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Slow-wave electron cyclotron maser
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The basic physics of a slow-wave electron cyclotron maser (ECM) operating in the Cherenkov re-

gime is considered. This device has the advantage over fast-wave ECM's in that it can be operated
with direct axial injection of the electron beam, thus allowing for better control over beam quality
and a potentially more compact design. The nonlinear evolution and saturation of the instability
are studied using computer simulation. It is shown that high efficiency is attainable and, further-

more, that beam momentum spread is better tolerated in the Doppler-shift-dominated regime than
is the case for a fast-wave ECM.

I. INTRODUCTION

Research in electron cyclotron masers (ECM) to date
has focused mainly on fast-wave variants, such as the
gyrotron and the cyclotron autoresonance maser
(CARM). ' In the Gyrotron, the wave phase velocity
along the magnetostatic field Bo is much higher than the

speed of light in vacuum, v =su/k &&c, while in a
CARM, v =c. Coupling of the electron-beam kinetic en-

ergy to the electromagnetic (em) wave in these fast-wave
devices depends on the beam having an initial transverse
momentum in the background axial magnetic field.

The production of an electron beam with significant
transverse as well as axial momentum is difficult to
achieve technically if a high degree of uniformity is re-
quired. Most processes of imparting a transverse
momentum to the electrons, such as injecting the beam
through a transverse undulating magnetic fie1d, will in-
duce a spread in axial momentum. Beam momentum
spread is particularly damaging to Doppler-shift-
dominated devices such as the CARM, where the reso-
nance condition is given by co=kv~~+0„, where kv~~ ))0
is the Doppler shift along the axial magnetic field Bo, and
fl=eBolyrnc is the relativistic cyclotron frequency. A
small spread in beam axial velocity v~~

will be greatly
amplified in the Doppler term. Beam momentum spread
must be limited to less than a few percent for the CARM
to be operationally viable.

It is clearly advantageous to have an ECM which will
operate with direct axial beam injection; axial beams (i.e.,
with axial momentum only) can easily be produced with
very lit tie momentum spread. Using single-particle
theory, previous authors have shown that direct injection
is possible in a slow-wave ECM operating in the Cheren-
kov regime, i.e., where v

~~

~ v . ' This has been
confirmed experimentally. ' The characteristics of this
slow-wave ECM are distinguishable from that of a con-
ventional Cherenkov maser: The instability in the form-
er depends on the axial magnetic field, and the wave vec-
tor k of the em wave is independent of the Cherenkov an-
gle H=cos '(u~/u~~). Also, it will be shown here that no
axial density bunching of the beam is involved.

or

0
(Pii/P —1) ' (la)

showing that substantial frequency upshift, co&&Q, can
be achieved with pl=a, where

p~~
——u~~lc and pz ——uz/c.

Since p~ & 1, it is not necessary to have a very energetic
electron beam to have

p~~
=p~.

In this paper we examine the basic physics of a slow-
wave ECM operating in the Cherenkov regime. The
single-particle theory is reviewed and computer simula-
tion is used to investigate the instability in a simple one-
dimensional (1D) model. Slow-wave ECM's which
operate outside the Cherenkov regime, like all fast-wave
ECM's, require an initial transverse beam momentum to
couple to the em wave '" these are not considered here.
In Sec. II we review the single-particle theory of em
wave-electron interaction in a uniform axial magnetic
field, showing why only if

v~~ +vp is wave amplification
possible with an axial electron beam. The single-particle
efficiency due to electron deceleration by a plane mono-
chromatic wave is considered. Section III contains the
linear theory and computer simulation of the slow-wave
cyclotron instability. The dependence of the efficiency on
beam energy, magnetic field, and wave phase velocity is
presented. Sensitivity of the slow-wave ECM to beam
momentum spread is investigated. Our findings are sum-
marized in Sec. IV.

II. ELECTRON-em WAVE INTERACTION
AND SINGLE-PARTICLE EFFICIENCY

Consider a transverse em wave with wave vector k
directed along a uniform axial magnetic field Boz. The
motion of an electron in the field of the wave is governed
by

An added attraction of this slow-wave ECM is the po-
tential for large frequency upshift with moderate magnet-
ic field and beam energy. The resonance frequency is
given by

co=kv~i —0
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dp v= —e E~—e—X (B~+Bo),
dt ' c

dU
dt

= —ev-E~,

(2a)

(2b)

).0
(a)

where p=yv is electron momentum, Ez and Bz the em
wave electric and magnetic fields, respectively, U =ymc
the electron energy, and e the charge on a positron.

The salient features of electron dynamics can be re-
vealed, without resorting to a full solution of the equa-
tions of motion, by considering the constants of motion.
Using B~={c/co)kX E~, and assuming constant phase ve-

locity, we obtain from Eqs. (1) and (2),

dU Pl
dt ~ dt

whence

10

(b)

y(1 —P Pii)=C (3)

where p~ = U~ /c, p~~
——vl /c, and C is a constant of motion.

Equation (3) defines a characteristic in y-p1 phase space
that an electron with given initial energy and momentum
will be confined to in interacting with the em wave. This
characteristic does not depend on Bo or the wave ampli-
tude, however, the particular segment of it accessible to
an electron with given initial conditions will depend in

part on these quantities.
Equation (3) can be rewritten as

0 +Pl+(I 13 P~~) /C —=1, (4)

whe«pq=1 —y —
p1 is the normalized transverse ve-

locity. Equation (4) shows that for a given p, there are
in general two roots of pl at which pj =0, i.e., where an
axial electron beam can couple to the em wave. We shall
denote these roots as P, and f32, with P2 & P, .

Figures 1 and 2 show generic examples of the solutions
of Eqs. (3) and (4) for the cases P & 1 and P & 1, respec-
tively. For p &1, y has a singularity at pl ——p ', where
the transverse magnetic field of the em wave vanishes in
the rest frame of the beam. If an axial beam has pl

——p~ ',
it can only gain transverse kinetic energy from the wave.
Both P, and f3& coincide with local minima in y. Interac-
tion of an axial beam (with p1 ——p& or p2) with a fast em
wave can only result in conversion of wave energy to
beam kinetic energy. Wave amplification can only occur
if the beam starts with a finite Pj, as in a gyrotron.

For P~ &1, P, and P, satisfy P, (P~ &j32. Degenerate
roots occur at P, =P2 ——P~. Physically, this means that if
the initial velocity of an axial beam exactly matches the
wave phase velocity, no coupling occurs between electron
and wave. This is because in the reference frame of the
beam, the transverse electric field vanishes so that an
electron observe only a magnetostatic field. Since the
electron is stationary in this reference frame, no forces
act on it.

However, if the axial beam has initial velocity P~, &P~,
Fig. 2(b) shows that it can interact with the wave by los-

ing kinetic energy to it. This can be understood directly
From Eq. (2): Transverse acceleration of an axial beam

by the wave is given by

0.5 &.0

0.50
(a)

0

0 05 1.0

FIG. 2. Single-particle characteristic for slow wave P~ &1:
(a) p~ vs p~~, (b) y vs pl. Arrow indicates where p1

——p~.

FIG. 1. Single-particle characteristic for fast wave P~ & 1: (a)

pz vs p~~, (b) y vs p~~. Arrow indicates where pl p~ '. ——
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pi(t) —Ai(t)=P, —
C

(6)

where P is a constant of motion. Equation (6) immediate-
ly shows that it is not possible to decelerate an electron
from P2 to P, with a final radiation field Ai(tf ) & Ai(0).
Also, from Eq. (4),

=y'c'(~p 13()l(1 ~.13i)—, (7)

showing that dpi/dPi ——0, i.e., pi is at maximum, when

Pi
——Pz. Since Ai(t) ~pi(t), maxiinum amplification of

the wave occurs at Pi ——P . This constraint was not con-
sidered by previous authors who pointed out the possibil-
ity of 100% efficiency as 80~0 s, 6

When Bo&0, P is no longer constant so the above
analysis does not apply. However, consider a Lorentz
transformation to the rest frame of the wave. ' Then as
mentioned above, the transverse electric field disappears
and the electron observes a helical transverse rnagneto-
static field (for a circularly polarized wave) and an axial
guide field. The equilibrium motion of an electron in this
field has been studied previously' in the context of a
free-electron laser and is given by

vI /vil (Bi/Bo)/( k il/Il )

'2 '2
u,

'

+u~~ =const,

dpi' = —eE~ —e—X Bz ———eE~+e E~,
dt C Vp

showing that if
u~~ gvp, transverse acceleration of the

beam is dominated by v~~ XB~, so that v~ is parallel to E~
and hence the beam loses energy to the wave. If

u~~ (vp,
v~, transverse is dominated by the electric field which
does work on the electron.

The em wave can originate either from an external
source or from noise through self-excitation of the beam.
In the former case, wave amplification is possible in prin-
ciple with or without the axial magnetic field. Self-
excitation or exponential gain, however, is possible only if
Bo&0, as will be shown in Sec. III.

Regardless of the origin of the em wave, a useful indi-
cation of the maximum efficiency achievable in practice
in this slow wave interaction is given by the single-
particle efficiency gsp defined by

(5)

where yo and yf are the initial and final electron Lorentz
factors, respectively; yf is the minimum value physically
permissible for given initial conditions. It can be seen
from Fig. 2 that if an electron could be decelerated from

P2 to P„a single-particle efficiency of 100%%uo could be
achieved by choosing suitable parameters to make Pi ——0
(and hence, yf ——1). However, for the purpose of wave

amplification, the limiting velocity to which an electron
may be decelerated is in fact Pz.

This is most easily seen for the case Bo =0 (correspond-
ing to an amplifier). Let pi=yvi and Ai be the vector
potential of the em wave. Since transverse conjugate
momentum is conserved in this case:

where the prime indicates evaluation in the wave's rest
frame. As v~~~u, v~~~0, so

u z /v
~~

-B~ /Bo . (9)

Equation (9) shows that v
I~

~0 asymptotically as
B~ ~~; it is not possible to reverse the direction of the
electron in this rnagnetostatic field. Hence, even when

Bo&0, v must be the limiting value to which the elec-
tron can be decelerated by the wave.

Taking the limiting electron velocity to be u, the
single-particle efficiency, using Eqs. (3) and (5), is given by

y(P (a —1)

(yo —1)(1—P~ )

(10)

III. THEORY AND COMPUTER SIMULATION
OF A SLOW-WAVE CYCLOTRON INSTABILITY

Retardation of the em wave in Cherenkov devices may
be achieved by using a dielectric-lined or dielectric-filled
waveguide. ' The practical implementation of such de-
vices is a subject of active research. Here we confine our-
selves to the basic physics of em wave-electron interac-
tion and simplify the analysis by assuming a 1D model of
an axial electron beam directed along a uniform magnetic
field Boz in an arbitrary dielectric medium. We also re-

strict the analysis to plane em waves with vector K paral-
lel to Bo only. Since Cherenkov radiation is at an angle
to the axial beam momentum, the latter restriction ex-
cludes Cherenkov instability from this model.

Evolution of the em field is given by Maxwells equa-
tions:

V B=O,

cV XE= —BB/Bt,

c V X B=4m.J+BE/Bt .

(12a)

(12b)

(12c)

To model the retardation of em waves by an arbitrary
dielectric medium, Eq. (12c) is rewritten as

VXB=e„BD/Bt (13)

where D is the electric displacement of the beam plasma
in the uniform magnetic field and e„~ 1 is an assumed
constant which determines the degree to which the
dielectric slows em waves.

Derivation of the dispersion relation for a cold axial
electron beam in the rnagnetostatic field is straight for-
ward (see, for e.g., Ref. 15). In the 1D model, space
charge and em waves decouple. The dispersion relation
for the latter is given by

(co —kvii+Q)(co kc„cv ly)=——Aco —ly, (14)

where a =P(o/P~, Pio being the initial velocity. For given

yo, the maximum efficiency is

esp=0

which is achieved when the phase velocity is given by

P, =(1—yo ')/&io .
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F cc v~XB~ &x: v~8~sin[cot+p(t)]z,

is independent of z. The absence of axial density bunch-

ing is in marked contrast to a conventional Cherenkov
maser.

Also, since the beam is gyro coherent and its phase rel-
ative to the wave is independent of z, the beam is always
bunched in 0-phase space where 0 is defined by
cos8=v~ Ej/(u~E~). This simplifies the analysis of beam
to radiation energy conversion efficiency as the whole
beam can be treated as a single partic1e. In Sec. II it was
argued that the phase velocity of the wave places an
upper limit to the maximum energy that can be extracted
from the beam. Another saturation mechanism here is
phase detuning between the beam and wave. The
efficiency qd due to the latter effect may be estimated as
follows. Assuming the resonance condition [Eq. (1)] is in-
itially satisfied, the change in phase between electron and
wave is given by

b, 8(t)= f b,co(t)dr , (16)
0

where from Eqs. (1) and (3),

Q(1 —P ) g&
hco=kbu~~~~+Q(by/y) =

p~(a —1) yo

Since from conservation of energy

(17)

(18)

1 Q(1 —13 ) gl,
d 8(t)=—

2 P'(~ —1) 1'o ~;
(19)

As the beam gains transverse momentum only from the
action of the wave, [from (vlXB~) and E~], v~ must ini-

tially be parallel to E~, and the maximum change in y
occurs when

~

68
~

=m /2, the transition between the de-
celeration and acceleration phases of the wave. Hence,
the efficiency due to wave-electron detuning is given [us-

ing Eq. (15) for co;] approximately by

where co; is the growth rate of the wave, Eq. (16) may be

expressed as

Figure 5 shows the efficiency g obtained from comput-
er simulation for the case go=2.0, 0/co =2.0 as a func-
tion of the wave phase velocity P~ /P~~o. Also show in the
figure are the theoretical values for gsp and qd. The com-
putational results agree with the theoretical values for gd.
The efficiency increases with a, but at the expense of fre-
quency upshift.

The efficiencies in Fig. 5 were for a cold electron beam.
It was pointed out earlier that operation in the Doppler-
shift-dominated regime (co =kU

l ) is particularly vulner-

able to beam momentum spread because of the amplify-
ing effect of the Doppler term. The effect of finite beam
momentum spread on the efficiency is shown in Fig. 6 for
a Doppler-shift-dominated slow-wave ECM with yo

——2.0,
Q=2. 0co, and c„/c=0.75 (co=1.7yoQ). The cold beam
efficiency is about 14%. With a 5% momentum spread,
the efficiency drops to 3%. Shown for comparison in Fig.
6 are results for a CARM with the same Doppler shift

kul as the slow-wave ECM, but with yo
——2.8, pj =0.35,

and Q =2.4coz (co =yoQ). It has a cold beam efficiency of
11% which drops rapidly to 1.5% with just a 2%
momentum spread. It appears that for the same Doppler
shift, the slow-wave ECM is more tolerant of beam
momentum spread than the fast-wave CARM.

This difference is probably due to the different bunch-

ing processes in the two devices. In the slow-wave ECM,
the em wave tends to decelerate (or accelerate) the elec-

trons in the beam coherently as a bunch in 0 space; beam
momentum spread diffuses the bunch, but as long as an

electron has initial axial velocity
U~~ &UP it will be de-

celerated by the wave. In the CARM, electrons are ini-

tially approximately gyrotropic in 0 space even for a cold
beam. The action of the em wave will bunch the elec-
trons ' but only if they remain resonant with the wave;

beam momentum spread reduces the number of resonant
electrons. The fraction of electron trapped in the de-

celerating phase of the wave thus depends more critically
on beam momentum spread.

0, 5

To
"11=

' 1/2
co 1TP (a 1)—

P P

Q (y —1)(1—P') (20)

The actual efficiency g is determined by

g=min[gsp gd] . (21)

3

0.2

From Eqs. (10) and (20),
' 1/2

GAP

gd /ps' —w 0 2yo
(22)

For most practical applications Bo must function to colli-
mate the beam so that (co /Q) & 1 will prevail. Also, for
large frequency upshift (a —1)«1. If a&2, the output
frequency will be less than Q [Eq. (la)], and will be of lit-
tle practical interest. Hence, in the regime of most in-
terest the saturation mechanism will be due to phase de-
tuning between electron and wave.

0.)

0
0,6 0.7 0.8 0.9 10

P IlO

FIG. 5. Elciency as a function of v~/v~~p for /0=2. 0 and

0=2.0. Simulation results are represented by dots. The
theoretical values due to phase detuning, gd, and depletion of
single-particle energy, esp, are shown as continuous lines.
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FIG. 6. Effect of a thermal spread on the efficiency of a
slow-wave ECM (dots) with yp

——2.0, 0=2.0co~, c, /c=0. 75 and
a CARM (crosses) with yp ——2.8, 0=2.4'~. The wave vector k
and axial velocity v IIp

are the same in both cases, with

kvllp ~~' ~v ~
II

Av, is the standard deviation of a
Gaussian velocity distribution about the mean values vIIp and

vip

nance ~=kvII —O. There is no axial density bunching.
However, in 8-phase space, the beam electrons are
bunched throughout the interaction with the em wave.
Analytic expressions for the growth rate and efficiency
were presented.

A primary motivation for direct axial injection is that
high quality beams, which are crucial to operation in the
Doppler-shift-dominated regime, are more easily attain-
able. Furthermore, it was shown here that for the same
Doppler shift, the slow-wave ECM is more tolerant of
beam momentum spread than a fast-wave CARM.

The Cherenkov maser instability was not considered in
the simple model used in this work. In a realistic device,
mode competition between Cherenkov and slow-wave cy-
clotron instabilities will be an important issue and will be
considered in a future investigation. We note that the
characteristics of the slow-wave ECM here are distin-
guishable from those of a conventional Cherenkov maser:
The growth rate and output frequency depend on the
magnetic field, there is no axial density bunching, and the
wave vector k is parallel to the beam. The latter charac-
teristic may allow the slow-wave cyclotron instability to
be isolated in a practical device if all nonaxial k modes
can be damped.
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