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Power-dependent Raman scattering in focused geometry
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Diffraction and dispersion effects in Raman scattering are investigated, with focused beams and

pump depletion. Power broadening and Stark shifting of the molecular energy levels are included in

the equations up to second order in intensity (an intermediate-power approximation). The steady-
state paraxial wave equation is used to propagate the electric fields which are expanded in a series of
rotationally symmetric Gauss-Laguerre functions. These functions allow diffraction and power-
dependent effects to be included quite easily with the introduction of a recursive technique used to
evaluate the nonlinear coupling coefficients. The resulting equations are solved analytically for a
single transverse mode and numerically for the rnultirnode case. Several examples are given for con-
version in H2. In order for the intermediate-power approximation to remain valid, the pump power
must be less than 0.015 MW for a beam confocal parameter of 10 cm. Under these conditions we
show that power-dependent focusing reduces the Stokes conversion efficiency by a factor of 5 as
compared to power-independent focusing.

I. INTRODUCTION

Much of the work in Raman scattering theory has been
done assuming collimated geometry, keeping power-
dependent effects only to third order in the field and ig-
noring diffraction. Several approaches to modeling the
effects of focusing and/or diffraction in a nonlinear medi-
um have been developed over the years. The simplest ex-
tension of the collimated-geometry Raman equations in-
corporates a geometric beam expansion by allowing the
beam radii to be functions of the propagation vari-
able. ' This method may be the simplest, but it is also
the least accurate. Another approach is to assume that a
single-mode (TEMoo), undepleted, Gaussian pump
creates a so-called "focused gain" in the Raman-active
medium. A "parabolic" approximation, in which the re-
sulting Gaussian gain is approximated by the first two
terms of a Taylor expansion of exp( —2r IW ), renders
the paraxial wave equation exactly solvable (for a single-
mode Stokes beam). This accounts for focusing and
diffraction only to the extent that higher-order effects
(such as hole burning and annular beam creation) are
unimportant. Recently a theory has been developed
which keeps the full Gaussian gain and allows the Stokes
beam to be generated in as many as 40 Gauss-Laguerre
modes. " This theory is formally analytic; however, it
still does not allow for annular pump beams, pump beam
hole burning, or pump depletion, in general. A similar
mode expansion using Hermite-Gaussian functions has
been used to describe diffraction effects in second har-
monic generation. ' In that work, pump depletion was
accounted for in an approximate manner by using a per-
turbative approach.

We have developed a method in which pump depletion
can be easily included for rotationally symmetric Raman
scattering in a focused configuration. This method relies
on a unique recursive technique to evaluate the mode-
coupling matrix which arises when Gauss-Laguerre ex-

pansions are used for the electric fields. In two previous
papers'3 we obtained the coupling matrix Q (see Appen-
dix B) for power-independent depleted-pump Raman
scattering, where Q consisted of the integral of a product
of four Gauss-Laguerre functions. However, when
power-dependent effects are included, the Q matrices
must be generalized to more indices. We utilize a gen-
eralized recursive technique (described in Appendix B) to
calculate these more complex coupling coefficients. This
technique can be applied to many problems other than
Raman scattering, such as four-wave mixing, self-
focusing, and Brillouin scattering. The only restriction is
that P(E) be able to be written as a product of powers of
the fields. If the problem is not rotationally symmetric,
the electric fields may be expanded in a series of Gauss-
Hermite functions. The resulting Q matrix is then a
product of two integrals, one consisting of 0;(x)'s and
one consisting of H (y)'s. A very slight alteration of the
method in Appendix B then leads to recursion relations
for these integrals over Hermite polynomials.

The saturation effects of the power broadening and
Stark shifting of the molecular energy levels' can be in-
cluded by solving the full molecular Bloch equations.
Nondiffractive studies of the extra power-dependent
terms have very recently been made in the transient' and
steady-state' regimes of stimulated Raman scattering.
In this paper, the expanded recursive technique described
above is used to study these power-dependent effects in
focused geometry. We find that not only is the Stokes
gain reduced by the power broadening and Stark shifting,
but the natural expansion of the beams due to the focused
geometry further reduces the conversion process. The
combination of these two effects results in a reduction of
the conversion efficiency by a factor of about 5, compared
to the efficiency calculated by ignoring the power-
dependent effects.

In Sec. II we couple the slowly varying envelope parax-
ial wave equation to a molecular model which we choose
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to be a steady-state far-off-resonance Raman system in

H2. In Sec. III we expand the electric fields in a series of
Gauss-Lag uerre functions and derive the differential
equations for the pump and Stokes expansion coefficients
driven by the complete power-dependent polarization.
These equations are then written in an intermediate
power approximation which is described in detail in Ap-
pendix A. At this point it becomes obvious that power
broadening reduces the effective Raman gain and Stark
shifting introduces additional phase disturbances. The
equations are solved analytically for single-mode beams
consisting of just the zeroth-order Gaussian mode. The
resulting solution shows nicely how power dependence
decreases the conversion in focused geometry. In Sec. IV
some sample numerical results are provided in order to
indicate the power-dependent effects in multimode fo-
cused beams. In general, these results agree with the ana-
lytic single-mode solution. Finally, Sec. V summarizes
the major findings of the paper.
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Here n; (co) is the index of refraction for absorption at fre-

quency co from the ith molecular state, a, 2 is the off-

diagonal component of the material polarizability associ-
ated with the two ground vibrational states

~

I ) and
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2), and N is the number of molecules/cm . Also, w and

q are the population inversion and transition amplitude
for the two ground vibrational states. These variables
satisfy the equations
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II. RAMAN EQUATIONS —w +I,(w +1)=—(Q, q —Q;q'), (4b)

As mentioned in the Introduction, this section is devot-
ed to the coupling between the slowly varying envelope
paraxial wave equation and the molecular model. We be-
gin by expanding the electric fields (Ez) and polarizations
(PJ ) in terms of their steady-state slowly varying en-

velopes 6J and PJ as (J =s,p)
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where all the fields are assumed to have the same unit po-
larization vectors (e =e). These then are the inputs to
the steady-state paraxial wave equation (in cgs units)

V, @J(x,y, z) 2ik~ —8 (Jxy, z) = 4mkJPJ(x, y, z) . —
Z

(2)

We pick a molecular system for which the constants
are fairly well characterized, namely, H2 (see Appendix
A). It has been shown that this system displays power-
dependent effects in the far-off-resonance regime. ' The
polarization terms PJ have been derived to be'

where I, and 2I are the population and coherence decay
constants (full width at half maximum). In Eqs. (4) the
power-dependent effects are contained in the Stark shift
(b,, ) and the Rabi frequency (Q, ), which are given by
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where a» and a22 are the diagonal components of the
material polarizability associated with states
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In steady state, Eqs. (4) reduce to'
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field equations take the form
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These equations have been solved analytically when diffraction is neglected. ' If we ignore power-dependent broaden-
ing and shifting of the molecular energy levels, then all terms of order

~
Q,

~

should be dropped, yielding the low-
power equations prominent in the literature.

III. EXPANSION IN GAUSS-LAGUERRE FUNCTIONS

An efficient way to account for the diffraction of rotationally symmetric beams is to expand the electric field in a
series of Gauss-Laguerre functions. These are solutions of the homogeneous paraxial wave equation and are given by'

r2 kr2
U„(r,z, W)= &2/mL„(2r /W )exp — i — —(2n +1)Tan '(z/zo)

W " p2 2R
(8a)

Here, r =x +y, the L„'s are Laguerre polynomials, W(z) is the beam radius, R (z) is the radius of curvature of the
beam wave front, and zp is the confocal parameter. These last three quantities satisfy
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The pump and Stokes electric fields are now expanded in a series of Gauss-Laguerre functions as

6' (r,z)= pa „(z)U„(r,z, W )—= pa „U„, (9a)

6', (r,z)= pa, „(z)U„(r,z, W, ) = pa, „U,„. (9b)

The next step is to substitute these expansions into Eqs. (7) to obtain the differential equations for the expansion
coefficients a „and a,„. Substituting Eq. (9a) into Eq. (7a), multiplying by U, , integrating by

f drr f dan=2m f drr,

and utilizing the orthonormality of the U's results in
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for the Stokes amplitudes. The same procedure yields a similar expression for the pump amplitudes. Using the
definition of Q, and approximating n —1 by 2(n —1), we obtain the equations for the Stokes and pump amplitudes as
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where



2874 CARDIMONA, PETERSON, GAVRIELIDES, AND SMELLEGAR 38

and

belli l22(COJ ) 11 1(COJ ) of about 0.015 MW when zo = 10 cm (see Appendix A).
We initiate this approximation by separating g into its

power-dependent and power-independent parts as

gp = w—„N~a,2(cup)/(I +id, , )2' .

Equations (11) may now be simplified by making an as-
sumption about the laser powers involved in the scatter-
ing process. As they stand, these equations are good for
any applied fields. Setting 0, and 6, equal to zero re-
sults in the low-power-limit equations which have already
been studied. ' However, we wish to improve on this ap-
proximation. The full equations have fL, 's and 6, 's and
hence U„'s, in their denominators, which make the in-
tegrals intractable. Therefore, we bypass this difficulty by
making an intermediate-power approximation (IPA)
which keeps terms only up to the order

~
0,

~
/I, I and

6, /I [i.e., we assume (
~
0,

~
/I, I ) &&1 and

5, /1 «1]. It turns out that these approximations are
good for intensities up to about 85 MW/cm or a power

I
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and is the usual small-signal Raman amplitude gain
coefficient. ' Now by applying the IPA we obtain

fQ, /2

r,r
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Therefore, in the IPA the Stokes expansion coefficients
satisfy
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and the pump expansion coefficients satisfy a similar set of equations. From this equation we see that the Stark shift
(b, ) merely adds off-resonant dispersion to the free-space propagation phase accumulation n, k, z. The effect of the
power broadening (

~
0,

~

) is twofold. It, too, adds some power-dependent phase through the second term, but it also
reduces the Stokes gain as is seen in the last term.

Finally, the equations for the Stokes and pump expansion coefficients are
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where
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These equations contain complicated integrals of prod-
ucts of Laguerre polynomials which can be solved
without resorting to numerical integration. This analytic
technique, developed in Appendix B, yields a set of recur-
sion relations for the Q integrals which in turn can be
manipulated extremely rapidly by computer. Before
proceeding we wish to mention that in the above develop-
ment we assume that the two beams have the same confo-
cal parameter zo. This assumption allows the Q's to be
written as z-independent quantities. Also, in the IPA the
photon number is conserved and takes the form

~
a,

~

/co, +
~

a
~

/co =const, where
~
a,

~

= X. I
a,.I

'
In order to gain some analytical insight into the

power-dependent problem, we now consider the case in
which the pump and Stokes beams are single Gauss-
Laguerre modes. In particular, we estimate the effects
that focusing and high powers have on reducing the
Stokes conversion. If only the zeroth-order mode is al-
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Here 8 has been approximated as a z-independent quanti-
ty by letting WJ(z) = W~o (J =p, s). This should not have
much of an effect on the total z dependence of the final
solution since the term we are approximating is the small
power-dependent part. With this minor approximation,
Eq. (15) can be integrated to give
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A) and we have used the IPA to drop terms smaller than
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and

b,e=Tan '(z/zp) —Tan '(z;„/zp) .

where the power-dependent effective gain is

a, (z)
2

a,p

a,p1+
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exp(2g'Ipzpke )

2
co ap

1+
co, ap

exp( 2g 'Ipzp ke )

(17)

Equation (16) can be rewritten in a form analogous to the
single-mode plane-wave case as

2 which equals 0.85g for cup=co„zp ——10 crn, z = —z,„
=L /2=50 cm, and I, (z) =I p=50 MW/cm .

The increase in z at which a specific Stokes power
occurs, due to the lower gain, can now be determined by
solving Eq. (16) for z. This gives

z =zptan

ln +2r)[(8m'/c) X 10' ] 2 +
S P

N Np

2gIpzp
+Tan '(z;„/zp ) (18)

where P is the power in MW, i e.,
P =[(c/8m) X 10 '

] ~

6
~

. We first calculate (z —z;„) in

both the intermediate-power and low-power limits and
then take the difFerence between the two to be b,z(zp),
with the result that

hz (zp ) =zp tan
z( ~ ) AZLp

+
Zp

hzqp—tan
Zp

(19a)

where

a&z[(8m. /c) X 10' ]2
bz(oo)= (2P, P,p)—

2g 8W2r, r~W,2p

= (0.0936) P, = (0.0936) I, , (19b)
~8"p
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and zp= ~ is the plane-wave result. The plane-wave in-
teraction length increase b,z( oo } corresponds to Eq. (21)
of Ref. 16. Because of the expanding geometry and the
corresponding reduction in intensity in Gaussian beam
propagation, there is a limit to the possible Stokes output
power depending on the initial P p/P, p ratio and zp.
Therefore, using a small signal intensity gain 6 of 0.008
cm/MW with 2g = [(c/8n. ) X 10 ' ]G and carefully
choosing appropriate values of Ppp 0 015 MW,
P p/P, p=10, and P, (z,„,)=0.04P p for z;„=—50 cm,
we find hz(1 cm)=0.226 cm, b,z(10 cm)=4.75 cm, and
hz(100 cm) =0.991 cm. Note that in this constant-power
case, hz~0 as zp~ ~ since I~O as zp~oo and the
power-dependent effects vanish. If, on the other hand,
we keep the input pump intensity constant (allowing the
power to vary as zp is varied) at I p=85 MW/cm (corre-
sponding to P p=0. 015 MW for zp=10 cm} and use
I p/I, p 10 A,, /A, and I, (z——,„,)=0.04 I pA, , /)(&, then

b,z(1 cm)=0.327 cm, b,z(10 cm)=4. 75 cm, and hz(100
cm) =0.331 cm [with hz( ~ ) =0.318 cm for these param-
eters].

The reason Gaussian beams exhibit a larger holdoff in
power-dependent conversion than plane-wave beams is
simple. The lower gain causes the Stokes conversion to
be held off in both cases, but as the Gaussian beam prop-
agates the intensity decreases as it diffracts and expands.
So, not only do Gaussian beams get a late start in the
conversion to Stokes light, but that conversion process is
cut short due to a lower diffracted intensity.

We close this section with a brief description of the nu-
merical procedure involved in the solution of Eqs. (14).
First notice that the Q's are independent of z because all
the beams have the same zp. Thus the Q matrices are
generated external to the differential equation solver and
the elements are accessed as needed. The differential
equation subroutine consists of Eqs. (14a) and (14b).
These are then, in turn, solved for the amplitudes a, ,a
with a predictor-corrector integration routine in the In-
ternational Math and Statistics Library.

IV. EXAMPLES

For illustrative purposes, we use a confocal parameter
of zp ——10 cm, a Raman cell length of L =100 cm, and a
Stokes small-signal intensity gain coefficient of G =0.008
cm/MW (6 =2g [(8m/c) X 10' ]). As mentioned before,
the Raman medium is H2 and all the relevant molecular
parameters, as well as the pump and Stokes wavelengths,
are listed in Appendix A.

As a matter of practical importance we deliberately
keep the extraction efficiency under 25%, thus eliminat-
ing the generation of higher-order Raman processes.
With this restriction we find that four Gauss-Laguerre
modes are adequate. That is, the amplitude of mode 0 is
about an order of magnitude larger than that of mode 3,
which indicates good convergence and a well-established
radial profile. Finally, in all of the simulations, power is
conserved to better than 0.05%. The moderate conver-
sion efficiency of 25% has two other implications. First,
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the input power has to be restricted to less than 0.015
MW (see Appendix A). Second, the radial intensity
profiles do not spread very much. In fact, because of the
lowered extraction, there is less spreading in the IPA
than in the low-power case and hence the IPA radial
profiles resemble free-space propagation. Therefore, we
only show plots of the Stokes power buildup versus z to
indicate the differences between the low-power approxi-
mation (solid curves) and the intermediate-power approx-
imation (dashed curves). In all cases, we take the Stokes
seed to have a power 10 that of the input pump. For

the parameters used in these examples, the nonlinear Ra-
man interaction does not become important until very
near the focus at z =0. Soon thereafter the
intermediate-power-limit curves become distinctly
different from the low-power-limit curves due to the
reduction in the power-dependent gain. After the focal
spot, Gaussian propagation causes the beams to expand
with a corresponding decrease in on-axis intensity, there-
by forcing the nonlinear Raman scattering process back
into significance.

In Fig. 1, the input pump is a zeroth-order Gaussian,

e 0
lO

(a)

~ IA—

S
lO

()
C4

SN

0
M

—50.0
I

—25.0 0.0
z (crn)

25.0 50.0

(b)

O
g O

n.
0

rn ~
O

& o

O

—50.0 —25.0 00
7. (Cm)

I

25.0 50.0

FIG. 1. Stokes power vs z for input pump powers of (a) 0.015 MW and (b) 0.01 MW. Both the pump and Stokes input radial
profiles are Gaussian. The solid curve arises from the low-power approximation and the dashed curve from the intermediate-power
approximation.
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as is the Stokes seed. Figure 1(a) has an input pump
power of 0.015 MW which results in a conversion
efficiency, equal to

(P, /co, )/(P~o/co~+P, o/co, ) =P, co~ /P~oco,

of 19% in the low-power limit and only 4% in the
intermediate-power limit. This corresponds to a reduc-
tion by a factor of nearly 5 in efficiency when power-
dependent efFects are accounted for. The input power for

Fig. 1(b) is 0.01 MW. In this case, the conversion
efficiencies with and without the power-dependent terms
are very nearly the same at 0.52% and 0.59%, respective-
ly. The low-power conversion efficiencies of 19% and
0.52% are consistent with the very reasonable undepleted
exponential gIL product of 7. In Fig. 2, both the input
pump and the Stokes seed are annular (equal and oppo-
site amplitudes in the zeroth and first modes at z = —50
cm). The on-axis focal intensity is higher for the annular
input than for the Gaussian input, so the low-power limit

(a)

O~ Q

0
LA—

0
NS

O0
X +-

O

-50.0 —25 0
z (cm)

I

25.0 50.0

(b)

O
@ 0
0

m ~
O

Cl ~
M

—50.0
I

—25 .0
I

0.0
z (cm)

I

25.0 50.0

FIG. 2. Stokes power vs z for input pump powers of (a) 0.015 MW and {b) 0.01 MW. Both the pump and Stokes input radial
profiles are annular (equal amplitudes, both opposite signs in the zeroth and first Gauss-Laguerre modes). The solid curve arises from
the low-power approximation and the dashed curve from the intermediate-power approximation.
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conversion efficiency is larger, while the intermediate-
power limit efficiencies are lower since the power-
dependent terms kept in that limit have a greater effect.
In Fig. 2(a), with an input pump power of 0.015 MW, the
extraction for the low- and intermediate-power approxi-
mations are 22% and 2%, respectively. The conversion
efficiencies for Fig. 2(b) with an input pump power of 0.01
MW are 0.64% and 0.5% for the low- and intermediate-
power limits. The input pump beam in Fig. 3 is a single-
mode Gaussian, as in Fig, 1; however, the Stokes seed

beam is given equal amplitudes in the first four Gauss-
Laguerre modes. Because the initial Stokes spectrum is
Aat and since the pump interacts most strongly with the
zeroth mode, the pump-Stokes overlap is not very great.
Accordingly, the resulting conversion efficiencies are
much smaller. For an input pump power of 0.015 MW
[Fig. 3(a)], the conversion efficiencies are 9% and 3% in
the low- and intermediate-power approximations, respec-
tively. With a pump input of 0.01 MW [Fig. 3(b)], the
efficiencies are much closer at 0.19% and 0.18%.
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FIG. 3. Stokes power vs z for input pump powers of (a) 0.015 MW and (b) 0.01 MW. Here the pump input radial profile is a
Gaussian, while the Stokes input has equal amplitudes in the first four Gauss-Laguerre modes. The solid curve arises from the low-

power approximation and the dashed curve from the intermediate-power approximation.
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V. SUMMARY

We have solved the steady-state power-dependent Ra-
man scattering equations with depleted pump in focused,
rotationally symmetric geometry in an intermediate-
power approximation. The IPA is defined by dropping
terms of order (

~
0,

~

/I, I ) and (b, , /1 ) (see Appen-
dix A), where 0, is the generalized Rabi frequency, b, is
the Stark shift, and I

&
and 2I are the population and

coherence decay constants, respectively. The paraxial
wave equation determined the propagation and the fields
were represented by an expansion in Gauss-Laguerre
functions. Finally, the solution was expedited by the de-
velopment of a recursive technique used to evaluate the
mode coupling coefficients.

We found that the extraction efficiency in power-
dependent focused geometry is much less than the low-
power plane-wave conversion for two reasons. First, high
powers produce power-dependent broadening and shift-
ing of the molecular energy levels which decrease the
gain and hold off the Stokes conversion. Second, the fo-
cused geometry causes the conversion to begin very near
the beam waist, reducing the effective gain length. Thus,
just as the power-dependent gain begins to convert pump
to Stokes, the bean geometry expands and conversion
does not become as well established as it does in the
plane-wave case. These conclusions were verified by mul-
timode computer simulations, as well as being evident in
a single-mode IPA analytic solution. Our examples
modeled Stokes conversion in a 100-crn-long cell of H2 at
10 atm with pump and Stokes confocal parameters each
equal to 10 cm. For an input pump power of 0.015 MW
and a zo of 10 cm, the single-mode analytic result indi-
cates that to reach the point where the Stokes intensity is
about 4% of the input pump intensity with the power-
reduced gain in the plane-wave case [Eq. (19b)] requires
about 0.3 cm more interaction length than would be
needed if the power-dependent effects were ignored. The
focused geometry case requires nearly 5 cm more gain
length [Eq. (19a)]. Using four Gauss-Laguerre modes in
the numerical simulation, we found that the Stokes con-
version efficiency was reduced by as much as a factor of 5
when power-dependent effects were accounted for.

The IPA in H2 requires that the input pump power not
exceed 0.015 MW. In this power regime, four Gauss-
Laguerre modes were sufficient. If we had run much
closer to threshold or well beyond full pump depletion,
more than four modes would have been required to ade-
quately describe the radial development. Regardless of
the number of modes used, however, the recursive tech-
nique described in Appendix B for evaluating the Q-
integral coupling constants is extremely efficient. At a
power of 0.015 MW, the low-power-limit conversion
efficiencies were kept below 20% and the intermediate-
power-limit e(ficiencies never rose above 4%. Even in
this relatively low-power regime, the gain-reducing effects
of power broadening and Stark shifting have very pro-
nounced effects on the Stokes conversion in focused
geometry. Thus, the focused power-dependent effects
should be observable without the added complication of
higher-order Stokes scattering.

APPENDIX A: INTERMEDIATE POWER
APPROXIMATION

(353 nm),

co, =4.56&&10' /sec

(414 nm),

N =2.68X 10 /cm

I'=550&(10 /sec

(Ref. 18),

I', = 5 3.6ir X 10 /sec

(Ref. 19),

aii(m )=8.63X10 cm

a22(m )=9.42X10 cm

ai2(n )=1.17&(10 cm

(Ref. 20). Using the definition of 6, [Eq. (5a)], we find

the maximum Stark shift to be in the first half of the cell
when 6' =6'

o and 6, =0, which gives

I ~, I .,= 4~ I @,o I'I aii(~, ) —a22(~p) I
(A 1)

With
~

8
~

=(8m/c))&10 (erg/J) &(106 (W/MW) I, I
equal to the number of MW/cm, we find

~
6,

~
& 1.6 X 10 I o/sec . (A2)

Similarly, using the definition of Q, [Eq. (Sb)], we find
that the maximum Rabi frequency occurs when
8, =+co, /coz8zo/i/2. This gives

' 1/2

—'
I @po I

2A cop
(A3)

Again with the definition of I 0 equal to the number of in-

put pump MW/cm, the above becomes

~
fl,

~
& 2. 1 X 10 I o/sec . (A4)

For the zeroth-order approximation in which terms only
to third order in the @'s are kept, we require

r, r ' r (A5)

which therefore limit I o to be less than 25 MW/crn .
For the second-order, intermediate-power approximation
used in this paper, we require

[0, [

r, r ' r (10 (A6)

which limits I,o to be less than 85 MW/cm . By using

The intermediate power approximation is determined
using the following constants for Raman scattering in H2
at 10 atm:

co =5.34&(10' /sec
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I =2P/mW =2I'/Azo, this maximum input intensity
converts to a power of about 0.015 MW for zo = 10 cm.

APPENDIX B: DETERMINATION
OF THE Q INTEGRALS

Again, take the derivative with respect to JM and use the
Laguerre differential relation, as well as the Laguerre re-
cursion relation,

yL (y) = —(m +1)L +,(y)+(2m +1)L (y)

mL— ,(y),
The Q coupling constants in Eqs. (14) are complicated

integrals of products of Laguerre polynomials. They can,
of course, be evaluated by brute-force numerical integra-
tion. However, a much more eScient procedure was in-
troduced in Ref. 13. In this appendix, we extend this
method to the evaluation of integrals over any number of
Laguerre polynomials.

The generic Q integral can be written as

Q a, p, y, s, . . .

dx e "L (f x)Lp(fpx)L (f x)Ls(fsx)
0

(B1)

to obtain

Q= Q —,[(a+ I)g +, —(2a+1)gf.' — f.'
dp a f

+&Q. i)
r

fp f.'+ — 13(g —Qp t)
p a

+ — y(g —Q, , )+
f', f'

y

(B4)

where the f„'s are known functions of the field frequen-
cies. First, introduce a dummy variable p such that each
f„ is a function of p. Now, take the derivative of Q with

respect to p and use the differential relation for Laguerre
polynomials

y L (y) =mL (y) mL ((y—)
d

to obtain

Q = ~(g —Q. , )+ P(g —gp, )+d f.' fp

(B2)

where f'=df/dp. Here the following shorthand nota-
tion has been introduced:

Q—=Q.,p, s,

Qa+( = Qa+l, p, y, s,

Qp+( —=Qa, p+t, y, s, . . .

etc. Next, make the change of variables y =f x so that

Q becomes

—v&f.
Q p s —— dy e L (y)Lp(yfp/f )

a

(B3)

Finally, by setting Eqs. (B2) and (B4) equal we obtain the
recursion relation for Q with the index a changing:

(a+1)g +t ——(2a~1)Q —ag t+f K,
K = —( I+~+0+ )Q+~g. , +Pgp, +

(BSa)

(Bsb)

Note that the explicit p dependence of the f„'s is never
required in the derivation. In fact, p never has to be
defined explicitly at all.

In general, the change of variables y =f„x,
n =a, P, y, 5, . . . leads to the general formula

(n +1)Q„+,——(2n +1)g nQ„, +f„K—.

To use this set of recursion relations, we first requireQ„,=g, py
——g, y

= =0. Then, with
the initial value Qooo

——Io dx e "=1, all of the
higher-order Q's r &ay be evaluated.

If the problem under consideration is not rotationally
symmetric, an expansion in Gauss-Hermite functions can
be made. In this case, the coupling matrix will be a prod-
uct of two integrals, one involving I (x)'s and one in-
volving Hp(y)'s. The above procedure to develop a re-
cursion relation for the coupling matrix can then be ap-
plied to each of these integrals over Hermite polynomials.
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