is quite well adapted
and has been used for a long time in other fields, it seems
to us that the application of the oversimplified modeliza-
tion to organic materials is often of questionable validity.
Even in the cases where the main dynamical processes
seem very well understood, it is essential to have at least a
qualitative and, when possible, a quantitative estimate of
how the environment could affect this simplified dynami-
cal scheme. By environment we mean all what has been
neglected in the model. This ranges from a simple per-
turbating level interacting with one of the excited states
up to the more complex dissipative bath. A particular
emphasis has been put recently on systems subjected to
stochastic perturbations where the effect of the thermal
bath can be described as a modulation of the electronic
transition frequency. Of course, such approaches can-
not include large interactions.

While this last physical situation is of great interest
and has been considered in a number of papers, we will be
interested in this preliminary work by the opposite ex-
treme case of a single perturbating level interacting with
the excited state. Perhaps the strongest motivation for
the present work is the tremendous emphasis put on
two-level systems in nonlinear optical studies. In fact,
formal solutions to optical Bloch equations for two-level
models reveal a very peculiar structure which is not valid
any more for many-level systems. They decouple the

contributions to populations and coherences and make
them depend on the order of perturbation. For instance,
the even orders give corrections to the populations only,
while the odd orders contribute to the coherences only.
In addition, contributions to a given order depended
strictly on the contributions to the (n —1)th order. As a
consequence, we have no direct population-population or
coherence-coherence contribution when going from one
order of perturbation to the next. It is clear that such re-
lations result from the very peculiar properties of two-
level systems. It is therefore tempting to analyze the
influence of a third level, participating even weakly to the
dynamics, on the nonlinear optical properties of the sys-
tem.

The paper is organized as follows. In Sec. II, we
present the perturbation method on which the present
work is based. It includes the evaluation of the popula-
tions and coherences up to the third order for a general
N-level system. When restricted to a two-level system,
the results of Mitsunaga and Brewer are recovered.
However, when applied to larger systems, the third-order
coherence contribution p'„'(t) depends on the second-
order populations p'„„'(t) as well as on the second-order
coherences p'„' (t). This extra contribution does not exist
for a two-level system. Section III is devoted to the cal-
culation of the corresponding optical susceptibilities. In
Sec. IV we analyze the relations existing between popula-
tions and coherences and how they contribute to the vari-
ous susceptibilities. We are then in a position to present
and discuss the influence of a third perturbating level on
the response of a two-level system undergoing a phase
conjugation experiment. This is the purpose of Sec. V.
Section VI will briefly draw some conclusions.
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H =H0+A, H'(t), (2.1)

where A. is the perturbation parameter and H'(t)
represents the interaction between the system and radia-
tion fields and the residual interaction specific of the
physical system. Of course, this last interaction is not
time dependent, but for the sake of simplicity, we will in-
clude it. Distinction between both interactions will be in-
troduced when necessary.

We start with the stochastic Liouville equation

II. PERTURBATION METHOD FOR POPULATIONS
AND COHERENCES

In a previous paper devoted to the transient analysis of
optical phase conjugation in two-level absorbing systems
the perturbation method has been applied. ' '" Here, we
shall generalize the treatment to many-level systems. For
this purpose, we write the Hamiltonian as

where I „.„ is the total decay rate of level n, I „. the
transition rate of the n~m transition, arid I'„"' the pure
dephasing constant. Solutions to these master equations
are straightforwardly obtained if the initial conditions are
well defined. For the purpose of this work we will as-
sume that at t =0 the system is in equilibrium. This
means p„„(0)=p„„as resulting, for example, from a
Boltzmann population for the stationary states, p„„(0)=0
for the nonstationary states and as usual p„(0)=0 be-
cause there is no initial correlation in the material system
with these previous assumptions. The zeroth-order ap-
proximation gives the trivial result

(2.9)

Next, we consider the first-order approximation. The
dynamical equation takes the form

dp = —iLp —I"p,
dt

(2.2)
(1)

dt
= —iL0P("—iL '(t )p"' —rp"' (2. 10)

L =L() +AL '(t) . (2.3)

In principle, the determination of p(t) from Eq. (2.2) al-
lows us to evaluate the polarization per unit molecule. It
follows from the expression

P=Trip(t)P I (2.4)

where p represents the dipole operator. In the following
we shall apply the perturbation method to obtain p„„(t)
and p„(t) and a particular emphasis will be placed on
the results for three-level systems.

From the expansion of p(t) in power series of A.

where I is the damping operator and L denotes the Liou-
ville operator of the total system under the influence of
radiation fields. That is, L can be separated into two
parts; L0 is the Liouville operator associated to some
model system defined by H0, while L'(t) accounts for the
interaction between the system and radiation fields as
well as the internal residual interaction,

or, in terms of first-order populations and coherences,
(1)

dpnn

dt X (HnmPmn PnmHmn ) g rn:mPmm
m m

(2. 1 I)

Using the zeroth-order solutions (2.9), these equations
can be simplified to yield

(1)
dpnn

dt
(1)

dt

(1)g rn:m Pmm (2.12)

(2.13)

p())(t) () (2.14)

At the initial time there is no first-order correction
p'„'„'(0)=0, which in turn implies that for (2.12) we have

p(t)=p' '(t)+&p '(t)+& p' '(t)+ Moreover, the formal solution to (2.13) takes the form2.5

we deduce the various order approximations to Eq. (2.2).
In the zeroth-order approximation, we have

(0)dp (0) (0)
dt

= —iL0p —I p (2.6)

(0)
dpnn

dt
(0)0

d "'
() +r )

(0)
dt

where the usual notation for the tetradic damping opera-
tor has been introduced, ' i.e.,

~nn, mm ~n:m
(2.8)

or, in terms of the diagonal and off-diagonal parts, with
Ac@„=En —E

I

p'„" (t) =—(p„„—p ) f dt) H„' (t, )e
0

(2.15)

where the notation co'„=co„—iI „has been intro-
duced.

We are now concerned with the second-order contribu-
tions to population and coherences. The starting relation
1s

(2)

dt
P L (&) L (&) I (2) (2.16)

Consequently, populations and coherences satisfy the
equations

(2)
= ——g(H„' p"„' p'„"H'„)—gr„. —p
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and
(2)

(2.18)

This equation clearly states that for a two-level system,
the second term on the right-hand side does not exist and
hence p'„' =0. That is, there is no second-order term p'„'
for a two-level system. In the more general case of a
many level system, Eq. (2.19}can easily be solved

respectively. Introducing the first-order corrections pre-
viously determined, the contributions to the second-order
coherences are now given by

(2)

(ic—o„+I„)p„' '

dt

(n&l&m )

(1) (1)
{Hnlplm Pnl HIm ) (2.19)

(2.20)

where the symbol gI' excludes summation over 1 =n, m.

Using the expression (2.15) for the coherences, we obtain

1

P =
2
g" dt, dt2e " '

[(pit —p )H„'t(ti)HI' (t2)e ' ' ' +(ptt P )H l(t2)Ht (ti)e "' ' '
] .

Pt Ng

(2.21}

We still have to solve Eq. (2.17). In order to show how this can be done in general, we first consider the specific cases of
two- and three-level systems. For a two-level system (a, b) we have

(2)
(1) (1) t (2) (2)

(HabPba pab Hba ) a:aPaa a:bPbbdt

Using the relations

p(2) +p(2) p

r, = —r. .. .
the formal solution to Eq. (2.22) is given by

P„'(t)= ——f dt, e ' ' [Hob{t i )Pb (t) ) pb{t I
)H—b (tl )],

0

wh««, =I, , + I b.b Substituting Eq. (2.15) into Eq. (2.24), we finally get

il r ~ I

p.".'(t)=, (p'„p'..)f dt, f—dt~e ' ' [Hab(ti)Hb, (t2)e " ' '+H,'b(t2)Hb, (t, )e " ' ' ].
o o

(2.22)

(2.23}

(2.24)

(2.25)

Next we consider the solution for a three-level system that will be of interest in the following Notice that in this case

(2) (2) (2)
Paa+Pbb+Pcc =0 s

so that

(2.26)

where

PIb =f (t)—(I . —I ., )p —(I „., —I ., )p„(2) (2)

(2)
=f,{t) —(I ...—I ...)p,",' —(I „b—I ...)pbb',

dt

(2.27)

f~(t)= —— g (H' p"~ p"'H'~), p =b,—c .
rn (~p)

Equation (2.27) can be solved by using the Laplace transform method. The solutions can be expressed in the form

pbb'(t)= f dt, [fb(t t, )[(c, Az)e —' '+—(A. , —c, )e ' '] b,f, (t t, )(e —' ' —e ' '—)I
0

(2.28)

(2.29)

and

p'„'{t)= f dt& I f, (t —t, )[(bb —A2)e ' '+(A, , bb)e ' '] cbfb(t ——t&)(e ' ' ——e ' ')I,
0

(2.30)
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where the following notations have been introduced

,'(b—b+c,)+—,'[(c, —b„) +4cbb, ]'

A2= —,'(bb+c, ) —,'[(—c, b—b ) +4cbb, ]'

&b =~b:b —~b:. b. =~b:.—~b:.

c, =r, .,—r, ..; c, =r, .„—r. .. .
and

I I

f~(t)=
2 g (p pz~)—f dt, [H~ (t)H'~(t, )e ' ' +H' (t, }H' (t}e' ' ' ], p=b, c .

m (&p)

(2.31)

(2.32)

We are now ready to evaluate to the third-order approxi-
mation which is the main goal of the present work. The
starting equation is

I

[p'„"(t)],= ——g" f dt, e

(3)

dt
= —iLop' ' —iL'p' ' —I p' '

or, in terms of populations and coherences,

(2.33) X [H„'t(t 1 )pt '(t
1

)

P"i'(t 1
»—t' (t

1 }1 (2.38)

d (3)
dpnn i (2) (2) (3)X ( nmPmn Pnm mn } X n:mPmmdt

m

d (3)

dt

(2.34)

—
~

X"(H'tpI" p'i'H! —}
I

(2.35)

Of course, in treating four-wave mixing experiments, p'„'
is the basic quantity required to evaluate the polarization.
Then, depending on the type of geometry used, the corre-
sponding physical observables can be calculated. For in-
stance, if we are interested in phase conjugation spectros-
copy, the observable will be the conjugated wave and so
on. Jn any case we always need to evaluate p'„'. From
expression (2.35) we get the formal result

P,b ( t }= [Pnb ( t )]1+[Pnb ( t ) ]2——[P,b ( t ) ]1

where

(2.39)

It is remarkable that for two-level systems only the first
term contributes to the coherences. From an inspection
of relation (2.37), it appears that third-order coherences
p'„'(t} are generated only by second-order populations
p' ' (t). It is worth mentioning that because of the exten-
sive use of two-level models in nonlinear optics, only
[p'„' (t)], is considered in these descriptions. Therefore it
is important to get some insights into the contributions
arising from second-order populations and coherences, as
well as about their relative importance.

As a first step we shall evaluate the formal expressions
of these contributions for two- and three-level systems.
For a two- level system, we have

P (t}=[P ( )]1+[P ( )]2

where
I

[p'„"(t)],= ——f dt, e " ' H„' (t, )
0

X [p"'
( t, ) p'„'„'( t, )], —

(2.36)

(2.37}

I

[P b(t}]l f dtle H b(tl )[P (tl ) Pbb(tl )l
0

(2.40)

Recalling that p'„'+p'„b' ——0 and using Eq. (2.25), we ob-
tain

I

p,'b'(t)=
3 (pbb —p«) f dtl f dtz f dt3e'"" ' H,'b(tl )e

o o o

I I

X[H,b(tz)Hb, (t3)e ' ' ' +H,'b(t3)Hb, (t2)e " ' ' ] .

For a three-level system, the first contribution is
I

[P '(t}]1= f «le " ' H—.'b(tl )[p o(t1 ) Pbb(tl )l
0

(2.41)

(2.42)

where, as previously mentioned, the relation g,.p';; '=0 can be used. Notice that pbb'(t) and p'„'(t) are given by Eqs.
(2.29) and (2.30). The extra contribution [p',b'( t)]2, nonzero for systems with more than two levels only, takes the form
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I

[p.",'(t)],= —— dt, e " ' [H.', (t, )p,",'(t, ) —p.",'(t, )H,', (t, )],
o

where

(2.43)

tl I I I

p,', '(t)= 2 f dt, f dt2e " '
[(pbb —p«)H'l, {t,)Hb, {t2)e +(pbb —p )H bn(t2)Hbr(t()e ] (2 44)

o o

I I I

Prb'(t)=
2 f dt, f dt2e " ' [(p,, pb—b)H,', (t, )H,'b(t2)e ' ' ' +(p,, —p,, )H,', (t2)H,'b(t, )e " ' ' ]. (2.45)

o o

From the previous results for two- and three-level sys-
tems, we can see that the existence of a third level c not
only makes [p,'b'(t)]2 nonzero but also changes [p,'b'(t)], .
These differences and their consequences will be analyzed
in more details in Sec. IV of this work. Here, we just
note that if we set H,', =0 and Hb, ——0 in Eqs.
(2.41)—(2.45) we obtain p', b' for the so-called pseudo-two-
level systems treated by Duppen and %iersma. '

plicited in the form
\

H'(t)= —p E(t)= ——,
' gp (E e ' +c c )., .

(3.4)

where p, is the dipole operator.
From relation (2.4), the first-order contribution to the

polarization is

III. OPTICAL SUSCEPTIBILITIES P()) Tr(p(1)p) y p())p (3.5)

The aim of this section is to present a simple derivation
of the nonlinear optical susceptibilities X(") for n = 1, 2,
and 3. As is well known, a material system experiencing
optical fields will develop a polarization P. In the case
where the response of the system can be considered to be
instantaneous, P is a function of the electric fields in the
mathematical sense. Therefore, the macroscopic polar-
ization may be expressed as an expansion of powers of E,

i Xij Ej+Xijk j Ek +XijklEj EkEl+ (3.1)

where P; is the ith component of the polarization and E,.
the j component of the electric field acting on the mole-
cule. Also L'"' is an nth-rank tensor and is frequency
dependent. Note that for a delayed polarization some
care concerning the ordering of the fields must be taken
for the third-order susceptibility. The total electric field
takes the form

a
(3.2)

where the symbol c.c. stands for the complex conjugate
part. For convenience, the polarization is also written as

(3.3)

Pnm 'Ea
I

~a+nm

—i(co t —k .r)
Q Q

Pnm 'Ea i(co t —k r)
Q Q

I
a+~nm

(3.6)

The first-order susceptibility at frequency ~ is obtained
in the form

(i) (j)
X'J (-.) = -' g g g (p.„-p..)

™"~n-, (3.7)
n m a ~a nm

where p"„represents the ith vector component of p „.
Now, we look at the second-order optical susceptibility.
Notice that

n, m

Substituting Eq. (2.15) and carrying out the integration
with respect to t, , we obtain, for times longer than the
characteristic times of the medium I „' or I „„',

To calculate the first three orders of the nonlinear suscep-
tibility, we sha11 make use of the quantities p'„",p'„', and
p'„' given in Sec. II. Also with the notation introduced
for the fields, the radiation-matter interaction can be ex-

X X PnmPmn (3.8)

as previously. Therefore, substituting Eq. (2.21) and car-
rying out the double time integration, we obtain

p(2) 1 +++++ Pmn Pnl a Plm l) —it(m +tttt)) i()t +)ttt) r Pll Pmm( E)( E)
e ~e

a (8 m n I ~nm ~a ~P ~Im —~P

0 0
Pll Pnn+
~nI a

(3.9)
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It should be noted that for two-level systems we have
shown that p'„' =0 for rn&n and hence X' '=0. For
larger systems the second-order susceptibilities at fre-
quencies (co,co&} is straightforwardly obtained as

(i) (j) (k)

a p m n I Nnm Na Np

0 0
PII —

Pmm
X

COIm
—N p

0 0
PII Pnn+
Nnr Na

(3.10)

Finally, we consider the third-order susceptibility. The
basic relation is

and

P2"'= g X [P'„'(t)]

= ——ggg"p „J dt e

x [H„'i(ti )pI '(ti)

Pi"—(ti }HI (tj )]

(3.14)

(3.12}

where

pI3) y y [ (3) (t)]

I

= ——ggp„fdte " ' H„' (t)
m n

x [p.".'(t, ) —p'„'„'(t, )] (3.13)

(3.11)
m n

From Eq. (2.36) we can see that p'„' (t) can be separated
into two parts so that

p(3) p(3)+ p(3)
1 2

In other words, P'& ' is due to the contributions from the
diagonal elements p'„„' and p' ', while P2 ' is due to the
contributions from the off-diagonal elements PI

' and p'„I'.
The conventional expression for X' ' in treating coherent
anti-Stokes Raman spectroscopy (CARS) and coherent
Stokes-Raman spectroscopy (CSRS) (Ref. 14) is obtained
solely from P2 ', that is, the contribution from P', ' is
neglected. On the other hand, for two-level systems, as
used, for exam~le, in transient analysis of optical phase
conjugation, Pz ' ——0 and P'& ' only contributes to X' '.

Here, we just derive the conventional expression P2 '

for X' ' and leave for the Appendix its explicit calcula-
tion for two- and three-level systems. Substituting Eq.
(2.21) into Eq. (3.14) yields

—it{co +cop+co ) i(k +kp+k ) rp'"=-, rr- x '
mn p apy Nnm Na Np

q

(p~q~m )

y

0 0 0 0
It'mn (Ppq En )(Pqm Ep}(Pnp Ey ) Pqq Pmm Pqq Ppp+

COpm Ct)a N p COqm
—

COp COpq
—COa

q

(pQqQn)

0 0 0 0
Pmn(Pnq 'Ea}(I qp'Ep}(It'pm 'Ey } Ppp Pqq Pnn Pqq

I I I
COnp

—COa —
COp Nqp

—N p Nnq —COa

(3.15)

From the ith component of the polarization and the j, k, and l components of the fields E, E&, and E, respectively, we
obtain the following expression for the third-order nonlinear susceptibility:

X,'„I(a) cop&c&o )=-
nm p apy Nnm Na Np Ny

q

(p&q&m )

(t) (j) (k) (I) 0 0 0 0
Pmn PpqPqm Pnp Pqq Pmm Pqq Ppp

I I
COpm

—Ct)a —
COp COqm

—
COp COpq

—COa

q

(p&q&n )

(i) (j) (i) (1) 0 0 0 0
PmnPnqPqpPpm Ppp Pqq Pnn Pqq

I + t

Nnp Na COp COqp COp COnq COa

(3.16)
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These expressions for X' ' and X' ' are quite general and
can be applied to various nonlinear optical processes.

IV. COHERENCE-POPULATION INTERDEPENDENCE
IN PRESENCE OF A PERTURBATING LEVEL

The present section is devoted to the analysis of rela-
tions existing between coherences and populations. We
have shown previously that when a system has more than
two levels, an additional contribution to the third-order
coherence appears generated by second-order coherence.
In order to stress the importance of this contribution, '

we introduce a model system with the following charac-
teristics. The nonlinear medium has a ground state a, an
excited state b radiatively coupled to the ground state by
dipolar interaction, and a second excited state c with no
dipolar interaction and playing the role of a perturbation.
Both excited levels interact weakly. This model is fre-
quently encountered in the description of nonradiative
processes of organic systems except that we usually have
a distribution of perturbating levels. Sometimes the den-
sity of the perturbating states and their corresponding
couplings are such that the manifold of states acts like a
dissipative quasicontinuurn. Then, the Bloch-equation
treatment of Friedmann et al. ' in which the interactions
are treated in a purely phenomenological fashion is well
adapted. The couplings between the excited state

~

b)
and the manifold, a set of states

~

c ), are accounted for
by a nonradiative transition rate constant. Such a case
corresponds typically to the statistical limit case of large
molecules like, for instance, on intersystern crossing in
benzene' or on the S2~S, internal conversion in any
large molecule. ' In some other rnolecules, because of
symmetry selection rules, only few levels of the degen-
erate quasicontinuum are significantly coupled to the ex-
cited state. For the sake of simplicity, we limit our model
to the case of sparsely distributed perturbating levels, so
that only one of them acts efficiently. This situation
could characterize the intermediate molecule or small
molecule limit cases. For instance, our model is typically
required to explain the Douglas effect responsible of the
longest-lived excited states in small rnolecules. ' It could
be of interest to have an estimate of

~
Vb,

~

for real sys-
tems. Perhaps the best evaluation of

~
Vb,

~

can be de-
duced from systems where this coupling is able to gen-
erate quantum beats in the fluorescence. There is a num-
ber of examples in the literature. Typical observations on
molecular systems are quantum beats in the fluorescence
decay of jet-cooled anthracene excited by picosecond
pulses, ' ' or those obtained in biacethyl and methyl-
glyoxal as resulting from singlet-triplet coupling. An
interesting evaluation of the coupling

~
V„,

~

has been
done by Henke et al. from their experimental results on
collision and magnetic field effects on quantum beats in
biacethyl. They obtained an estimate of the order of 1.15
MHz for

~
Vb, ~, say, H „ in their work. A different ap-

proach could be developed to introduce the coupling Vb, .
It would imply the description of the internal dynamics
of the molecule in the V-prediagonalized basis set. How-
ever, a proper account of the decay and dephasing pro-
cesses then requires a redefinition of the various matrix

elements of the damping operator. The energy diagram
is given in Fig. 1. Therefore, the matrix representation in
terms of states a, b, and c corresponds to

Ace, 0 0

H =p 0 i6cob Vb, (4.1)

0 V,b fico,

Also, the only nonzero matrix elements of the damping
operator are I b.b

———I, .b.
In order to estimate the influence of a third level it is

better to treat the interaction V exactly and not as a per-
turbation. Therefore, the basic equation for the kth-
order perturbation in the field-matter interaction is

Pnn X ( nlpln Pnl tn )
dt

and

(k)+( (k —()

1

d (k) . t (k) i p (k) (k)
~ Pnm t~nmpnm +

~ Hnm(Pnn Pmm )
dt

(4 3)

I

(m~l~n )

(4.4)

The simplifying notations

and

+ X P t Hit)(t)
1 (~a)

(4.5)

H (t)

FIG. 1. Energy diagram of the three-level system.

—p'"'= — [H,p—'"']——[H'(t), p'" "]—1p'"' . (4.2)
fi

In terms of matrix elements, we obtain
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have been introduced. To solve Eqs. (4.3) and (4.4) the
Laplace transform is required. With the initial condi-
tions p'"'(0) =0, we get for k&0

pp'.".'(p»}= „—X—[H.'ipI."'(p }—p'. i'( p}H'( ]
I

(p }+C„'„"-'l(p
l

(p+CCO)p(k)(p)H0[p(k)(p)p(k)(p)]

(4.6)

P."b'(P }= [P."b'(P }]1+[P."b'(P) ]2

where

[p"b'(p }]1 =f 1 (p)P.'b'(p»

[p,"b'(p) ]2——f&(p)C,',"(p) .

(4.&)

(4.9)

P,'b'(p) and C,', '(p) are the Laplace transforms of P,'b2'(t)

and C,', '(t), respectively. The following notations have
been introduced:

f 1 (p }=[p+ 1 CO.', 1~(p»

f2(p) = V bb'(p)
1

(4.10)

X [H'(pi"'(p»} p'i'—(p }Hi' ]
l

(m ~1~n )

+P( 1)(p) + C(k —1)(p) (4 7)

For convenience, when p represents the Laplace trans-
form the p dependence is always explicitly written.

We are now ready to evaluate p,'b'(p). This is done
straightforwardly, so we just present here the main lines
of the calculation. From Eqs. (4.6) and (4.7) the set of
equations for the various coherences and populations of
the three-level system is obtained. We get

—i(at +ats+at )t t it(( +attatt+ta 1=e g, t, e
0

(4.15)

Notice that if we look for the steady-state solutions, t is
longer than any characteristic time of the material system
included in g;(t), the inverse Laplace Transform of G;(p).
Consequently, the time of integration can be extended up
to the infinity and we get

We still have to evaluate [p',b'(p)], for i =1,2. In fact,
any colnbination (co +co&+cd ) gives a component to p', b'.

We just calculate the comPonent (co +coti+cdy), any oth-
er one being easily deduced. We begin with the quantity
[p,'b'(p)]1. Because we are looking for one particular
component, we just need one part of the interaction
H'(t), say

(4.1 1)

Therefore the contribution arising from populations is
given by

[p',b'(p}]1= &f((p}Q.b[p.".'(p+l } pbb(—p+lCO }]

(4.12}

After some algebra, the results can be written in the form

p,'b'(p) ]1
——G1(p)

1
(4. 13)

P + l ( Cd a +Cd@+ Cdy )

where G, (p } is a function with no pole at
p = i(co—+cdti+coy) A.similar structure is obtained for
the second contribution generated by the coherences, i.e.,

[p',b'(p) ],= G2 (p) . . (4.14)
P + l Cda+Cdp+Cdy

The inverse Laplace transforms of these quantities are ex-
pressed by

b,(p)= (p+ico,'b}(p+ico,', )+, I Vb,
I

'
$2

G1( i CO i CO&
—i Cdy

—)—

—l(tk) + COp+ CC) )I
[p,b(t)];=e ' y G;( iCO iC—dti iC—Oy), —

where the expressions of G, are given by
I

(4.16)

(CO +Cdtt+COy —CO )(COP+Cdy —iI b b)(COtt+Cdy —
COb ).

ab ab La I bc I EDH
p

(Cda+COP+Cdy —Cdac )(COP+Cdy —i I b.b )(COP+Cdy —
Cdcb )

gQ bQb Q b I Vb

3 Q,bQb, Q,b (Cda+Cdtt+Cdy —CO,', ) 2(COti+Cdy){COtt+CO Cdbc }

fi2 I Vbc I [2(Cdtt+Cdy) (Cdcb+Cdb )] (Cdy —CO„) E -D -I'

a a3 Q,bQfbQ),

X (Cda+Cdtt+Cdy —Cdac ) 2(COtl+Cdy )(Cdti+COy Cdcb )(COP+Cd—y
—Cdbc )

f2 I Vb, I
[2(co&+cd ) (co',b+co'b, )]—(co —co,', ) E.D.H, (4.17)



LAVOINE, BOEGLIN, LIN, AND VILLAEYS

G2( —i coa —]cop i—cor )

——' n. npnab ab Ia

1 p ~ Vb,
~

(cop+co )(cop+co ] I—'b b)(.cop+co co—,'b ) —
~ Vb,

~
[2(cop+co ) i—I ]/]r]2

p3 ah ba ab E.D.F

n n~ nr Vba
~

( cop+coy)(cop+co —co b )(co —co )

ab ba ah EDF
1 p ~ Vba ~

(cop+co], )(cop+co& coa—b )(co& co —)

3 ab ab La EDH (4.18)

with the following notations:

v„E= (Coa+ Cop+ Co&
—Coab )(COa+ Cop+ CO&

—Coaa )—

I Vb, I'
D=(cop+co )(cop+cor il b b—)(cop+. co co,'b)(co—p+cor co'b, )—— [2(cop+cor) (co,'b—+cob, )][2(cop+cor) iI b

—b], .

I Vb, I'
F= (Co& —Coab )(Co& —Coaa )— H = (Cor —Cob )( Cor COaa )—

g2
(4.19)

We are now ready to analyze the inhuence of the third
perturbating level. This quantitative estimate will be
done for the particular case of phase conjugation spec-
troscopy.

V. APPLICATION TO PHASE CONJUGATION

+P b( —Q, 'co cop cor)e ' ] (5.1)

It is of interest to notice that because of the perturba-
tional approach taken p,'b'(t) has the same frequency
components that H,'b(t)H,'b(t)H,'b(t) Therefor. e by intro-
ducing the full interaction terms we have

p,'b'(r)= g g [p',b](n ;Co, cop, cor)e.
~ P*r

where 0 - stands for one particular combination of
co +cop+r and wher

P',b'(Q;co, cop, cor)= g G;( ico +icop—+icor) (5.2)
l

are the quantities evaluated in Sec. IV. This notation em-
phasizes the ordering of the interacting fields cz, P, and y.

In the particular case of the phase conjugation spec-
troscopy the only contribution to the nonlinear polariza-
tion are the combinations 0,=m~+ co&—

d'or
and

02 ——~ —~&+cur. Therefore the spatial components
are k +kp —kr with the combinations (a,P, y)
=[(1,2, 3), (2, 1,3)] and k —kp+k with (cz,P, y)
=[(1,3,2), (2, 3, 1)]. For our purpose it suffices to con-
sider the degenerate case, i.e.,

p(3)( r) e irut[—lim
ct) ~, QP2, M3 ~co

t]o.b(» ]* 2
—3)+]].b(n* * i

— 3)+P.b(n ]
—

3 z)
(3) . (3) . (3)

+p,b(n'co2 —co3 co])j]+e' '[Q —Q] . (5.3)

In order to compare the contributions resulting from populations and coherences, we have performed numerical calcu-
lations on the time-independent factor of p,'b'(r ), i.e.,

&,b(V)= lim
co I, 6&2, bJ3 —+ ccP

I]C]ab ( Qy CO]y CO2$ 3C)Op+(anbCO2 CO] )CO+3p (anby yCO]3/ COCO/) +p b( ay ]y 3 ~ ] ) j (5.4)

At this stage, it seems necessary to point out some partic-
ular features of this calculation. First of all, the compar-
ison between the diFerent terms is best done by compar-
ing the third-order coherences of a two-level system, say
V=O, to the corresponding quantities for the three-level
system in which the coupling V opens a new channel

which contributes to p',b'(t). At this end we will consider
the ratio of the real or imaginary part of X,b( V) with the
same quantity in absence of internal interaction, i.e.,
X,b( V =0). Next, this ratio is evaluated as a function of
the coupling V.

We come now to the second point that we wish to
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R12 creasing values of I b,
' the coherence created by the fields

in the system is damped. Figures 6 and 7 represent the
sum of the variations previously discussed, i.e.,

16X10 R R ) +R2~ I I] +I2 (5.9)

12X10

SX10

4X10

It is interesting to note the existence of fixed point, al-
though for the moment we are unable to give it a precise
meaning. Finally to get a better insight into these contri-
butions we still require the knowledge of the ratio
R~2 ——R&/R& and I,2 I, /——Iz T.heir dependence with

Vb,
~

for various pure dephasing has been depicted on
Figs. 8 and 9. From the values shown by these curves
there is no doubt that population effects are the predom-
inant ones in the phase conjugation process and that the
populations are very sensitive to the presence of pertur-
bating levels.

Q

1 17 34

Ca)„(10 sec )

FIG. 8. Plot of R
& /R2 as resulting from Figs. 2 and 4.

16X103

serve a continuous increase of R2 and I2 with the in-
crease of the coupling strength

~
V„,

~

. Second, the pure
dephasing constant I b",

' has an opposite effect compared
to the one described for the population contribution.
Here, we notice a decrease of R 2 and I2 with the increase
of I b", '. This result is easily understood because for in-

VI. CONCLUSION

The main goal of this work has been to develop a per-
turbative many-level system description of four-wave-
mixing experiments. At the present stage, only the polar-
ization has been evaluated and any complete description
still requires the introduction of this nonlinear polariza-
tion into Maxwell equations. Despite the great impor-
tance of two-level systems in the description of nonlinear
optical processes, it is worth mentioning the sensitivity of
the dynamics to the presence of neighboring levels even
weakly coupled. Such a situation is frequently encoun-
tered in organic materials. We have shown that a pertur-
bating level not only alters the nonlinear polarization
generated by populations but also gives an additional
contribution resulting from the coherence-coherence cou-
pling. A quantitative estimate of these supplementary
contributions has been given. In the future more com-
plex systems will be studied where summation over mani-
folds of states will be required. We expect that extra con-
tributions to the nonlinear polarization will be even more
important in these situations.
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4X10
APPENDIX

For comparison we shall calculate X' ' for two- and
three-level systems in this appendix. If we consider a
two-level system, the basic expression is

17 51 P =Pub(t)Pb, +Pba(t)P, b (Al)

CA)y( 10 sec )

FIG. 9. Plot of I l /I& as resulting from Figs. 3 and 5.

where third-order coherence P',b'(t) has been explicitly
calculated previously and is given by Eq. (2.41). Using
expressions (3.2) and (3.4) for fields and interaction, re-
spectively, we obtain
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—i(co +cop+co )t i(k +k +k ) r
~ e

Pab( )
3 (Pbb Paa ) X t8' a p y (Cdab —Cila —

COp
—
Cdy )(COa+Cdp+I I ) )

CO b
—CO

which in turn gives for the nonlinear susceptibility

0 0
(3) l Paa Pbb 1 1

Xtjkl(CdatCdptCdy) =
3 2 +4' P ~f +~P+i F]

(p,b Ey}(p,b E )(l(bb, Ep),

(i) (j) (k) (I)
PbaPabPab Pba

(i) (j) (k) (1)
I abI baI ba I ab

6)ba
—N ~—

COP
—

CO&

(A2)

(A3)

Next we consider three-level systems. As has been pointed out in Sec. II, P' ' can be written as

p(3) p(3)+ p(3) (A4)

Since P2 ' yields the conventional expression of X' ' which has been presented in Section III, we shall now study the
effect of P', ' on X' '. Notice that

) =[[P.b( ])I b. +[Pb. t)])P.bI+[[Pb", ( ])V,b+[P,"b'( )])Vb, I+[[P,".'( ])W.,+[P.",'( ])V,.l

where all the required quantities have been developed before. For instance, p', b'(t}l can be written in the form
t

[p,"b'(t)], = ——f dt, e " ' H,'b(t, )[2pbb'(t, )+p'„"(t, )],
0

where pbb'(t, ) and p,', '(t, ) are given by Eqs. (2.29) and (2.30). Therefore [p',b'(t)], can be written as

[p',b'(t)]) ——[p',b'(t)])l + [Pab(t}](c

where

(3) t litt b ( t )
—t )

I t { fb ~ } 2 } —k2{2 —A, )t2[pb(t)]b ————f dt(e " ' H'b(t)) f dt2 [e ''(2c, 2t(2 c—b)+e— ''(2Ai 2c+cb—)],
fi 0 0 ) 2

(3) f t ice b(t~ —t ) f, (t, t2)—
[pb(t)]), ———— dt e " ' H'b(t ) dt2

&
[e ''(bb —t(2 —2b)+e ' '(Al bb+2b—)] .

o 0 1 2

(A5)

(A6)

(A7)

(A8)

Notice that the various functions and constants included in these expressions have been defined previously. Performing
the double time integration, the quantities [p',b'(t)])b and [p',b'(t)]„are evaluated. Then, the polarization and the re-
sulting third-order optical nonlinear susceptibilities can be obtained in a straightforward manner. In this appendix we
are concerned with contributions to the nonlinear susceptibility [X kl(co, cop, co )], given by

[Xijkl(~a&~p&~y)]) = [Xijkl(~atpity)])ah + [Xijkl(~a&p&~y)])bc+ [Xijkl ~a&p&~y ])ac
(3) (3) (3) (3) (A9)

where, for example, [Xjk'l(cd, cop, cdy)]„b represents the contributions from [p',b'(t}], and [pb, '(t)]) in Eq. (A5). It takes
the form

(3) (
0 0

)Pmm Pbb ($) (J) (k) (/)
[Xijkl(a&~p&y)])ab = P X 3 (PbaPabPmb'Pbm }'

a p y 2' (t(, , —A,2)
+

mb a bm P

2Cc 2A, 2
—Cb

X
[l ( CO a +COP ) —A2 ][A2 + I ( CO a +Ci)P +Ci)

y
—Cd ab ) ]

+
~cm ~p

bb —k2 —2b,
X

[i (Cda+ Cdp) —12][A 2+i (COa+ Cdp+Cdy Cd, b )]—
k. )

—bb+2b
+ + [club ],

[l(cd +cop) —ki][A.)+l(co +cop+co —cd b )]

2A, i
—2Cc +Cb+

[i(co +cop) A(][A)+i—(co, +cd, p+cdy co,'b )]—
(

0 0
)

+ Pmm Pcc
(

{i) (j) (k) (l)
)

1 1
PbaPabPmcPcm

m a, p, y 1 2 ~mc ~a

(A 10)
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where the symbol [a~b] means that the same quantity
must be added but a and b must be inverted. In addition,
the expressions for [X „',(to, toit, to ))» and [X k't(to,
tott, tor)]t„can be obtained similarly. It should be noted
that to obtain X' ' for two-level systems we simply find
the coefficients of (p« —

pbb ) and (pt, b
—p«) in

[Xjkl(to, toit, to )]&,b by setting cb ——0, c, =0, and b, =0.
In other words, to calculate X' ' by using a two-level
model we ignore not only the contribution from P2 ', but
also the contribution from the (p» —p„) and (p„—p„)
to P&
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