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Two-level systems are widely used in nonlinear optics; some authors have considered larger sys-
tems, but in most of these descriptions the additional levels participate in the dynamics of the two
main levels through kinetic rate constants only. Here, we adopt a different point of view. Knowing
that two-level models treated in a perturbational approach show peculiar relations between popula-
tions and coherences, we analyze the effect of a third perturbating level on these relations. An esti-
mate of the extra contribution to the third-order coherence is made. The role of the dephasing pro-

cesses on this contribution is analyzed.

1. INTRODUCTION

Nonlinear optical responses of molecular media are be-
ing extensively studied." Most of these experiments, in-
cluding decay as well as dephasing processes, have been
successfully described by the optical Bloch equations.? ™3
While this theoretical framework is quite well adapted
and has been used for a long time in other fields, it seems
to us that the application of the oversimplified modeliza-
tion to organic materials is often of questionable validity.
Even in the cases where the main dynamical processes
seem very well understood, it is essential to have at least a
qualitative and, when possible, a quantitative estimate of
how the environment could affect this simplified dynami-
cal scheme. By environment we mean all what has been
neglected in the model. This ranges from a simple per-
turbating level interacting with one of the excited states
up to the more complex dissipative bath. A particular
emphasis has been put recently on systems subjected to
stochastic perturbations where the effect of the thermal
bath can be described as a modulation of the electronic
transition frequency.®—® Of course, such approaches can-
not include large interactions.

While this last physical situation is of great interest
and has been considered in a number of papers, we will be
interested in this preliminary work by the opposite ex-
treme case of a single perturbating level interacting with
the excited state. Perhaps the strongest motivation for
the present work is the tremendous emphasis put on
two-level systems in nonlinear optical studies. In fact,
formal solutions to optical Bloch equations for two-level
models reveal a very peculiar structure which is not valid
any more for many-level systems.” They decouple the
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contributions to populations and coherences and make
them depend on the order of perturbation. For instance,
the even orders give corrections to the populations only,
while the odd orders contribute to the coherences only.
In addition, contributions to a given order depended
strictly on the contributions to the (n —1)th order. Asa
consequence, we have no direct population-population or
coherence-coherence contribution when going from one
order of perturbation to the next. It is clear that such re-
lations result from the very peculiar properties of two-
level systems. It is therefore tempting to analyze the
influence of a third level, participating even weakly to the
dynamics, on the nonlinear optical properties of the sys-
tem.

The paper is organized as follows. In Sec. II, we
present the perturbation method on which the present
work is based. It includes the evaluation of the popula-
tions and coherences up to the third order for a general
N-level system. When restricted to a two-level system,
the results of Mitsunaga and Brewer’ are recovered.
However, when applied to larger systems, the third-order
coherence contribution p'})(¢) depends on the second-
order populations p'2(¢) as well as on the second-order
coherences p'2) (¢). This extra contribution does not exist
for a two-level system. Section III is devoted to the cal-
culation of the corresponding optical susceptibilities. In
Sec. IV we analyze the relations existing between popula-
tions and coherences and how they contribute to the vari-
ous susceptibilities. We are then in a position to present
and discuss the influence of a third perturbating level on
the response of a two-level system undergoing a phase
conjugation experiment. This is the purpose of Sec. V.
Section VI will briefly draw some conclusions.
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II. PERTURBATION METHOD FOR POPULATIONS
AND COHERENCES

In a previous paper devoted to the transient analysis of
optical phase conjugation in two-level absorbing systems
the perturbation method has been applied.'®!' Here, we
shall generalize the treatment to many-level systems. For
this purpose, we write the Hamiltonian as

H=Hy+AH'(1), @.1)

where A is the perturbation parameter and H'(?)
represents the interaction between the system and radia-
tion fields and the residual interaction specific of the
physical system. Of course, this last interaction is not
time dependent, but for the sake of simplicity, we will in-
clude it. Distinction between both interactions will be in-
troduced when necessary.
We start with the stochastic Liouville equation

g['Z-z——in—I‘p , (2.2)
dt

where I' is the damping operator and L denotes the Liou-
ville operator of the total system under the influence of
radiation fields. That is, L can be separated into two
parts; L, is the Liouville operator associated to some
model system defined by H, while L'(¢) accounts for the
interaction between the system and radiation fields as
well as the internal residual interaction,

L=Ly+AL'(2). (2.3)

In principle, the determination of p(¢) from Eq. (2.2) al-
lows us to evaluate the polarization per unit molecule. It
follows from the expression

p=Tr[p(t)u], (2.4

where u represents the dipole operator. In the following
we shall apply the perturbation method to obtain p,,(¢)
and p,,,(t) and a particular emphasis will be placed on
the results for three-level systems.

From the expansion of p(?) in power series of A

p()=p )+ Ap V() + AP () 4 - - - (2.5)

we deduce the various order approximations to Eq. (2.2).

In the zeroth-order approximation, we have
d (0) . ©
_;IL =—iLop

or, in terms of the diagonal and off-diagonal parts, with
tw,,,=E,—E,,

_Tp @, (2.6)

dp
= 2 r,. mp(rfx)r)n ’

dp<°> @.7)

dt

where the usual notation for the tetradic damping opera-
tor has been introduced,'? i.e.,

r

: (0)
—(lwnm +an) nm >

nn,mm :rn:m ’

Lop=NT,,+T, )+

nm

(2.8)
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where I',., is the total decay rate of level n, I',,, the
transition rate of the n«m transition, arid T'\9) the pure
dephasing constant. Solutions to these master equations
are straightforwardly obtained if the initial conditions are
well defined. For the purpose of this work we will as-
sume that at z =0 the system is in equilibrium. This
means p,,(0)=p%, as resulting, for example, from a
Boltzmann population for the stationary states, p,,(0)=0
for the nonstationary states and as usual p,,,(0)=0 be-
cause there is no initial correlation in the material system
with these previous assumptions. The zeroth-order ap-
proximation gives the trivial result

Pon(1) p‘,,°n’ or 0,

P (1) =

Next, we consider the first-order approximation. The
dynamical equation takes the form

d (1) .
b= —iLop"

or, in terms of first-order populations and coherences,

(1) .
i‘_)ﬂ__i H' p© _ 50 (1)
dt - ﬁE( nmPmn —Pnm H zrnmpmm’
(2.11)

(2.9)

'—iL'(t)p" " —Tp® (2.10)

do')
Enm o (i +T Pl —LE 1P — Pt Him ) -
dt nm nm nm h ] ﬂ m n m

Using the zeroth-order solutions (2.9), these equations
can be simplified to yield

d (1)
_P 2.12)

—_—Zrn mp(rrln)n ’
d (nl)
dt

At the initial time there is no first-order correction
p'1)(0)=0, which in turn implies that for (2.12) we have

P ()=0 . (2.14)

=0+ T 0500+ 5 Hi (=P - 2.13)

Moreover, the formal solution to (2.13) takes the form

i) (t; —1)

P ()= (P =P [ty Hopy (10 71
(2.15)

where the notation o), =
duced.

We are now concerned with the second-order contribu-
tions to population and coherences. The starting relation
is

wm —il,, has been intro-

2)
%=—‘LOP L'p“) FP(Z)'

Consequently, populations and coherences satisfy the
equations

(2.16)

dp(nzn) i (1)
dt = # % nmpmn _pnm

- 2 I-\n mp(nzn)n

2.17)
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and
dpi,

dt

-"(lwnm +rnm )p(Z) h E(Hnlp(lr‘n)—p(nll)Hllm) ’

(2.18)
respectively. Introducing the first-order corrections pre-
viously determined, the contributions to the second-order
coherences are now given by

d (2)
Zt _(iwnm +rnm )p(nzrr)l

2>
# i
(n#l£m)

(1)

(Hnlp(h]n) —Pni Hip) (2.19)

. t .
2) 1 t 1 iw,, (1, —1) 0
Prm = "3 2" fodtlfo diye "™ [(pn
!

P (1) = —

—p% . JH (¢ HY, (t)e
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This equation clearly states that for a two-level system,
the second term on the right-hand side does not exist and
hence p!2) =0. That is, there is no second-order term p'2)
for a two-level system. In the more general case of a
many level system, Eq. (2.19) can easily be solved

_i_ftdt eiw:’m(t]—t)
#ido !

X 3 [Hp(ty)pim (1))
1

—pe ) (11)]

where the symbol 3, excludes summation over / =n,m.
Using the expression (2.15) for the coherences, we obtain

(2.20)

ioy, (;—1) , , (ty—t;)
" (pf —pon )Hnl(tZ)Hlm(tl) S

(2.21)

We still have to solve Eq. (2.17). In order to show how this can be done in general, we first consider the specific cases of
two- and three-level systems. For a two-level system (a,b) we have

dpg i '
dta = Z(Habpgm

pab)Hba) r, :ap(a%z)—ra sPbb -
Using the relations

Pas +Ps5 =0,

Cop=—Tps

the formal solution to Eq. (2.22) is given by

P21 = f dere " T LH (e pi e ) —

Pab (11 H; (1]

(2.22)

(2.23)

(2.24)

where I')=T,.,+T,.,. Substituting Eq. (2.15) into Eq. (2.24), we finally get

1 ru ,
pa)="7(ph Pl [ ar, f e H

1 Hp,(25)e

e 2T L (1) (2))e 0TIV (2.25)

Next, we consider the solution for a three-level system that will be of interest in the following. Notice that in this case

(2)

Pu+phy +pi'=0, (2.26)
so that
do'?
B fy (=T =Ty )i~ (T Ty
(2.27)
Pc
=)= (Fe —Te)pd — (T =T )pi
where
J H, ol _ph)
t)=—— =b,c . .28
fp(t) P m(2¢p) omPmp pp H,,), p=b,c (2.28)
Equation (2.27) can be solved by using the Laplace transform method. The solutions can be expressed in the form
1 —Ayt - —
p21) m— Jldt £y —tplec—Rde "+ (A —cde MU f.(t Rl _ Mty (2.29)
and
(2) =y = —Ayy =Mty
Pec ()= . k fdtl[f — )by —A)e V(A —byle MV—c,fy(t—t)e T My}, (2.30)
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where the following notations have been introduced

A=1(b,+c )+ 1(c,—b, ) +4c,b. 1",

Ay=1(b, +c,)—L[(c.—by ) +4c,b 1'%,
bb:rb:b_rb:a’ bc=rb:c—rb:a ’
cc=rc:c—rc:a; Cb:rc:b_rc:a ’
and
1
fp(t):— 2 (penm ppp)f dtl[ t)H

2
i 2p)

We are now ready to evaluate to the third-order approxi-
mation which is the main goal of the present work. The
starting equation is

i‘%:-mop‘”—m'pm-rp‘” (2.33)
or, in terms of populations and coherences,
dg(:) =% 2 Hunp n =P Hopn ) — =T, mPom
(2.34)
"’jf")' = i+ o ) = H 20 =)
FY 2” (Hypim —pui Hi) - (2.35)

Of course, in treating four-wave mixing experiments, p'>)

is the basic quantity required to evaluate the polarization.
Then, depending on the type of geometry used, the corre-
sponding physical observables can be calculated. For in-
stance, if we are interested in phase conjugation spectros-
copy, the observable will be the conjugated wave and so

o
(ty—1)

on. Tn any case we always need to evaluate p'3). From
expression (2.35) we get the formal result
Prm D =1pim (D) + [P (], (2.36)
where
[pon(0) = — 5 [ ldr,e" " Ey (1)
X[p2 () =pi2e )], (2.37)
J
i ()
Pyt "_(Pbb Poa f dr, f dtzf dtye

X [H.y (1) H, (13)e %"

For a three-level system, the first contribution is

i rt iw), (t r)
[p(3) lzzfodtle b'Fy [p(Z)(t p(Zb)(

t;b(tl Je

(2.31)
H, (6 H (e ) p=bc | 2.32)
[
o) t)]2-———;i—21 fo’dt,e"w’nmu,_,)
X [Hp () )pim (2
—p 3 H] (1] . (2.38)

It is remarkable that for two-level systems only the first
term contributes to the coherences. From an inspection
of relation (2.37), it appears that third-order coherences
p(,,3,,’,( ) are generated only by second-order populations

p\a).(¢). It is worth mentioning that because of the exten-
snve use of two-level models in nonlinear optics, only
[p'3)(2)], is considered in these descriptions. Therefore it
is important to get some insights into the contributions
arising from second-order populations and coherences, as
well as about their relative importance.

As a first step we shall evaluate the formal expressions
of these contributions for two- and three-level systems.
For a two- level system, we have

(3) ]l+[p(3) ]2__[p(3) t)]] ,

Pas(t)=[p%

where

[Pm(l‘)]l‘_fdl ot~

(2.39)

H o (P2t —p2(e )] .

(2.40)
Recalling that p{2’+p!2)=0 and using Eq. (2.25), we ob-
tain
Ly —1t))
3= ) , , il (ty—1t,)
+Hab(t3)Hba(t2)e ] . (2.41)
(2.42)

where, as previously mentioned, the relation 3 ,pi?'=0 can be used. Notice that p{2)(z) and p'2'(¢) are given by Egs.
(2.29) and (2.30). The extra contribution [p}3(¢)],, nonzero for systems with more than two levels only, takes the form
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[P t)]2=—éf0'dt1e' TOLHL () p2 ) —p 2 H. (1] (2.43)
where
P2t —-lzf dtlf dtye" 1 (p%y —p iy (1 H g (1)e 5" T (00, — p0, VHLy (1) He (1) @ 7], (2.44)
pR=— [dr, [ty 0, — Bl 1 DB 1) ™ T (08, — % (1) Hp (1) ] L

|

From the previous results for two- and three-level sys- plicited in the form
tems, we can see that the existence of a third level ¢ not , ) — iyt —kyT)
only makes [p{3)(¢)], nonzero but also changes [p3)(#)];. H'(t)=—pE(t)=—3 3 p(E.e +c.c.),
These differences and their consequences will be analyzed @
in more details in Sec. IV of this work. Here, we just (3.4)

note that if we set H, =0 and H, =0 in Egs.
(2.41)-(2.45) we obtain p';}) for the so-called pseudo-two-
level systems treated by Duppen and Wiersma.!?

II1. OPTICAL SUSCEPTIBILITIES

The aim of this section is to present a simple derivation
of the nonlinear optical susceptibilities X" for n =1, 2,
and 3. As is well known, a material system experiencing
optical fields will develop a polarization P. In the case
where the response of the system can be considered to be
instantaneous, P is a function of the electric fields in the
mathematical sense. Therefore, the macroscopic polar-
ization may be expressed as an expansion of powers of E,

Pi ——-XI(JUEJ +X,(ﬁ()E Ek +X!jk1E EkE[+ ) (31)

where P; is the ith component of the polarization and E;
the j component of the electric field acting on the mole-
cule. Also X' is an nth-rank tensor and is frequency
dependent. Note that for a delayed polarization some
care concerning the ordering of the fields must be taken
for the third-order susceptibility. The total electric field
takes the form

—ilwyt—k,T)

E——EE +c.c. , (3.2)

where the symbol c.c. stands for the complex conjugate
part. For convenience, the polarization is also written as

—ilw t—k_-r)

P=13Pe * * +cc. (3.3)
a

To calculate the first three orders of the nonlmear suscep-
tibility, we shall make use of the quantities p\}), p'2), and
p'3) given in Sec. II. Also with the notation introduced

for the fields, the radiation-matter interaction can be ex-

1
W IR

(D”m — '—CUB

ym,,(,u,,, ‘E )(ﬂ[m Eg) —it(w +wB) ik, +kg)r pII pmm +p?1—p2n

where p is the dipole operator.
From relation (2.4), the first-order contribution to the
polarization is

P! —Tl’(p l"’)_ Epnm”'mn . (3.5)

Substituting Eq. (2.15) and carrying out the integration
with respect to ¢,, we obtain, for times longer than the
characteristic times of the medium I';;,! or T},

nn >

22 S (Pon —Pom W
n m a
y’nm'Ea —ilw t—k, 1)
X ’
—wa+wnm
+ﬁ1@_‘£«2_ei(mapkn-r)
Oyt Oy,
(3.6)

The first-order susceptibility at frequency o, is obtained
in the form

i it
o0 =5 553 —plpm ) (3)

n m a a ™ Onm

where u!? represents the ith vector component of u,,,.
Now, we look at the second-order optical susceptibility.
Notice that

PY=3 3 o2ty » (3.8)
m n

as previously. Therefore, substituting Eq. (2.21) and car-
rying out the double time integration, we obtain

(3.9)

’
wlm _wB Wy — Wy
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It should be noted that for two-level systems we have
2 =0 for m=n and hence X'?’=0. For
larger systems the second-order susceptibilities at fre-

shown that p;

quencies (®,, wg) is straightforwardly obtained as

) (), k)
.u‘mnpnlulm
X (@ wg)=— 2 223 2 —_
a B m n — _wB
pll"pmm
O}y — 0
0 0
Pit —Pnn
4 PP ]
WDy — Wy
(3.10)

Finally, we consider the third-order susceptibility. The
basic relation is

2 anmumn :

From Egq. (2.36) we can see that p'}) (t) can be separated
into two parts so that

(3.11)
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and

E E [P (D Lo

=_LEzzuymnftdtleiwnm(tlat)
# m n | 0

X [Hy(t))pia(t))
—‘le(t )Hlm 4 )]

(3.14)

In other words, P{* is due to the contributions from the
diagonal elements pm and p'2), while P5® is due to the
contributions from the off- dlagonal elements pi2) and p'?.
The conventional expression for X3 in treating coherent
anti-Stokes Raman spectroscopy (CARS) and coherent

P =pP PP, (3.12)  Stokes-Raman spectroscopy (CSRS) (Ref. 14) is obtained
where solely from P$’; that is, the contribution from P!> is
neglected. On the other hand, for two-level systems, as
=3 3 [p0 (O] it used, for example, in transient analysis of optical phase
m n conjugation, P{>’=0 and P{*’ only contributes to X‘*.
i f e, (=), Here, we just derive the conventional expression P}
=T % %“m" fodtle Hyp (1) for X*) and leave for the Appendix its explicit calcula-
tion for two- and three-level systems. Substituting Eq.
X [P () —p'2(t)] (3.13)  (2.21) into Eq. (3.14) yields
J
—itlo +wg+w,) i(k_+kg+k )r
1 e oy +ogto, e @ BTy
(3) "
Py'= “gﬁT 223 2 ’
mn p aBy Oy —Wg—Wg— @

“mn(# Ea)(l" “Eg)( ‘E,) o — 9nm 0 — Py

v b pg "o P B\ Bonp "By Pq:i p " pqlq Ppp

q Opm —Wq— g Wgm —@p  Dpg—Wq

(p#g+#m)

0 _ 0 0o _ o0
" 2 .u'mn(”'nq'F:a)(”qp'EB)(“pm Ey) pp’p —Pygq + pnln —Pgqq ] (3.15)

a),,p——-a)a—a)ﬁ a)qp_wﬁ a),,q—a)a

(p#q+#n)

From the ith component of the polarization and the j, k, and / components of the fields E,, Eg, and E,, respectively, we
obtain the following expression for the third-order nonlinear susceptibility:

(3) _ " 1
Xijkl“"wwﬁ’“’r)** 232
nm p aBy Pnm —Wgq—Wg— O
f),,(k), (D 0 0 0 0
p’mmu'pq.u'qml“‘np qu —Pmm qu —‘ppp
x| = £ 1P Pa
9 Opm T Wa—Wp | Dgm —W@g  Wpg—Wq
(p#g+#m)

), (h,, @, ) 0 0 0 0

.u'mn/J‘nqp'qp.upm ppp _pqq Pnn —qu
+ 3 . . +—; (3.16)

q Wpp —Wg—0p | Wgp —Wg  Bpg— Dy

(p#g+#n)
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These expressions for X'?) and X'* are quite general and
can be applied to various nonlinear optical processes.

1IV. COHERENCE-POPULATION INTERDEPENDENCE
IN PRESENCE OF A PERTURBATING LEVEL

The present section is devoted to the analysis of rela-
tions existing between coherences and populations. We
have shown previously that when a system has more than
two levels, an additional contribution to the third-order
coherence appears generated by second-order coherence.
In order to stress the importance of this contribution, !’
we introduce a model system with the following charac-
teristics. The nonlinear medium has a ground state a, an
excited state b radiatively coupled to the ground state by
dipolar interaction, and a second excited state ¢ with no
dipolar interaction and playing the role of a perturbation.
Both excited levels interact weakly. This model is fre-
quently encountered in the description of nonradiative
processes of organic systems except that we usually have
a distribution of perturbating levels. Sometimes the den-
sity of the perturbating states and their corresponding
couplings are such that the manifold of states acts like a
dissipative quasicontinuum. Then, the Bloch-equation
treatment of Friedmann et al.'® in which the interactions
are treated in a purely phenomenological fashion is well
adapted. The couplings between the excited state |b)
and the manifold, a set of states |c ), are accounted for
by a nonradiative transition rate constant. Such a case
corresponds typically to the statistical limit case of large
molecules like, for instance, on intersystem crossing in
benzene!” or on the S,—S, internal conversion in any
large molecule.!® In some other molecules, because of
symmetry selection rules, only few levels of the degen-
erate quasicontinuum are significantly coupled to the ex-
cited state. For the sake of simplicity, we limit our model
to the case of sparsely distributed perturbating levels, so
that only one of them acts efficiently. This situation
could characterize the intermediate molecule or small
molecule limit cases. For instance, our model is typically
required to explain the Douglas effect responsible of the
longest-lived excited states in small molecules.!® It could
be of interest to have an estimate of | V.| for real sys-
tems. Perhaps the best evaluation of | V.| can be de-
duced from systems where this coupling is able to gen-
erate quantum beats in the fluorescence. There is a num-
ber of examples in the literature. Typical observations on
molecular systems are quantum beats in the fluorescence
decay of jet-cooled anthracene excited by picosecond
pulses,?®?! or those obtained in biacethyl and methyl-
glyoxal as resulting from singlet-triplet coupling.?? An
interesting evaluation of the coupling | V,. | has been
done by Henke et al.? from their experimental results on
collision and magnetic field effects on quantum beats in
biacethyl. They obtained an estimate of the order of 1.15
MHz for |V, |, say, H,,, in their work. A different ap-
proach could be developed to introduce the coupling V.
It would imply the description of the internal dynamics
of the molecule in the V-prediagonalized basis set. How-
ever, a proper account of the decay and dephasing pro-
cesses then requires a redefinition of the various matrix
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elements of the damping operator. The energy diagram
is given in Fig. 1. Therefore, the matrix representation in
terms of states a, b, and ¢ corresponds to

fiw, O O
H0= 0 ﬁa)b VbC (4- 1)
0 VvV, fo,

Also, the only nonzero matrix elements of the damping
operatorare 'y, =—T,,.

In order to estimate the influence of a third level it is
better to treat the interaction V exactly and not as a per-

turbation. Therefore, the basic equation for the kth-
order perturbation in the field-matter interaction is
d Lepro (0 Lrpp k—1) (k)
=KW= _—[HO, ——[H'(2), -T . 4.2
P A Hp =2 [H' (0,p" V] =Tp 4.2)
In terms of matrix elements, we obtain
d
dt (k)_ z(}lnlpirllcj p(nI;)H?n)
_ 2 Fn Ip(k)+c(k—l 4.3)
and
d 0 (k)
Epnm _lwnmpnm + # Hnm(pnn —Pmm )
i
7 S (Hppil —pls'HY,)
]
(m=#l#n)
+Pk-V k- if netem . (4.4)
The simplifying notations
P(k_“(t)=_HaB t)[p(k—l) p(BkB—l)]
and
_ i _
C(k Dy _—Z 2 Plﬁ 1
(#B
ﬁ 2 p _I)H[’B(t) (45)
! (£a)

a Yy

FIG. 1. Energy diagram of the three-level system.
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have been introduced. To solve Egs. (4.3) and (4.4) the
Laplace transform is required. With the initial condi-
tions p”‘)(O):O we get for k=20

PPwP)=—~ 2 [Hopi (p)—pi(p)HY, |
— 3 Cpip)+Co~Mp) 4.6)
4
(P +i@ym i ()= Hi [ (P )=l (p)]
i
-7 2 [Hupl(p)—pil(pH}, ]
!
(ms#ls#n)

+PlkVp)+Ck—p) . @.7)

For convenience, when p represents the Laplace trans-
form the p dependence is always explicitly written.

We are now ready to evaluate pi3(p). This is done
straightforwardly, so we just present here the main lines
of the calculation. From Egs. (4.6) and (4.7) the set of
equations for the various coherences and populations of
the three-level system is obtained. We get

P (P)=1p% ()] + P ()], , 4.8)
where

[pay(P))y =1 p)P‘”()

o (p) ), =f>(p)C2p 4.9)

P{?(p) and C¥(p) are the Laplace transforms of P?)(1)
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We still have to evaluate [p}}(p)]; for i=1,2. In fact,
any combination (o, +wstw,) gives a component to pfy
We just calculate the component (w,+wg+o, ), any oth-
er one being easily deduced. We begin with the quantity
[p3(p)];- Because we are looking for one particular
component, we just need one part of the interaction
H'(t), say

Qabe max:_%pabEae—t(wat—ka-r) 4.11)

Therefore the contribution arising from populations is
given by

[P = 411 ()G [P +iwg) -

—Ph(p+iwg)] .
4.12)
After some algebra, the results can be written in the form

13) ) 1

)], =G ( ; , (4.13)
[pas (P ]y pp+t(wa+wﬁ+wy)
where G,(p) is a function with no pole at
p=—ilo,+wg+w,). A similar structure is obtained for
the second contribution generated by the coherences, i.e.,
1
D(p)l,=G,(p) : (4.14)
[pas(p)]2 2\P p+i(ma+wﬁ+w7)

The inverse Laplace transforms of these quantities are ex-
pressed by

Lol t)]’:fo'g,.(t,)e

—ilo, +wg+ow )t 1t
—e PaTOpTOy fgi(tl)e

—i(wa+wﬂ+w},)(t —t1,)

ldtl, l=1,2

irl(wa+wB+wy) (4.15)

and C\¥(t), respectively. The following notations have 0
been introduced: Notice that if we look for the steady-state solutions, ¢ is
L, longer than any characteristic time of the material system
fip)=[p+iw,]Alp), included in g;(?), the inverse Laplace Transform of G,(p).
1 Consequently, the time of integration can be extended up
falp)= % Ve Alp), 4.10) {0 the infinity and we get
) —ilo,togto, )t (i 4.16
Alp)= (p+iw;b)(p+l.w;c)+%|Vb€|2 P (D)= G —iwg—ivg—iw,), (4.16)
7 | where the expressions of G; are given by
W+ g+, —w, Nog+o,—iT, , Nog+w, —o},.)
_ 2 B Y ac B Y b:b B y be
__ﬁ5‘0’ QabQZa'Vbci E-D-H
1 , (0 +wp+o,—o, Nogt+o,—iT, , (og+o,—oy,)
—ﬁ Q Q’ablVbc[ E-D-F
1 p /
7 e Q8 ar, (0, +wpg+w, —w,) |2wg+0, N0+, —w),)
3 ’ ’
%E' i Vbc l 2[2((03-*-0)7)—((0017 +wbc)] (my_wac) /EDF
ﬁ3 'Q' Q'abQ‘Ka
(0q+wp+0, —wy) [2ws+0, N wg+0, —oy Nog+o, —o))
——3; | Vie | [2(0p+0,)— (04 + 0] [(0,—oL,) /E-D-H , (4.17)
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Vie | * 20p+0,)—iTy,
—— Lagag,qp, Vel 2Ot 0= 00
7 #* E-D-H
LQG QB ar I Vbc | 2 (wﬁ-f—a)y)(a),;-'f—a)},—ll"bb )(a)3+wy—a);b)—— I Vbc |2[2((I)B+w},)—lrbb]/ﬁ2
- F3 ab*%ba*“ab hz E-D-F
1. | Ve |2 (0p+ 0, ) 0pg+0,— o0, —o,,)
"Eﬂabﬂgangb # E-D-F
| Vie |2 (0540, N 0g+0, —0w 0, —k,)
—# Zbﬂgbﬂga ﬁbz £ ! BE.E.H“b L = ’ (4.18)
with the following notations:
E_ ’ ’ | VbC l 2
= (wa+w3+w7—wab)(wa+w5+a)y—wac)—T ,
. ’ ’ J Vbc |2 ' , .
D=(a)B+a),,)(a),g+a>7~tI‘b:b)(w3+wy—wc,,)(w3+wy~wbc)——ﬁ—z——[Z(wﬁﬁ-w},)—(a)cb +op ) [20p+@,)—iTy ],
, , i Vbc lz , , | Vbr: | 2
F= |(0,—wyg )(“’y”“’ac)_—hz—_ » H= (0, —wy, )(coy—com)———ﬁz——— (4.19)

We are now ready to analyze the influence of the third
perturbating level. This quantitative estimate will be
done for the particular case of phase conjugation spec-
troscopy.

V. APPLICATION TO PHASE CONJUGATION

It is of interest to notice that because of the perturba-

tional approach taken pl3)(f) has the same frequency

where (); stands for one particular combination of
w,Twgtw, and where

Pap(Qj3000p0,)= 3 G —io, FiogFio,) (52)

are the quantities evaluated in Sec. IV. This notation em-
phasizes the ordering of the interacting fields a, 3, and y.

In the particular case of the phase conjugation spec-
troscopy the only contribution to the nonlinear polariza-

components that H,,(t)H,,(t)H_,(t). Therefore by intro-  tion are the combinations Q,=w,+wg—w, and
ducing the full interaction terms we have Q2=wa.—wﬁ+ @,. Therefore the spatial components
3y P —iQt are k,+kg—k, with the combinations (a,B,7)
Pap (1) = ?a%y [par(Q 304,050, )e =[(1,2,3),(2,1,3)] and k,—kg+k, with (a,B8,7)
w . =[(1,3,2),(2,3,1)]. For our purpose it suffices to con-

+pP(— Qj0,0p0,)e 7], (5.1)  sider the degenerate case, i.e.,

|
pa(D=e [ lim {p{/(Q0,0;—03)+p3(Q0,0,, —03)+p (D0, —03,0,)

w‘,a)z,a}3—>w

+p Q0,5 —03,0))] ]+ [Q— —Q] .

(5.3)

In order to compare the contributions resulting from populations and coherences, we have performed numerical calcu-

lations on the time-independent factor of pifb)( t),i.e.,

Eab ( V) = lim

@), 05,030

At this stage, it seems necessary to point out some partic-
ular features of this calculation. First of all, the compar-
ison between the different terms is best done by compar-
ing the third-order coherences of a two-level system, say
V =0, to the corresponding quantities for the three-level
system in which the coupling V opens a new channel

(P} Q01,05 —03)+p3 (0,0, —03)+ P (0, —03,0,) +p53 (X0, —03,0,)] .

(5.4)

[

which contributes to p'3)(¢). At this end we will consider

the ratio of the real or imaginary part of 2,,(¥) with the
same quantity in absence of internal interaction, i.e.,
3. (V' =0). Next, this ratio is evaluated as a function of
the coupling V.

We come now to the second point that we wish to
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stress here. Usually a comparison of physical quantities
must be done by keeping all the physical parameters iden-
tical except the one under analysis. The point here is that
when the coupling V varies the eigenenergies of the cou-
pled levels b and c shift. Therefore if the same field fre-
quencies are taken in both situations, we are dealing with
a two-level system excited on resonance and a three-level
system excited off resonance. These situations are no
longer comparable because of the supplementary decrease
of p{3)(t) in going from resonance to off resonance. Since
the value of the transition frequency is unimportant, for
each value of |V, |, we can adjust the frequency of the
fields to keep the three-level system resonantly excited
like the two-level system we want to compare it to.

We are now ready to start the discussion of the numer-
ical calculation. To emphasize the importance of the
coherence-coherence coupling, we compare the quantity
2, (V) specific to the three-level system to =, (V =0) for
the corresponding two-level system. At this end we in-
troduce the function

1
R = 2] 5.5
RC[Zab( | 4 ZO)]

where 2!, (V) accounts for the contributions due to popu-
lations only. The dependence of R, on the coupling
strength | V. | is shown in Fig. 2. It exhibits a rapid in-
crease of R, reaches a maximum, and then decreases.
From our analytical calculation, we have shown that
| V4 | induces a supplementary contribution to [pl3(2),]
responsible for the increase of R,;. Now, as | V,.| be-
comes more important we observe a redistribution of the
dipolar moment over the states b and ¢ which tends to di-
minish 2!, (V) because we keep for all the range of values
of | ¥y | a resonant excitation of the eigenstate deduced
from the state b. Also we have analyzed the influence of
the pure dephasing constant. For increasing values of
'Y we note an increase of R,. In fact, p3(¢) is a func-
tion of the population

]P(aza)( (2) l _2p(2)(t)+p(2)( )

as T\ increases, the population of states b and ¢ in-
creases too and this gives in turn an increase of =}, (V).
This observation is in accordance with the result of
Friedmann et al.!® In order to have a complete estimate
of the population contribution we still have to consider
the quantity:

Im[ZL,(M)]

— (5.6)
Im[3,(V =0)]

1=

In fact, the ratio of the imaginary parts presents the same
dependence previously observed in the R, and the same
physical explanation holds. See Fig. 3.

Next, we discuss the second type of contribution, that
is to say, contributions from the coherences. As above, it
can be characterized by the quantities

Re[22,(V)]

Ry=———2 """ (5.7
27 Re[2,(V =0)]
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R4

11

(A

T
1073 1 2

w§(1o“ sec~2)

FIG. 2. R, the ratio of the real parts of the contributions to
the third-order coherence from second-order populations for
our three-level system and the corresponding two-level system
as a function of »? defined by w? = | V). | 2/#*. Various pure de-
phasing constants are considered [[{%'=0 (a), 10~* (b), 5 10~*
(c), 1073 (d)]. The values of the other parameters are E,, =1,
E,=0.1,T,,=10"%and 'Y =10"".

l

14

134

12

11

103 1 2 3

(.03( 107 1sec2)

FIG. 3. Same as Fig. 2, but for the ratio of the imaginary
parts I,.
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134/
H a
12 ]
i
11
2 1 3 T T
w, (1071sec2) 10 1 2 3
m%(10‘1sec‘2 )
FIG. 6. Plot of R, + R, as resulting from Figs. 2 and 4
and
Im[Z2,(V)]
2 : (5.8)

FIG. 4. R,, the ratio of the real parts of the contributions to
the third-order coherence from second-order coherences for the
three-level system and from second-order populations for the

12 = 1
IM[Z,,(V=0)]
which correspond to Figs. 4 and 5, respectively. The
symbol 32,(¥) stands for the coherence contribution

corresponding two-level system. All else as specified in Fig. 2.
only. Two points must be stressed here. First, we ob-

w% (10sec2) 1 . r
1073 1 2 3
(4)3(10'1 sec™2)
FIG. 7. Plot of I, +1, as resulting from Figs. 3 and S.

FIG. 5. Same as Fig. 4, but for the ratio of the imaginary

parts I,.
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Rq2

16X103]
12x103]

sx103/i

4x103)

w%(10'4sec'2)

FIG. 8. Plot of R, /R, as resulting from Figs. 2 and 4.

serve a continuous increase of R, and I, with the in-
crease of the coupling strength | V,. |. Second, the pure
dephasing constant I'{?’ has an opposite effect compared
to the one described for the population contribution.

Here, we notice a decrease of R, and I, with the increase

of T\, This result is easily understood because for in-
h2
16X103]
12x103
8X103]
4x103|
d
b\
“\\a k
0 T T T
1 17 34 51
(an)2(10_4sec'2 )

v

FIG. 9. Plot of I, /I, as resulting from Figs. 3 and 5.
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creasing values of T'{?’ the coherence created by the fields

in the system is damped. Figures 6 and 7 represent the
sum of the variations previously discussed, i.e.,

R:R1+R2, I=11+12 . (5.9)

It is interesting to note the existence of fixed point, al-
though for the moment we are unable to give it a precise
meaning. Finally to get a better insight into these contri-
butions we still require the knowledge of the ratio
R,;=R,/R, and I,,=1,/I,. Their dependence with
| Vi | for various pure dephasing has been depicted on
Figs. 8 and 9. From the values shown by these curves
there is no doubt that population effects are the predom-
inant ones in the phase conjugation process and that the
populations are very sensitive to the presence of pertur-
bating levels.

VI. CONCLUSION

The main goal of this work has been to develop a per-
turbative many-level system description of four-wave-
mixing experiments. At the present stage, only the polar-
ization has been evaluated and any complete description
still requires the introduction of this nonlinear polariza-
tion into Maxwell equations. Despite the great impor-
tance of two-level systems in the description of nonlinear
optical processes, it is worth mentioning the sensitivity of
the dynamics to the presence of neighboring levels even
weakly coupled. Such a situation is frequently encoun-
tered in organic materials. We have shown that a pertur-
bating level not only alters the nonlinear polarization
generated by populations but also gives an additional
contribution resulting from the coherence-coherence cou-
pling. A quantitative estimate of these supplementary
contributions has been given. In the future more com-
plex systems will be studied where summation over mani-
folds of states will be required. We expect that extra con-
tributions to the nonlinear polarization will be even more
important in these situations.
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APPENDIX

For comparison we shall calculate X3’ for two- and
three-level systems in this appendix. If we consider a
two-level system, the basic expression is

PO =p )y +Pbe (Dptap »
where third-order coherence pl}(z) has been explicitly
calculated previously and is given by Eq. (2.41). Using
expressions (3.2) and (3.4) for fields and interaction, re-
spectively, we obtain

(A1)
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e —i(wa+wB+wy)rei(ka+k5+k7)~r

H)=——=( o)
Pab 81’13 Por —Paa a%y (0g —q—0g—0, g +awg+il)
1
X B ; (”’ab.Ey)(”'ab.Ea)(”‘ba'EB) » (A2)
Wop — Wy Wpq _wB
which in turn gives for the nonlinear susceptibility
k k)

i Paa —Pbb 1 1 HbakchHab Kba FapPsaHba Hah
lkl(wa’w ) )—_ 2 : - . (A3)
d PO o et optiTy | o) ; ;

a,By Ya B 1 | Wap — Vg Wp, —Wg wab—wa_mﬁ_wr Wpg — Wy —Wpg—O,

Next we consider three-level systems. As has been pointed out in Sec. I, P>’ can be written as
P =P +Py . (A4)

Since P}* yields the conventional expression of X'3 which has been presented in Section III, we shall now study the
effect of P{* on X®. Notice that

= 1pe () ]itsa +[Phe (D ittan } + (b (D Tittes + 1P (O Nittpe } + ([P (O Tibtae + PG5 (D Nibrca } (AS5)
where all the required quantities have been developed before. For instance, p'3)(#); can be written in the form
[pwkﬂ]r——vgj:dnem”“rqbﬁbulH2pﬁ“t)+pth)] (A6)
where pi2)(¢,) and p{2(t,) are given by Egs. (2.29) and (2.30). Therefore [p3)(¢)], can be written as
e () =[P (D], + [P (D] » (A7)
where
] iw' t —
[Py =— [ ldr,e w1 f dr zf” ‘_ e ™20, — 20, —ey) e 220, — 26, +¢)]
_ ft (A8)
[p3(D)],, = éfoldt,em“b“' f dr, = [e_kzlz(bb—)\z—Zb e M2(n,—b, +2b,)] .

2

Notice that the various functions and constants included in these expressions have been defined previously. Performing
the double time integration, the quantities [p{}'(¢)];, and [p5})(#)],. are evaluated. Then, the polarization and the re-
sulting third-order optical nonlinear susceptibllmes can be obtained in a straightforward manner. In this appendix we
are concerned with contributions to the nonlinear susceptibility [X,v(ji’,(wa,wﬁ,wy)]l given by

(X0 0p0,) ] =[X 30405 0,)]10 + [ X} (0405 0,) 115 + [ Xl 0p0g0,) ] 1. (A9)

where, for example, [X/3})(0,,wp,©,)]14 represents the contributions from [p}(1)]; and [p}(¢)]; in Eq. (A5). It takes
the form

0
[Xi(j:}c)l(wa’wﬁ’wr)]lab % a%y;;r;(—n;\l_p—bl%(#ba#%#%#'%) w:nbl_wa + w,bml_wﬁ
2c, —2A,—
[ (ot 0p)— Al Ay + (0, + 05+ @, — )]
N 2A—2¢,+¢, ]
[{{wg+wg) =2 J[A | +ilw,+wg+ 0, —wy)]
33 P i [
by —A,—2b,
[i(@g+p) — A ][ A +i(0q +0pt+ @, — )]
A —b, +2b,

+lab], (A10)

[t(m +wg)—A1[A +ilw,+wgt+0,—wg,)]



38 COHERENCE-POPULATION INTERDEPENDENCEIN . . .

where the symbol [a<>b] means that the same quantity
must be added but @ and b must be inverted. In addition,
the expressions for [X,-(ji’,(ma,mﬁ,my)]“,c and [Xi‘ji),(wa,
@g, @, )]14c can be obtained similarly. It should be noted
that to obtain X* for two-level systems we simply find

the coefficients of (p% —p,) and (p), —p2,) in
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[X,-(ji),(ma,mﬁ,a)y)]la,, by setting ¢, =0, ¢, =0, and b, =0.
In other words, to calculate X‘*’ by using a two-level
model we ignore not only the contribution from PS>, but
also(gl)le contribution from the (p9, —p2.) and (p2, —p2.)
to Py,
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