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Coherent reflection as superradiation from the boundary of a resonant medium

M. G. Benedict
Department of Theoretical Physics, Jozsef Attila University, Aradi vertanuk tere I, H 672-0Szeged, Hungary

E. D. Trifonov
Department of Theoretical Physics, Herzen Pedagogical Institute, Leningrad, Union of Soviet Socialist Republics

(Received 30 July 1987; revised manuscript received 1 February 1988)

The reflection of short optical pulses from the boundary of a resonant medium is investigated
theoretically by the coupled system of the Maxwell and optical Bloch equations. In order to de-
scribe the reflected wave, the slowly-varying-envelope approximation in space is not exploited. The
coherent reflection is shown to be in connection with Dicke superradiance. It takes place if the re-
laxation time of the polarization is longer than the superradiation time of the atoms in an optically
thin boundary layer of the medium. That is why much of the relevant information can be obtained
already in the thin-medium limit, which is considered separately. The conditions of strong
reflection from an extended medium are similar to the ones found for a thin sample. The transition
into the incoherent and stationary regime is discussed.

I. INTRODUCTION

Reflection and refraction of a monochromatic plane
wave on the boundary of a linear medium are described
by Fresnel formulas, ' which are valid only in the station-
ary regime, when all the transient relaxation processes in
the medium have completed their course. In this work
we investigate the case when the medium is resonant,
nonlinear, and the incoming wave is a short pulse, gen-
erally shorter than the relaxation times of the atoms in
the medium.

It is well known from the Fresnel formulas that if a
medium absorbs at a frequency then its reflection
coefficient will be large too. ' So the following question
arises: Why not take into account the reflected wave in
the usual theory of resonant interaction when the dom-
inant process is absorption? As expected, it is the non-
linearity of the resonant process that modifies the results
of classical optics, and allows one to neglect the reflected
wave. The more careful analysis presented here will
show, however, that resonant reflection can be strong
even in those cases when the excitation is supposed to
create significant inversion in the medium.

We will show that if the lifetime of the macroscopic
polarization is long enough, and neither the incident field
nor the relaxation processes reduce it, then the field origi-
nating from this polarization of the boundary gives rise
to a strong reflected wave. This coherent response is in
close connection with the effect usually known as superra-
diation, which is the collective emission of an ap-
propriately excited ensemble of "two-level" atoms.
When initially all the atoms are in the upper inverted
state it is also termed as superfluorescence. We em-
phasize here the collective behavior and the coherent
preparation, and not the initial conditions; therefore, we
retain the original name. As it is known, superradia-
tion takes place only if its characteristic time Tz is short-
er than the relaxation time of the polarization T2, other-

wise the phase memory of the dipoles will be destroyed.
The condition T2) T„will be seen to be substantial for
coherent reflection too.

The problem of nonstationary reflection has been stud-
ied so far in only a few papers. The discussion of Eil-
beck is restricted to the linear case by using a
frequency-dependent index of refraction in the Fresnel
formulas. The work of Rupasov and Yudson' also uses
the phenomenological boundary conditions of electro-
dynamics and deduces the equation describing the
transmission and reflection of an optically thin layer in
the absence of relaxation. These authors treat the case of
the extended medium too, but, as it will be shown below,
the application of the slowly-varying-envelope approxi-
mation in space (SVEAS) used by them cannot give rise
to the reflected wave, and the macroscopic boundary con-
ditions yield only the well-known incoherent (Fresnel)
reflection of the extended medium.

We shall proceed in a more consistent way. The result-
ing transmitted wave will be regarded as the superposi-
tion of the incident wave and of the secondary wave,
emitted by atoms that are excited by the incoming wave.
They radiate, of course, in both directions and the back-
ward scattered wave gives rise to reflection. We shall
confine ourselves to the case of normal incidence. We
note that in a more recent work" by Vlasov et al. the
general integro-differential equations of the boundary
value problem have been presented, but the complicated
system remained unsolved.

The backward wave within the medium has been con-
sidered by Crisp' for the case of a 2' secanthyperbolic
pulse, regarding the polarization of the medium as a
given function of space and time calculated from the
slowly-varying-envelope approximation (SVEA) theory of
self-induced transparency. ' ' In the present work we
shall follow the evolution of the polarization and the field
together, thus solve a time-dependent scattering problem.
The role of the boundary will be explicitly taken into ac-
count.
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II. EQUATIONS OF THE MODEL

Our model is a medium consisting of two-level atoms,
on which a given linearly polarized electromagnetic plane
wave is falling at the plane boundary x =0. We look for
the reflected wave at x =0 and for the transmitted wave
at x =L, specifying the other end of the medium. We use
the semiclassical rotating-wave approximation (RWA),
together with the slowly-varying-envelope approximation
in time (SVEAT}, but an important point is that the same
(slowly-varying-envelope) approximation in space
(SVEAS) will not be exploited.

The propagation of a linearly polarized plane wave
through the medium which is characterized by a polar-
ization P(x, t) is described by

O'A' 1 8'v 4m O'P

coax c gt c r}t

We shall use the explicit retarded solution of Eq (2.1),

(2.1)

where

8; (x, t) = ,'E; (x, t)exp—[i(cot —kx )]+cc.
is a solution of the homogeneous equation corresponding
to (2.1), and it is identified with the incoming plane wave.
We look for solutions of the form

6'(x, t) = ,'E(x, t}e' '+—c.c. ,

P(x, t) = —,
' P(x, t)e'"'+ c.c. ,

(2.3}

where E(x, t) and P(x, t) are slowly varying in time com-
pared with exp(i tot ). Applying the RWA and SVEAT,
we have'

E(x, t)=E;(x, t) — ' f P(x', t —
i
x —x'

~

/c)
C 0

i(rulc)
~

x ——x'
~ d ~ (2 4)

The important point is that E and P are sti11 rapidly vary-
ing functions of x. It is clear now that the backward
wave comes from that part of the integral where x &x',
and especially at x =0 this yields the reflected wave. The
integral equation has the advantage that the boundary
conditions need not be specified separately. The reflected
wave and the transmitted wave at x =L are determined
in the following way:

6(x, t)=6';(x, t) f— (x', t —
i
x —x'

~

/c)dx',27r t BP
c o Bt

(2.2)

The dynamics of the polarization in the two-level atom
model will be determined by the optical Bloch equations
in the RWA (Ref. 2),

BR . 1 .piA — R+i —EW,
Bt T' (2.7)

(E'R ER—*),
Bt 2A

(2.8)

where W is the population difference between the levels,
R /2 is the slowly varying part of the off-diagonal element
of the atomic density matrix R =U+iV, p is the transi-
tion dipole moment, T2 is the relaxation time of the po-
larization, and 6 is the difference between the field fre-
quency and the atomic transition. R and P are connected
by the relation P=pN(R ), where the angular brackets
denote summation over the inhomogeneous line and N is
the density of the active atoms. The relaxation of the in-
version is neglected here (in the case of activated crystals,
e.g., T2 « T, ). To determine the transmitted and
reflected waves we have to solve Eqs. (2.7) and (2.8)
simultaneously with (2.4).

In the linear approximation, when W is set equal to
—1, and in the case of rapid relaxation, when T2 is much
less than the duration of the excitation, the stationary
value of P =pN(R ) will be proportional to E, giving the
usual expression for the susceptibility and a correspond-
ing index of refraction,

p N i /T'2—
n =( I+4m')'

&'+ 1/( &p )'
(2.9)

Putting P =YE in (2.4) we get a single integral equation
for E, the solution of which yields the Fresnel formulas. '

III. REFLECTION FROM AN OPTICALLY
THIN MEDIUM

BR . 1 .p 1
ib, — R+ i E, (R) W—,at T2

'
T~

(3.1)

In this section we consider the boundary value problem
for an optically thin medium, i.e., when L &&A, , which al-
lows a significant simplification. As we shall see in Sec.
IV, much of the results of this limiting case will remain
valid for the extended medium too.

In the case of a thin sample in Eq. (2.4) we may put
exp(ik

~

x —x '
~

) = 1, and instead of integrating we can
take the spatial average of the polarization. With these
approximations from Eqs. (2.7) and (2.8) and (2.4) we ob-
tain

E„=E(O,t) —E, (O, t )

217TCO & t t —Ikx'P(x', t —x'/c)e ' "dx
C 0

(2.5)
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(3.2)

E, =E(L,t)= E;(L,t) where

f P(x', t (L —x')/c)—
C 0

)(eikx'dx e
—ikL (2 6)

TA (3.3)
2mNLup

is the superradiation time of the sample.
This modified set of the optical Bloch equations has
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been obtained in the works of Hopf et al. ' and Ben
Aryeh et a/. ,

' where the stationary solution of these
equations has been investigated. It has been pointed out
by these authors that the imaginary part of the correction
represented by the last term in Eq. (3.1) produces a renor-
malization of the resonance detuning 5, and this gives
rise to optical bistability in the stationary regime. It has
been noted in those references that the real component
gives rise to superradiance, which is the mechanism dis-
cussed in the present paper.

When studying superradiation one does not consider
the terms containing E; in (3.1) and (3.2), while in the
usual treatment of the interaction of coherent external ra-
diation with the resonant medium, the terms containing
1/TR are neglected. To obtain the reflected wave one
must take both into account.

The solution of these ordinary differential equations
yield the reflected and transmitted amplitudes in the fol-
lowing way: In Eqs. (2.5) and (2.6) we make the same ap-
proximations that have led us to (3.1) and (3.2) and then
obtain

I'

R

exp
1+ t —1

TR T2

1 1+
TR T2

(3.&)

where the notation T2
' ——T2 '+ T2 ' has been intro-

duced.
The stationary value of the reflection coefficient for the

intensity

J7 = ( 1+TR /T2 ) (3.9)

is achieved during the time (T2 '+Tz ') '. Until t is

less than this value, the medium has no time to answer
the excitation, and the reflection coefficient remains
smaller than %.

To compare (3.9) with the appropriate Fresnel forinula,
we note that in the stationary case the index of refraction
can be connected with T2/Tz. From Eqs. (2.9) and (3.3)
we have

E„= i —(R),
pTR

(3.4)
T2

(n —1)kL = 2i-
TR

(3.10)

E, =E; i (—R) .
pTR

(3.5)

Equations (3.4) and (3.5) express the physical fact that the
atoms of the medium radiate in both directions equally.
The reflected wave is identical with this secondary field
emitted in the backward direction, while the transmitted
wave is the superposition of this self-field and the incident
field.

A. Linear limit

BR . 1 .~ 1iA — R i E, —— (R) .
Bt T,' A

' T
(3.6)

This linear equation can be solved, e.g. , by Laplace trans-
forming both sides and then summing over the inhomo-
geneous line. ' ' If the latter is approximated by a
Lorentz curve of linewidth 2/Tz, then the calculation
can be performed simply, and we have

(R ) = —i—I E, (t')exp
o

1 1 1

&&(t t') dr'. —(3.7)

The reflected and the transmitted waves are determined
now by (3.4) and (3.5), respectively.

If a step pulse of amplitude Eo is switched on at t =0,
then for the time dependence of the reflected wave we ob-
tain from (3.4) and (3.7)

We suppose now that the excitation is weak, so that 8'
remains close to —1 during the whole process. In this
case (3.1) and (3.2) reduce to a single complex equation
for each 6,

Using (3.10), the expansion of the Fresnel reAection
coefficient for a thin layer (nkL && I) is in agreement
with (3.9). If T2 & TR, which in the stationary case corre-
sponds to a large imaginary index of refraction, the
reflection coefficient will be large in the transient regime
as well. It also follows from (3.7) that after the incoming
wave has been switched off, the reflected amplitude disap-
pears with a time delay ( T2 '+ TIi ')

B. Nonlinear thin medium

In this case we shall first investigate the ideal problem
of exact resonance, without inhomogeneous broadening
and without polarization damping, T2 ——~. This allows
one to obtain analytical results, too, and then the effects
of relaxation terms can also be better understood. With
these approximations Eqs. (3.1) and (3.2) can be written
into the form

1i+E + R W',
Bt iri

'
Tg

(3.11)

(E;"R E;R')—
I
R—

I9t 2A
' ' T„

(3.12)

and from Eqs. (3.4) and (3.5) the conservation law of en-

ergy can be deduced,

( IE I'+ IE, I')+&L&~
4m. '

4m at

We shall solve Eqs. (3.11) and (3.12) assuming that initial-
ly all atoms are in their ground state, 8'= —1, and the
polarization is absent, R =0. It can be easily seen that if
E; is real, then R will remain purely imaginary during the
evolution of the system, R =iV. As the length of the
Bloch vector

I

R
I + 8' is a conserved quantity, it is

straightforward to introduce the Bloch angle with
V= —sinO and W= —cosO. Now (3.11) and (3.12) can be
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recast into the single equation' ' '

dO v 1
E; — sinO .

dt R '
T~

(3.14)

According to (3.4) and (3.5), the reflected and the
transmitted waves can be obtained now in the following
way:

(3.18)E; =EDsech(t/T) .

The area of this pulse is A =(p/A)EDT~
We begin the analysis by observing that exciting pulses

of the form (3.18), with

EE 1 1 (3.19)

E,= V= — sinO,
pTR pTg

(3.15) T +1
TR

(3.20)

AdOE =E+ V=-
pT& p dt

(3.16)

By omitting the term (I/Ta )sin8 in (3.14), we would
have the usual equation describing the optical Rabi os-
cillations. On the other hand, in the most simplified
model of superradiation one has Eq. (3.14) with E; =0.
The term (I/Ta )sin8 takes into account the self-field of
the material, and in the absence of excitation this gives
rise to the superradiation of the thin layer. ' ' As we
can see, the same term is responsible for the reflected
wave, and in this sense we may identify the coherent
reflection with superradiation.

From the form of Eq. (3.14) one can see that if
(p!fi)E, &1/T„, then 8 has a stationary value where
sin8=(p/A)E, Ta. If no. w the duration of the incident
pulse is longer than Tz, then the system approximates
this stationary value and after T & Tz, O=O, and
E,= —E;. The secondary field is in opposite phase com-
pared with the incident wave, and that is why they cancel
each other in the forward direction, while a strong
reflected wave is generated.

We note that in the case of Eq. (3.14) the area of the in-
cident pulse, defined as

A=+ J Edr, (3.17)

is not in a one-to-one correspondence with the final value
of 8. The latter is always 8(oo)=0(mod27r), as can be
seen from (3.14), taking into account that E, (oo ) =0. .

The solution of (3.14) for a constant amplitude E; has
been obtained by Rupasov and Yudson. ' In actual ex-
periments E; itself depends on time, therefore we have
solved Eq. (3.14) for incoming pulses of the form

I

bring the system exactly in the upper inverted state.
Equation (3.14) now has a simple analytic solution,

8=2 arctan exp(t/T), (3.21)

and the reflected and transmitted pulses have the form

+E,= — sech(t/T), +E, =—sech(t/T) . (3.22)
1 1

T„ T
The reflected intensity is thus proportional to N, which
is a characteristic feature of superradiation.

The relative strength of the reflected and transmitted
waves compared with the incident wave are determined
by the ratios of T and Tz. If T »T„ then the incident
pulse is strongly reflected, while if T && T~ it is transmit-
ted without reflection. The inverted state generated by
the incident pulse is not stable, of course. After the first
response, determined by Eqs. (3.22), a npulse . of
superfluorescence

E = sech[(t tD )/Tz—]p
ATR

will be radiated in both directions with a delay time
tD.

The case considered above is a limit between two
classes of solutions. To achieve complete inversion with
a pulse of duration T, its area A must be larger than
(T/Ta+1)n, or equall. y (p/fi)E0 & 1/Ta+ I/T, while if
A &(T/Ta+1)m. , then the inverted state cannot be
reached.

The statements above can be demonstrated by the spe-
cial, but nontrivial analytic solution of Eq. (3.18) when E;
is a 2m secanthyperbolic pulse. This is a frequently inves-
tigated and also a practically realizable pulse shape in
self-induced transparency experiments. ' ' So if in (3.18)
we put (p/A')E0 2/T, then Eq.——(3.14) has the solution

O=2 arctan
T T—1 exp(t/Ta )+ +1 exp( t/T„)—

TR TR

(3.23)

T1+ cosh
TR

1 t—cosh
T T

—sinh
T

1
sinh

R
T

2 7

T
(3.24)

2
T t1+ cosh ——sinh

Tg T T

The reflected and transmitted amplitudes in this case are

1 . t 1—sinh —— cosh
E R

I

respectively. The formulas above allow to enlighten the
very different behavior of the reflected and transmitted
waves depending on the amplitude and accordingly on
the duration of the excitation. Omitting the analytic dis-
cussion of the different limiting cases here we refer only
to Figs. 1(a) and 2(a). We note that if A ~2m. and
T/T~ & A/~ —1, then in both the strong transmitted
and weaker reflected waves Rabi oscillations appear.

Let us turn now to the solution of Eqs. (3.1) and (3.2)
when the relaxation of the polarization is taken into ac-
count, T2 & ~. For sake of simplicity we confine our-
selves to the case when b, =0 for all the atoms. Quantita-
tive results can be obtained here only numerically, but
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FIG. 1. Time dependence of the transmitted (t) and reflected (r) amplitudes relative to the excitation (e), in the thin-medium limit.
The time and amplitude scales are fixed by the exciting pulse (e), having the form of E; =0.5(fi/pT& )sech(t/4T& ). Its area is A =2m.
The relaxation time T2 is ~, 5T&, and 0.2T& for (a), (b), and (c), respectively. The vertical scale for the inversion (W) goes between
—1 and 1.

the form of Eq. (3.1) shows that R, which gives rise to the
reflected wave, will be damped now, and therefore in this
case reflection will be less than before. This effect, of
course, will be remarkable only if the reflection is strong
in the absence of relaxation. See Fig. 1. As 1/T2 grows,
the reflected wave diminishes and transmission gets
closer to the exciting pulse.

%hen the reflected wave is small in the undamped
case, i.e., when the polarization is already ceased by the
external field, then the introduction of the term 1/Tz
may cause only a little effect, as can be seen comparing
Figs. 2(a), 2(b), and 2(c). The reflected and transmitted
waves are essentially the same as without damping. The
main difference is that the inversion does not reach + 1,
and later does not fall back to —1, the atomic system dis-
sipates the energy of the excitation. On a longer time
scale 8' must go back to —1 due to a term containing
I/T~, which was neglected here.

(2.5) and (2.6), respectively. This is possible only numeri-
cally.

Here we have one more parameter that can be chosen
freely; it is the length of the sample L. The usual phe-
nomenological treatment of reflection in ordinary optics
disguises the physical origin of the reflected wave; never-
theless, it is well known that the latter arises as the back-
scattering of the dipoles in a boundary layer of the medi-
um. The same will be valid in the case of resonant in-
teraction; one expects that the depth of the material to be
taken into account must be of the order of the wave-
length.

To see this explicitly, let us substitute Eq. (2.4) into
(2.7) and (2.8), and express the length of the medium in
units of 1/k =A, /(2n ),

BR . 1

dt Tz

IV. EXTENDED MEDIUM

In this case we must solve Eqs. (2.4), (2.7), (2.8), and
the reflected and transmitted waves can be determined by

+ f (R(y, t))e ''"" «'dy W,
Tg 0

(4.1)

(aI
( Eo= 8—

p TR

T =TR

T2 =

Eo
pTR

T = TR

T2= TR

Eo=e—
pTR

T = TR 4

T2= TR 5

FIG. 2. Same as Fig. 1 with E, =8(A/pT& )sech(4t/Tz ), A =2m. The relaxation time T2 is ao, Tz, and 0.2T& for (a), (b), and (c),
respectively.
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38' 'p
E

Bt 2A

1 f (R(y t))e '' " 'dy R'+c c.
2Tg 0

E„=— f (R(y, t))e '«dy,
kL

p ~x
(4.3)

E, = E, +— f (R(y, t))e'«dy e'"
p TA, 0

(4.4)

Here T& is the superradiation time of a layer of thickness
k/(2m )

L
Tg —2' Tg

2mp N
(4.5)

The first terms in the braces in (4. 1) and (4.2) represent
the external driving field, while the second ones mean the
self-field, originating from the dipoles of the material, and
this gives rise to the reflected wave at x =0. It can be
seen that the first term, i.e., the incident wave creates a
polarization proportional to R, (x, t)exp(i~t —kx ), where

R, (x, t) is slowly varying in time and space as well. Now
if we put this R into the second term, we see that at x =0
the integrand contains the expression exp( 2ikx'—), and
integration over subsequent intervals of length of A, /4
give a net result approximately 0. Physically this means
that the backscattered waves from the different parts of
the bulk of the medium suffer destructive interference.
This is why one can apply the SVEAS if one is not in-
terested in the reflected wave. But as our aim is to deter-
mine reflection we must not use this approximation. The
consideration above suggests also that to obtain just the
reflected wave, it is enough to integrate until L -k be-
cause the bulk of the medium will not contribute to the
reflection. Our results below justify this assumption. We
note that as R is slowly varying in time, the retardation
of its time argument can be neglected if L —A, .

The reasoning above that the length scale to be used
must be comparable with the wavelength implies also the
relevant time parameter of the investigated effect. The
time constant determining the order of that part of the
derivative, which is responsible for the reflected wave is
the superradiation time of a layer of thickness A. /(2').

We note that in the semiclassical picture the terms
containing the integral in (4.1) and (4.2) give rise to super-
radiation, ' when the relaxation time T2 ——~. Equation
(4.3) shows that the reflected wave consists of purely this
term even in the presence of the external excitation.
These facts show that it is reasonable to regard coherent
reflection from an extended medium as superradiation
originating from the boundary layer of the medium. The
numerical calculations below show that the depth of this
layer is not larger than A, /2. We expect therefore that
the results for the ideally thin medium, obtained in Sec.

(4.2)

The solution of the coupled integro-differential equations
(4.1) and (4.2) yield the reflected and transmitted waves

by

III, essentially will retain their validity for the extended
medium too. The reflected intensity will not depend on
the length of the sample beyond A. /2.

Our calculations yield the transmitted wave as well. In
contrast with reflection, it will depend of course on L
even if we have L &&A,. To determine the transmitted
wave, however, it is not recommended to choose a length
scale comparable with the wavelength, unless one is in-
terested in the transmission of a thin layer. Our con-
siderations above and Eqs. (4.1) and (4.2) show that if
L »3, , then it is enough to use the traditional theoretical
treatment with the SVEA. It must be noted, however,
that the initial pulse of SVEA theory is assumed to be al-
ready within the medium. Therefore the identification of
the initial pulse with the external excitation is allowed
only if reflection is weak.

We have investigated the problem first without relaxa-
tion, T2 ——00. The conditions of strong reflection for the
extended medium are similar to those of the thin medium
case: The amplitude of the exciting pulse must satisfy
(p/R)E; & 1/Tt„otherwise in Eqs. (4.1) and (4.2) the first
term will dominate, and the polarization wave will go
into the forward direction, leading to a weak reflection.
The other condition is that the duration of the incoming
pulse T must be greater or at least comparable with T&.

Figure 3 shows the results for a n. /2 secanthyperbolic
pulse of amplitude Eo =0.5(fi/p T«) and duration
T=T&, for L=O. SA., A., and 2.8A, . The reflected waves
are relatively strong and nearly equal in all cases, only
the transmitted intensity is decreasing. This proves that
the reflected wave really originates in the boundary layer
of the medium, not deeper than A, /2.

For weak but short excitations the character of the re-
sults can be explained as in the infinitely thin case. When
the external pulse is shorter than the superradiation time
T&, but it is not strong enough to bring back the atoms in
their ground state, then after the rapid excitation, which
is a coherent preparation, there remains an inversion and
a polarization in the medium. This leads to superradia-
tion in both directions [Fig. 4(a)]. The forward wave
shows ringing, while the backward wave is a wide flat
pulse, because it is the field of the boundary layer only.

When (p/h)E; &1/Ti and T & Ti, then the reflected
wave will be weak. This happens in the case, which is
usually dealt with when coherent propagation effects,
e.g., self-induced transparency, is investigated. To com-
pare the results following from (2.4), (2.7), and (2.8), with
those obtained ignoring the role of the boundary, we have
considered the behavior of a 2~ secanthyperbolic pulse
with duration less than Tt, (Fig. 5). The reflected wave is
relatively less, if the amplitude of the excitation is
greater. The transmitted pulse is a single strong peak
similar to the excitation. Already for layers of thickness
about A, one can observe the delay of the transmitted
pulse, a characteristic feature of coherent interaction,
which is longer for a wider pulse. As the area of the
propagating pulse within the medium is somewhat less
than 2m. , because of reflection, therefore according to the
area theorem' its area must grow until 2m. . This leads to
the broadening of the transmitted pulse. The opposite
effect, narrowing, has been obtained in the case of a 2.25m
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1/2

1 —2i
2

TA
(4.6)

pulse.
We have investigated the influence of relaxation on

reflection and transmission. In Eqs. (2.7) and (2.8) we
have taken into account the term R /T2.

We have noted already that in the linear case, when
W= —1, and for stationary excitation T && T2, our equa-
tions yield the Fresnel formulas for a finite layer. ' From
Eqs. (2.9) and (4.5) the index of refraction can be ex-
pressed as

T

12

This fact enabled us to control the results of the numeri-
cal calculations. In the case T g~ T2 the transmitted and
reflected pulses have the same form as the incident one.

(b)

l2

12

(b) (c

l2 12

(c)
L=28 X

12

FIG. 3. Time dependence of the transmitted (t) and reflected
(r) intensities relative to the intensity of the exciting wave (e).
The later is a 0.5m. secanthyperbolic pulse,
E, =0.5(fi/pTi )sech[(t —to)/T], T = Tz, to=6T, T'z ——ao. In-
creasing the length of the medium has no essential effect on the
reflection.

I

12

FIG. 4. Same as Fig. 3 with E, =2(fi/pTi, )sech[(t to)/T], —
T=0.25T&, A =0.5n., L=A., for different T& —s. The secon-
dary waves show a superradiant character which is suppressed
by decreasing T~.
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Increasing the length of the system, the reflection
coefficient, defined as the reflected intensity divided by
the incident intensity, has shown the known oscillatory
decreasing behavior. ' For T=8T2 and T2 ——0.25T& the
difference between the analytical and numerical results
was less than 10

Now let us turn to the nonstationary case. The in-
clusion of the relaxation leads to the attenuation of the
reflected wave and reduces the pulse delay, both being
signs of the vanishing coherent behavior. In accordance
with the results of Sec. III, this effect on the reflection is
determined by the ratio of T& and T2. Since the coherent
reflection can be regarded as superradiation from the
boundary layer, it will be reduced if we decrease T2 and
cannot be significant if T2 & Tz [Figs. 3(b) and 6]. On the
other hand, if the direct response of the medium is dom-
inating, e.g. , in the case of a short 2' pulse with duration
less than T&, when reflection is small otherwise, then the
inclusion of relaxation influences markedly only the

transmitted wave. The effect is determined by the ratio
of the duration of the excitation and the relaxation time.
The damping of transmission is a bulk effect and there-
fore in a medium of thickness of the order of A, it will not
be very strong (Fig. 5). In this case the absence of
coherent interaction is shown by the decreased pulse de-
lay and the reduction of the broadening. In the system
remains an approximately homogeneously distributed ex-
citation that will be dissipated by longitudinal relaxation.

V. CONCLUSIONS

In the case of coherent interaction similar to the in-
coherent case, the reflected wave originates in the bound-
ary layer of the medium, which is less than a wavelength.
Therefore the character of the results for the ideally thin

(a}

(a)

l2

I

l2

(b) 72=2 T),

I

l2

(c)
Tq =0.25 T),

l2

(c)

FIG. 5. Reflected (r) and transmitted (t) intensities relative
to the excitation (e), for a 2m. secanthyperbolic pulse, E,
=8(filpT&)sech[(t to)/T], T=0—.25T~, t0=6T, I.=A, , for
different T,' —s.

l2

FIG. 6. Effect of relaxation on the pulse shown in Fig. 3(b);
L =A, .
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medium presented in Sec. III are relevant for the extend-
ed medium too.

To observe a strong coherent reflection, the Rabi fre-
quency of the incident field must be comparable or small-
er than the inverse of the superradiation time T& of the
medium of thickness A. l(2'). Another condition is that
the duration of the incident pulse must be shorter than
the relaxation time of the macroscopic polarization, but
longer than T&. Otherwise either the strong external field
will force the atoms to radiate forward, or the macros-
copoic dipole moment of the system that creates the
coherent reflection will be destroyed. In the other
coherent case T2 ) T~ ) T, the reflection is small, and the
transmitted pulse shows the characteristics of self-
induced transparency. In the linear incoherent case with
T ) T2 ) T& the reflection will be large too, but this can

be interpreted also by a great imaginary index of refrac-
tion, arising from the transition between the resonant lev-
els.

In an activated crystal with N = 10' cm and
p=3)(10 ' cgs units we obtain T& ——10 " s. If for T2
a value longer than this can be achieved, then the condi-
tions of observing coherent reflection are realizable.

ACKNOWLEDGMENTS

The authors express their gratitude to A. Leontovich,
I. Sokolov, A. Troshin, and A. Zaitsev for stimulating
discussions and remarks. One of us (M.B.) thanks I.
Gyemant for valuable suggestions and help in computer
runs. The financial support of the Hungarian Academy
of Science-Soros Foundation is gratefully acknowledged.

'M. Born and E. Wolf, Principles of Optics (Pergamon, London,
1965).

L. Allen and J. Eberly, Optical Resonance and Two-Level

Atoms (%'iley, New York, 1975).
R. H. Dicke, Phys. Rev. 93, 99 (1954).

~R. F. Malikov, V. A. Malyshev, and E. D. Trifonov, Theory of
Cooperative Coherent sects in Radiation (LGPI, Leningrad,
1980) (in Russian).

~M. Gross and S. Haroche, Phys. Reps. 93, 301 (1982).
6J. C. McGillivray and M. S. Feld, Phys. Rev. A 14, 1169 (1976).
Q. H. Vrehen and H. M. Gibbs, in Dissipative Systems in Quan

turn Optics, edited by R. Bonifacio (Springer, Berlin, 1982).
R. Bonifacio and L. Lugiato, Phys. Rev. A 11, 1507 (1975).
J. C. Eilbeck, J. Phys. A 5, 1355 (1972).

' V. I. Rupasov and V. I. Yudson, Kvantovaya Elektron. (Mos-
cow) 9, 2179 (1982) [Sov. J. Quantum Electron. 12, 1415
(1982)].

' R. A. Vlasov, O. N. Gadomsky, I. V. Gadomskaya, and V. V.
Samartsev, Zh. Eksp. Teor. Fiz. 90, 1938 (1986) [Sov.
Phys. —JETP 63, 1134 (1986)].

M. D. Crisp, Opt. Commun. 1, 59 (1969).
S. L. McCall and E. L. Hahn, Phys. Rev. 183, 457 (1969).

' R. E. Slusher and H. M. Gibbs, Phys. Rev. A 5, 1634 (1972).
' E. D. Trifonov, A. I. Zaitsev, and R. F. Malikov, Zh. Eksp.

Teor. Fiz. 76, 65 (1979).
' M. G. Benedict, E. D. Trifonov, in Cooperative Radiation and

Photon Statistics (LGPI, Leningrad, 1986), p. 13 (in Russian).
' F. A. Hopf, C. M. Bowden, and W. H. Louisell, Phys. Rev. A

29, 2591 (1984); F. A. Hopf and C. M. Bowden, ibid. 32, 268
(1985)~

'SY. Ben Aryeh, C. M. Bowden, and J. C. Englund, Phys. Rev.
A 34, 3917 (1986).

' F. Haake, J. Haus, H. King, G. Schroder, and R. Glauber,
Phys. Rev. A 23, 1322 (1981).
R. Florian, L. O. Schwan, and D. Schmid, Phys. Rev. A 29,
2709 (1984).

'M. G. Benedict and I. Gyemant, Acta Phys. Chem. 30, 115
(1984); 31, 695 (1985).
R. C. T. da Costa and G. A. P. Munguia, Phys. Rev. A 14,
1745 (1976).


