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The mode competition in a long-pulse free-electron laser operating in a high-gain Compton re-

gime is analyzed. Due to the strong crossed saturation, a dominant mode is able to suppress com-
peting modes, leading to single-mode operation. This is explicitly shown by a stability analysis of
the system of coupled integrodifferential equations describing the evolution of two competing
modes, of which only one survives at saturation. In the course of the study the radiation field evolu-
tion in the small-signal regime is treated in a unified manner for low and high gain.

I. INTRODUCTION

In a recent paper' we have presented a perturbative
analysis of a free-electron laser (FEL) with long pulses in
the small-gain regime. Our main interest in that paper
was the study of mode competition in such a FEL.

As was shown in the paper alluded to, through strong-
mode competition the dominant mode is able to suppress
other modes and the result is single-mode operation. The
mode competition is, of course, a nonlinear phenomenon
and terms up to third order in the field were taken into
account. For simplicity, however, the study was restrict-
ed to small-gain devices. In the present paper, we lift
that restriction and extend the analysis to include FEL's
operating in a high-gain Compton regime. This is of
practical interest since the first reported single-mode per-
formance was in a FEL operating in the borderline be-
tween low and high gain.

In the course of our analysis we present a formula for
the small-signal amplitude which, besides containing the
familiar low-gain expression, is also valid for high gain.
The small-signal (linear) problem is treated by solving a
Volter ra integrodifferential equation by the Laplace
transform method. Afterwards, with some mild approxi-
mation, the analysis is extended to high intensities for the
single-mode case. The treatment is completely analytical
except for two integrals that have to be calculated numer-
ically. Up to third order the field tends to a limiting
value.

The high-gain high-intensity two-mode problem is
treated next. An analysis of the coupled Volterra equa-
tions shows the stable solutions to be single mode. The
problem of sideband (or synchrotron) instabilities is not
addressed in the present paper and will be treated analyti-
cally elsewhere. The results of this paper apply then to
FEL's where sidebands do not appear either for dynami-
cal reasons or because dispersive elements have been
placed in the resonator.

The treatment in this paper is one dimensional, and the
basic equations and notation are introduced in Sec. II.
Section III is devoted to the derivation of a small-field ex-
pression valid for any gain regime. The saturation func-

tions derived in Ref. 1 are summarized in Sec. IV. These
saturation functions are used in Sec. V in obtaining ex-
pressions for the field which are valid in the general case
including high gain and high intensities. Also for the
general case, the two-mode problem is analyzed in Sec.
VI.

II. ONE-DIMENSIONAL FEL EQUATIONS

—ikoLr
vr ——i n(cK /2y )e +c.c., K =eBO/mcko . (2)

In order to simplify the analysis we will consider the
one-dimensional problem in which the radiation field can
be expressed as a superposition of plane-wave modes. In
such a case the electric field of the radiation can be writ-
ten as

E Ilmc 2 i[k Lr io t+g (rl)
aq r e +c C.

e
(3)

where a (r) is the adimensional amplitude for mode q
and kq coq/c is its corresponding wave vector. In the
particular case of an oscillator with angular frequency
spacing between longitudinal modes cof ——cm /Lo, all
mode frequencies are integer multiples of cof, as in

COq =q COf .
Only Compton regime FEL's will be considered

neglecting space-charge eFects. In the slowly varying
amplitude and phase approximation the wave equation
for the vector potential (3) reduces to

For an undulator with constant period AO=27r/ko,
length L, and uniform peak field Bo, we can write the
vector potential

—ikoL v.

A„=inBoe ' /2ko+ c.c. ,

where n is the polarization vector [n=x for linear and
n=(x +iy) for circular polarization] and q. =z/L is the
normalized longitudinal position coordinate. In such an
undulator the electrons acquire the transverse velocity
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g e ' ' ' [B~ (r)+ia (BP +a/2)]
q

+(2—p)(c.c. ) = —(poeL Imcp )n J, (4)

where a is the mode loss per pass, and p =
~

n
~

is 1 for
linear and 2 for circular polarization. J, the transverse
electron current driving the FEL, will be discussed in de-
tail in the following.

In keeping with our one-dimensional treatment let us
consider an electron beam with an initial uniform density
p=pt pr, i.e., pt planes per unit length with pT electrons
per unit area in each plane. The transverse current densi-
ty driving the FEL is

in which U0 is the initial electron velocity and the small
time shift g~(t), due to the bunching, is obtained froin the
pendulum equation

d g /dr=(L/c )d z/dt

=i A g (c/LcoR )aqf)qe' jq+c.c. , (10)

where the integration is over a fundamental period

TI 2——qrloi& and the sum is over planes of particles with

injection times uniformly distributed over this period.
The electron that enters the undulator at time t 0 will

reach the position z =L~ at the time

(9)

with

The in Eq. (4) indicates the transition from the gen-
eral three-dimensional situation to the simplified one-
dimensional problem.

For E &g1 one can disregard harmonic radiation. In
such a case the current can also be decomposed in the
same way as the electric field (2), namely,

J=—n(mc/ePoL ) g Jqe ' ' ' +cc. (6)

co„=2y cko/{1+pK /2),

p =L[(k +ko) —co luo], A=qrpKN/y

8, =p r co t,o+—p, 1(, =exp( iLtoq—j, lc) .

(1 la)

Jq = g Jq = Jt( ooiIRco»Pt Lo ) g fjq(r)e

The parameter p measures the detuning from the reso-
nant frequency oiR. Using Eqs. (9) and (1 la) we can write
the current amplitudes of Eq. (8) as

With this definition, J are the adimensional sources for
the amplitudes and phases as in

B~ +ia (B,i' —a/2)=J

e cpoLpK
J0 ——

7

4PPl /co g

(1 lb)

As Fourier coefficients in the expansion (6), the current
amplitudes J» are obtained from Eq. (4) as

where we have indicated an expansion in powers i of the
radiation field contained in the g~(r).

Jq = —(ecpoL l2pmcL, o) III. LINEAR THEORY

=i(e pocp&KL /4mcyLo)

i [co t (~) (k +kp)L7]«l

J
(8)

In the present section the one-dimensional FEL linear
problem is treated exactly. The results are small-signal
gain and frequency pulling formulas applicable to the
whole range of gain regimes: from low to high.

The current to first order in the radiation field was ob-
tained in Ref. 1 and it reads

T

Jq (Jo/plLo)y. " '(oiqlto, ) y f dpi f dr2ab(r2)sinR b(r2)
b

0 0

t p( v. )
l & $( ~&) —ip(~ —r2)

Go d 7 i 1rpab (r~ )e
0 0

(12)

with

G =me 2ppE 2L 2~/260mc 2y3 (13)

Equation {12) is the linear source for the reduced wave
equation (7) which, with X:—a expiP, can then be written
as

(14)

Twice integrating by parts Eq. (14), and calling "=—X'
and Xo

—=X(0), one arrives at

dg( r ) r 'i i p( r 72)— —
=iGo f dr, f dr2e 'g(rz) .

d7 0 0



38 PERTURBATIVE ANALYTICAL STUDY OF LONG-PULSE. . . 2891

(r)=lGO Xog(r)+ f dr)g(1 r—
( ) (r) )

0
(15) X(r)=(X /2ni) f dk e"'

—~~+~ k(k+ip) i—GO
(22)

where

g(r) = [(1+ipr)e '"'—1]/p, (16)

Equation (15) is a Voiterra integral equation for =, with
the kernel g, (r). This type of equation can be solved us-

ing the Laplace transforms

:-(k)=f dre "'=(r),
(17)

g(k)= f dre "'g(r)=
k(k+ip)

Then, the convolution property

f dk e "'f dr, g(r r, ):-—(r, )=g(k):"(k)
0 0

reduces the integral equation (15) to the algebraic

:"(k)=iGO[Xog (k)+g (k):-(k)] .

2i p—/3,
k3 ———(2i/3)sin{ arcsin[4m /3 ——,'(1 —27GO/2p )] )

—2ip/3,

(23)

where arcsin is a real angle for p, &(2760/4)' . For
~

x
~

& 1 the analytic extension

arcsin(x) = @ /2 —1n[x +(x —1)' ]

is to be used. For p & (2760/4)'~ this leads to

This integral can be obtained by the method of residues.
For this we need the roots of the denominator in the in-
tegrand of Eq. (22). These roots can be written as

k, = (—2i /3)si'n {arcsin[ —,(1—276O/2p )] I
—2ip/2,

kz ———(2i/3)sin{ arcsin[2m /3 ——,'(1 —27GO/2p )])

:-(k) is then

:-(k)=iG&Xog (k)/[1 iGo—g (k)] . (20)
k

&

——Q ~+i Qz —2ip/3,

k2 = —( I+p/
I p I

)Qi/2
The inverse Laplace transform of this expression provides
a solution of the integral equation (15}in the form

:-(r)=(60X0/2n }f dke "'g (k)/[1 iGog—(k)] .

(21)

And a further integration in ~ yields the fields

+i(3p/
~ p ~

—1)Qq/2 2ip/3—,

kz = —(1—p/ I p I )Qi/2

—i(3p/
~ p ~

+1)Q~/2 2ip/3, —

where

(24)

Q) ——(&3/2)[(60/2 —(p/3)'+{Go[60/4 —(p/3)']}' ')' ' —(Go/2 —(p/3)' —{Go[Go/4 —(p/3)']I' ')' '],
(25}

Qz ———,'[(Go/2 —(p/3) +{Go[GO/4 —(p/3) ])'~ }'~ +(60/2 —(p/3) —{Go[60/4—(p/3) ]]'~ }' ] .

In terms of the k; of Eq. (23) or (24), the result of the in-

tegral (22) can be written as

I'($ +5tI5) k] +~p ik&7. kp+~p ikp7X(r)=ae ' = . e ' + e
3k)+i p 3kq+i p

Two functions have been traditionally associated with the
gain per pass. One is I =21n

~

X"'/Xo
~

and the other is
the fractional power variation Gf ——

~

X"'/Xo
~

—1. For
low gain both are approximately equal to

6 =260Regz
k3+~p

+ . e
3k3+ip

(26) =260{2[1—cos(p}]—p sin(p) I /p (low gain} .

Gogzir)
X,(r) =Xoe ' (low gain),

where
T

gz(r) =i dr, g(r, )
0

= [2 i pr (2+i pr)e '—"']/p—

(28}

(29)

Let us now pause to comment on the low-gain (or
small-Go) limit in which case X is slowly varying and can
be taken outside the integral in Eq. (14). In this case that
expression is reduced to

dX(r) =iGog(r)X(r),
d7

with the solution

(30)

As is well known, the maximum gain given by this ex-
pression is equal to G =0.27G0.

Figure 1 (2) shows plots of I (Gf ) normalized to 1, as
a function of the detuning p. The plots in both figures
were obtained from the exact small-signal amplitude (26)
for different values of G. It is seen that for low gain
(G-0. 1) the result is the familiar antisymmetric curve
that follows from Eq. (30). For low gain the maximum is
at 2.6. At higher gains the maximum shifts towards
lower values of p with a minimum of p= 1.55 for G0-25.
After that, the maximum shifts slowly towards higher
values of p, and then remains at p=1.70 up to high
values of 6 ( —1000). This behavior is shown in Fig. 3.
Figure 4 is a plot of I as a function of G. For any FEL
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FIG. 1. I normalized to a maximum of 1 as a function of the
detuning IM, , for different values of G. The positive gain peak
broadens as G increases. The actual value of I is obtained by
multiplying the ordinate by the following factors:
G =0.01~9.979' 10,G =1~0.822, G =10~3.798, G =10
~ 10.319.

operating in the Compton regime with a cold electron
beam, this plot can be used to find the actual gain in

terms of G =0.2760.
For very high gain (Go & 80, 6 & 20) the field and gain

expressions effectively reduce to

FIG. 3. Maximum gain detuning p as a function of the
strength parameter G.

Q =&3[6' —(p /96' )(1+@/960 )]/2,
(32)

Q =[6' +(p /9Go )(1—p/960 )]/2 .

Also for very high gain, the frequency shift 5$(r) is given
by

Q2(Q2 —p/3)
5$= (Q2 —2p/3)r+ tan

Q, +Qz+(p/3)

(33)

1 2)pQ~/3 O&w+ i(Q2 —2p/3)~1+ e '

3 Q, + i(Q2 —p, /3)

(4p/3&3)(Qi+p /960 )G= —1+ e
Q'+(Q —i W'3+i"/96'" )'/3

with

(31a)

(31b)

At this point a comment on the meaning of high gain
might be in order. Even when 6=100—1000 corre-
sponds to quite high gains in practical terms, mathemati-
cally, however, we are still outside the asymptotic region.
We reach that asymptotic region by keeping the p range
fixed ( —10(p & 10, as in our figures, say) and taking the
limit Go~ oo. The denominator of Eq. (22) reduces to
k —iGO in that limit, which shows that the dominant
root tends to

k, ~60~ (&3+i)/2,
independent of the detuning JM. Thus in the asymptotic
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FIG. 2. Fractional gain per mass Gf normalized to a max-
imum of 1 as a function of the detuning p, for different values of
G. The actual value of Gf is obtained by multiplying the ordi-
nate by the following factors: G =0.01~9.98 & 10
G=1~1.274, G=10~43.626, G=10 ~3.030&(10 .
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FIG. 4. Maximum gain I as a function of the parameter 6
for a FEL operating in the Compton regime with a cold electron
beam.
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region the gain curve is Hat over a wide range of p. This
is consistent with the trend in Figs. 1 and 2 showing a
gradual flattening of the gain curves as G (or Gp) in-

creases.
For a FEL operating in the Compton (as opposed to

the Raman) regime and for small signal, Eq. (26) provides
an exact description of the field X(r) at any position along
the undulator. It is worth emphasizing that this formula
yields, in the appropriate limits, the usual low- and high-
gain field expressions.

An expression which explicitly looks like Eq. (28) at
low gain and like Eq. (31b) at high gain can be obtained
as follows. Let us start by introducing a modified cou-
pling

Ge ——1/(1+pGp) (p& 1), (34)

such that G & (1/p). Moreover, the field is divided into
a small-gain part 7, and the remainder x& as in

X=X@+Xx y Xg X Qe ~ (35)

which translates into the Laplace transform equation

Xgp+pGp[kX (k) —X p]

k —iGpg (k)
(37)

The initial values 7,0 and 1+0 have to add up to X0. It
is convenient to choose them as in

X p=Xp/( 1+pGp ), Xgp=XppGp/( 1+pGp ) ~ (38)

For sufBciently large p, 7, is slowly varying and satisfies
an equation like (24). On the other hand, an equation for
XR can be obtained by plugging Eq. (35) into the exact
linear evolution equation (14). In that way we obtain

dX~(r)
=pGp(dX, /dr)+iGp dr, g(r r, )Xx(r—)),d7- 0

(36)

tion S =Sz +iS; to be introduced later, is given by

s„(p,r)=o[3x+(1/8 —1.25x )sinx+(1. 5 —x /8)sin2x

—x(3. 13+x /24)cosx —cos2x]/p

si ——o [—3 —0.75x + ( 1.5 —1.25x )cosx

—(3.88+x /24)x sinx+x sin2x

+(1.5 —x /8)cos2x]/p

(41)

3
e pKLX=P7, 0 =

6'0mC QCOq

L Aco

Adding Eq. (40) to the linear part (14) we will treat the
nonlinear single-mode problem in Sec. V and the two-
mode problem in Sec. VI.

V. NONLINEAR HIGH-GAIN
SINGLE-MODE PROBLEM

,'sX(r)'X'—(r—) . (42)

Actually, in the nonlinear term the J should be inside the
integrals calculated in obtaining the saturation function s.
However, the approximation is well justified since (I) for
small fields the nonlinear term is negligible and it does
not make much difference whether the g are kept inside
integrals or taken out, and (2) on the other extreme of
very high fields the gain is small due to saturation effects,
which makes 7 slowly varying.

The nonlinear term in Eq. (42) can be rewritten as

When only a single mode is present, the second term
inside the large parentheses in Eq. (40) is, of course, ab-
sent. Adding the remaining term to Eq. (14) one ends up
with the single-mode evolution equations which, up to
third order in the radiation field, read

dX(r) —EP(T—Tl )
=iGp dr, (r r, )e —' X(r, )

dV 0

Using this in the inverse Laplace transform of Eq. (37)
and adding X, of Eq. (35) we obtain the linear field valid
for any gain regime —

2

3
—i2($0+5/+6/)

(43)
X(r)=X,(r)/(1+pGp)

+PGp I 1+i Geg(r)[X, (r)/Xp] )Xb, (39)

with G as in Eq. (34), Xb as in Eq. (31a), and a con-
venient value for p could be, for instance, p=2. Equation
(39) has the correct limits, i.e., X=X, for Gp «(1/p) and
X=Xb for Gp »(1/p). In closing this section let us re-
peat that Eq. (39) is an approximation while Eq. (26) is
exact.

where 5$ is the linear frequency shift given by Eq. (33),
the nonlinear frequency shift hp together with X yields a
contribution of fourth order which will not be con-
sidered. That is, we will only retain the third-order non-
linear term and end up with the approximate equation

dX(r) —ij (~—~, )
=iGp dr, (r r, )e ' X(r,—)

d7 0

IV. SATURATION TERMS
(&0+~&)——,'se X(r) (44)

In our previous work we have shown that the satura-
tion terms can be written as

——,'s(p, r)a a2+2 g ab2

b&q
(40)

where s=s~+isr, simply related to the saturation func-

As a first step towards solving this equation it is con-
venient to transform to the field 4 defined by
~p exp( —2Qr)=X, where Q=Qi+i(Q2 —2p/3) is the
dominant exponent in Eq. (28) and iII is slowly varying in
comparison with the exponential. With this, Eq. (44)
turns into
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d7 0

Being slowly varying 4 '~ (r, ) inside the integral can be approximated by

(r, ) =qi ' (r)+ ,'(r —r,—)% (r)(d%/dr) .

With this, Eq. (45) is transformed into the linear

d4(r) =f, (r)+(r)+fp(r)e
—i 2/0

d~

where

s (r)(Q+l p )3e2nr —i25$

(Q+ 1p)'+2i6p iG—p ) [ I + [ I + (Q+ ip)r]') e

2(Q+ip) [Q(Q+ip) iG—p+iGp[1+(Q+ip)r]e
(Q+ip) +2iGp iGpI—I+[I+(Q+ip)r] Ie ' +'"'

(45)

(46)

(47)

(48)

(49)

X'(r) = (50)
1+apS(r)

with

f2(r)= —f «(f)(ri) (51)
0

S(r)=—
~

S
~

e' = f 'dr fp(r, )e ' " (52)
0

A brief comment is in order now. Looking at Eq. (43),
the appearance of 2igp in—the saturation term might
seem rather unsatisfactory. In the end result of Eq. (50),
however, that 2i Pp canc—eled with the exponent of Xp.

In general, the gain per pass G = [a (1)/ap]' —1 can be
calculated in terms of

20) r+ Ref2(r)

[a(r)/ap] =
[I+at

~

S(r)
~

'+2ap
~

S(r)
~

cos(X)]'~' '

The solution of Eq. (47) is readily obtained. Written in
terms of the square of the original field 7 it is

2ipo 20T+ f~(T)
a0e e

T 2
—iq(T —T, )

X,.(r)=Xp+iG, p dr~(r r&) e — X;(r()

—s2(r)X;(r)[X;+2XJ],
with i j =b, c,j+i, X.,=—X;(0) and

(56)

—i 2[$0+5P( Tl )]sz(r) = —,
' dr, s(r, )e (57)

In Eq. (56) Xb and X, are strongly coupled since the
crossed saturation is twice as large as the self-saturation.
It is convenient to work with X+=(Xb+X,) and

X+p= (X&p+X p) which satisfy the weakly coupled equa-

tions

long-pulse FEL dynamics leads to single-mode operation.
In the present section we will extend the two-mode
analysis to include high-gain regimes.

Let us consider a situation with two modes having al-
most equal detuning p and gain-minus-losses I z. Due to
the interaction of Eq. (40) the fields satisfy the system of
coupled equations

while the phase as position z =L 7. is given by

(53)
T —kP( T—Tt )

X+(r)=X p+iGp dr&(r r)) e —' X~(r))
0

—s2X+(r)[(1—e)Xg+eX+ ] (e= —) . (58)

P(r) =Pp+ (Q2 —2p/3)r+ —,
' Imf 2(r)

ap
~

S
~

sin(X)——,
' tan

1+ap
~

S
~

cos(X)
(54) &+=+++& '+++ (59}

Taking advantage of the smallness of the parameter e let
us look for perturbative solutions of the form

In the particular case of a small-gain situation,
S(r= 1) is given in Ref. l. At saturation the second term
in the denominator of Eq. (50) is much larger than 1 and
the field tends towards a limiting value according to

where qi+ are the solutions of Eq. (58) with e=0. Since
the uncoupled equations are completely equivalently to
the single-mode Eq. (44), qi+ are given by expressions like
(50). In terms of these solutions, the perturbations '4+
have to satisfy

2l'po 2QT+ f2(T)

X'(r) e 'e

S(r) (55) '4+(r) =[1+3s2++(r)]

X s~%'+[%'+(r) —0 +(r)]
VI. TWO-MODE PROBLEM

We have previously' studied the two- (neighboring-)
mode problem in a low-gain regime and showed that the

T 2
—il (T—T, ),+iGp dr&(r r& } e ' %~(r,)—

0

(60}
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The initial conditions implied by this integral equation
are '4+(v=0) =0. Being solutions of a single-mode evo-
lution equation the 4+ behave at saturation as in Eq.
(55), which means that 4+ and 4 tend to the same lim-

iting value 4„. For times ~, after the unperturbed 4'+
and %' reach their limiting value, Eq. (60) for the per-
turbed field quantities reduces to

'4+(r )=iGp J d~(r r—) e ' '4+(v) . (61)

This is now a homogeneous Volterra equation which, as
is well known, has only trivial solutions, i.e., %~(r& ) =0.
Thus the perturbed field quantities '4+ and '%' tend to
the same limiting value, namely, zero. A similar reason-
ing can be applied to the higher-order terms in the e ex-
pansion with the net result that the perturbed fields van-
ish to all orders at saturation and the total fields X+ tend
to the unperturbed '++ which, as we saw, are equal at
saturation. This means that only one of the modes,
which field X, say, survives at saturation while the other
disappears (72~0).

The analysis we have presented is applicable to corn-
petition of nearby modes since we have neglected the
difference in detuning parameters. This difference is

where N is the number of periods of the wiggler (or undu-
lator). Keeping in mind that the modes with highest gain
have detuning of order unity, our approximation of
neglecting the detuning difference is valid for modes with
5co= tot, —co such that (5co/5tt ) « (1/2trN ).

For low-gain, long-pulse Compton FEL's, the analysis
of coupled differential equations in Ref. 1 has shown that
stable operation is single mode. The coupled
integrodifferential equation (56) leads to the conclusion
that single-mode operation is also preferred in the case of
high gain. What happens is that the strong crossed satu-
ration among modes (for nearby modes it is twice the
self-saturation), results in an intense competition whereby
the dominant mode is able to reduce the effective gain of
other nearby modes to the point of extinction. The out-
come is operation at a single mode.

For FEL's operating inside the deep saturation region,
terms of higher order (than the third) in the radiation
field have to be taken into account. These, as well as the
effects they produce (sideband instabilities, ~ " for in-
stance), are outside the scope and intent of the present
paper.
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