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Multiconfiguration Hartree-Fock (MCHF) calculations are presented for singlet terms in neutral
strontium (Srt) belonging to (perturbed) sp, sd, and sf Rydberg series. We discuss briefly some
particularly difficult MCHF calculations and the steps taken to overcome the difficulties. The
ab initio wave functions are used to calculate radiative lifetimes as well as individual transition rates
for electric dipole and quadrupole radiation. The calculated lifetimes are compared to recent exper-
imental results. The observed trends are well reproduced by the calculations. We compare our
wave functions with wave functions obtained from multichannel quantum-defect theory (MQDT) in

either of two different ways. One is based on semiempirical fitting to the observed energy levels and
the other on a recent ab initio R-matrix calculation of MQDT parameters. We find good agreement
with the wave functions obtained in the latter calculation, confirming earlier conjectures about the
degree of reliability of semiempirical MQDT fits to perturbed Rydberg series [C. Froese Fischer and
J. E. Hansen, Phys. Rev. A 24, 631 (1981)].

I. INTRODUCTION

Some years ago, Hansen and Persson' predicted a
strong mixing between the 4d Sp 'F' term and the
Ssnf I" series in neutral strontium (Sr 1). This interac-
tion leads to cancellation in the transition integral from
the lowest 'F' to the lower-lying Ss4d 'D term in agree-
ment with observations of the line intensities in emission
spectroscopy. ' Similarly, the Ssnp 'P' series has been ob-
served to interact strongly with the 4d 5p 'P' term. This
leads to some ambiguities in level designations which
form part of the motivation for the present work.

The study of interactions in Rydberg series has been
given new impetus by the extensive experimental studies
which have been carried out during the last few years us-
ing laser techniques. Recently, the lifetimes of a number
of levels in the 'P' and 'F' series have been measured by
Jonsson et al. These measurements confirm the long
lifetime of the lowest 'F' term but show otherwise a very
regular variation with n. On the other hand, the Ssnp 'P'
series is characterized by a shortening of the lifetime be-
tween n =7 and 8 which presumably is due to the in-
teraction with the doubly excited 4d Sp 'P' state.

It is interesting to try to understand the variations in
the lifetime trends as well as any deviation from the sim-
ple scaling law r-(n ) in terms of configuration-
interaction (CI) efFects. Approximate formulas have been
used to interpret the decrease in lifetimes in the vicinity
of doubly excited levels of two-electron systems. These
take into account the admixture of a short-lived per-
turber and involve the amount of perturber character in
the particular level, which may be taken, for example,
from a multichannel-quantum-defect-theory (MQDT)
analysis of the energy-level structure. As an alternative,
we present here results of an ab initio multiconfiguration

Hartree-Fock (MCHF) study of the observed lifetime
trends.

A number of MQDT studies of the alkaline earths have
been carried out starting with the work of Lu and, in
particular, Armstrong, Esherick, and Wynne. To inves-
tigate the applicability of MQDT to the alkaline-earth
spectra, Froese Fischer and Hansen carried out MCHF
calculations for the 'S and 'D series in Car and SrI.
Disagreements between MQDT and MCHF results with
regard to eigenfunction compositions were found in all
cases considered. The qualitative agreement between ob-
served isotope shifts and theoretical values calculated
from simplified MCHF wave functions, which was found
by Aspect et al. , supported the MCHF results. As a
further check, Froese Fischer and Hansen' tested their
MCHF wave functions by calculating lifetimes of the 'S
terms and found reasonable agreement with those ob-
served. We are here extending these comparisons by in-
vestigating the perturbed 5snp 'P', 5snd 'D, and 5snf 'I"
series in Sr I, using the MCHF approach to account accu-
rately for the correlation between the two outer electrons
but neglecting core-polarization and relativistic effects.

Recently, Aymar et aI. " have published an R-matrix
calculation of MQDT parameters for Sr 1 which supports
the earlier MCHF results ' for Ca I and Sr r. This cal-
culation makes it interesting to report more extensive and
more accurate MCHF wave functions.

We describe first the MCHF calculations. MCHF
solutions for excited Rydberg states are often very
difficult to obtain and we discuss in some detail a few
cases which were particularly difficult. Section II
discusses the eigenvector compositions in relation to ex-
perimental and MQDT results. We then coinpare the ex-
perimental oscillator strength values for the
Ss 'S —Ssnp 'P' series with the calculated, and report
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TABLE I. Wave function expansions. Orbitals kept fixed in the variational process are underlined

and orbitals with the same index are orthogonal. The first entry on each line is the label used to identi-

fy the expansion in the text.

1'S

2'P
3 'I"
4'p
5'I'
l'a
2'a
3 la

4 'F'

5 'F'
i'6

[5s', 6s', 7s', 5p', 6p', 4d', Sd', 4f ', 5g ')
[5$5pp, 6s6p„7s7ppt 5p, 4d, , 6p, 5d, ,4d, 4f, , 51~5f, ,4f, 5g, )

[Ss6p„6s5pz, 7s7p»Sp, 4d„6p, Sd„4dz4f, , SdzSf, ,4fzSg, )

[Ss,7pz, 6s, Sp, , 7sz6pz, Sp, 41, , 6p, Sd, ,41,4f, , Sd25f i, 4f25g i )

[Ss7p2, 6sSp2, 7s6p„Sp, 41„6p,Sd„4dz4f, , Sd25f, ,4f~Sg, )

[5 s8p„6 sSp 27s6p, , Sp)41„6p)51),4dp4f „Sd,Sf„4f25g) )

[ Ss4d „6s51,, 7s6d, , 5p»6p', ,4d» Sd', , Sp, 4f, ,6p, Sf»4f » Sg»4d, 5g, )

[SsSd „6s4d, , 7s6d „5p ~, 6p', ,4d2, 5d2, 5p24f ~, 6p25f „4f&, 5g ~, 4d, 5g~ )

[ Ss4d, , 5sSd, , 5s6d, , 6s4d3, 5p, , 6p, ,4d z, Sd z, Sp24f, ,4fz, Sg, ,4145g z )

[4d, Sp, , 5d, 6p„5s4f, , 6s5f „4d24fz, 5125f2, 5p, Sg„6p26g, ,4f35g, )

[4d, Sp„51,6p, , Ss4f, , 6sSf4, 4124f2, 5dzSf2, 5p25g ~, 6p26g, ,4f, Sg, )

[Ss4f i Ss5f i~Ss6fi 4diSpi 4di4f»Sp25gi~4f35g2)

[Ss6f„4d,5p, , 4d, 4f»5p, Sg „4f35g, )

[5s4f,5s5f, , 5s6f „5s7f, , 41,5p~, 4d, 4f„5p,5g, , 4f, 5g, )

[5 Ssg~, 6s6g~, 41', , Sd&, 41, Sg&, Sp&4f, , 6p, Sfi,4f2, 5g3)

electric dipole and electric quadrupole transition proba-
bilities for a number of transitions between the Rydberg
states considered. In Sec. V the lifetime results for the
'P' and 'F' series are reported and compared with the re-
cent experimental results of Jonsson et al.

Since a consistent labeling of the different states is
difticult we use the designations given by Garton and
Codling throughout this paper in order to facilitate the
drscussron.

II. MCHF CALCULATIONS

The multiconfiguration Hartree-Fock method is partic-
ularly well suited for a theoretical study of two-electron
systems where correlation is important as is the case for
the singlet terms in the alkaline earths. The general ap-
proach was described by Froese Fischer' and applied
successfully to the study of alkaline earths and isoelec-
tronic ions. ' ' ' More recently, length and velocity
oscillator strengths, differing by less than one unit in the
fifth decimal place and bordering the exact nonrelativistic
value, were obtained for the 2 S—2 P' transition in

Li II, ' illustrating the high accuracy attainable with the
reduced forms of the MCHF wave-function expansions.
We are using the same approach here to account for the
correlation between the two outer electrons in neutral Sr.

The reduced form is based on the reduction of the fol-

lowing (4X4) wave-function expansion:

4('p')=&1 Ss'5p')+ $1 Ss'6p') +y 16s'Sp')

+516s'6p'),
where a closed-shell core is implied, to a diagonal (2X2)
representation

4 '('P') =c, 15s5p ) +cz 16s6p ),
which usually is presented as the result of the application

of two different orthogonal transformations of the radial
functions in each l space. ' ' These transformations,
which can be applied directly from the beginning in the
multiconfigurational scheme, define the reduced form of
the MCHF expansion. The equivalence follows from
Brillouin's theorem' ' (4 '1H

1
4, ) =0 formu-

lated for the following perturbations:

and

P„+a'„,
P6. -P6s —&Pss

5p
~ 5p+E 6p

P6p +P6 E P5

which gives respectively

c& (4 '1H 16s5p 'P') =cz(4 '1H
1
Ss6p 'P')

and

c, (4 '1H 15s6p 'P') =cz(4 '1H 16s5p 'P') .

These two equations are fulfilled for arbitrary sets (c„cz)

with c
&

different from c2 if and only if

(4 H 16s5p P ) =(4
I

H 15s6p P ) =0
which shows that the configuration state functions 6s5p
and Ss6p are implicitly included in the two-configuration

MCHFpexpansion W

The MCHF expansion used in our calculations for Sr I
are given in Table I. The subscripts on the orbitals desig-
nate the different orthogonal sets involved in the different
angular couplings. For instance, for the lowest 'P' state,
labeled 1 'P' and described by the superposition

[SsSpz, 6s6p2, 7s7p2, 5p, 4d, , 6p, Sd„4d24f „5d25f„4f25g, ),
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the use of two diff'erent orthogonal sets [npi, n =5,6)
and Inp2, n=5, 6, 7I without radial constraints between
the two sets, allows us to take advantage of the reduced
forms for each angular coupling (spz 'P' and p, d, 'P', re-
spectively), while still keeping orthogonality between
configuration state functions,

(SsSp2 P
I
6p15di P') =0 .

From Brillouin's theorem, ' ' the corresponding
MCHF expansion can be shown to include, at least to
first order, the complete ns/es 5p2 'P', 5s np&/ep2 'P',
ns/~s 6p, 'P', 6s npz/cpa P npi/epi 4d, 'P', . . .
and 4f2 ng, /eg, 'P' series where nl and el designate ex-
cited bound and free electrons, respectively. This proper-
ty makes the MCHF approach particularly powerful for
the study of "two-electron" systems and extremely com-
pact for investigating discrete-continuum interactions
compared to conventional CI calculations. ' '

Previous MCHF calculations for alkaline earths have
usually been performed using a frozen core with orbitals
taken from the ion. ' However, the sensitivity of the 3d
orbital to the details of the screening has been illustrated
in Ca where it is strong enough to change the relative po-
sition of the 3d4p 'P' term in the 4snp 'P' series. ' This
effect should be less important in Sr? than in Ca I since
the collapse of the 4d orbital is less pronounced than the
collapse of 3d. However, in order to limit any basis set
dependence of the 4d contraction, we systematically in-
cluded all the core orbitals (ls, 2s, 2p, 3s, 3p, 3d, 4s, 4p) in
the variational procedure. We thus automatically include
correlation effects which are related to the relaxation of
the core. For example, a completely variational calcula-
tion in the single-configuration Hartree-Fock approxima-
tion for 5s 'S would produce a wave function which
cannot interact to first order with any configuration state
function arising from a single-electron excitation from
the core. For instance, we would have

(4""(4p Ss 'S)
~

0
~
4p Ss np/ap 'S) =0

for any single-electron excitation 4p~np/ep where the
ket ~4p Ss np/ep 'S) has been constructed from the
4H" orbitals, and the np/cp orbital is orthogonal to all p
orbitals in the 4 " wave function. This property is no
more satisfied when valence correlation effects are includ-
ed. By using a two-configuration MCHF approach

ci I
5s S)+c2

I Sp S),

Brillouin s theorem is satisfied for a particular linear com-
bination' '

a
~
4p 5s np/ep 'S)+P

~
4p Sp np/ep 'S)

but not for the individual components separately. Thus
the configuration state functions 4p 5s np/ep 'S, which
were implicitly included in the Hartree-Fock approxima-
tion, are interacting with the zero-order MCHF2 wave

function even when the core is relaxed.
The MCHF calculations corresponding to the expan-

sions given in Table I were performed in the following
way. For the 'S series we were interested in the ground
level only. The expansion has a simple form for this sym-
metry and the calculation presented no problem. For the
'P' series, we wanted to obtain accurate wave functions
describing the five lowest levels. This series is known to
be perturbed by 4d5p 'P'. Moore's compilation ' [re-
ferred to as AEL (atomic energy levels)] does not give a
4d5p 'P' term, although Shenstone and Russell suggest-
ed that the level given by Moore as Ss9p 'P' might be la-
beled more appropriately as 4d Sp 'P . Garton and
Codling proposed that the fourth 'P term, listed in
AEL as Ss8p 'P', should be identified as the 4dSp 'P'
perturber, although they realized that there probably is a
severe mixing. The last proposal was supported by the
MQDT analysis due to Esherick.

In an ab initio treatment, the same MCHF expansion
can be used to determine all bound members of a Ryd-
berg series. For instance, if we approximate the 'P'
series by a MCHF expansion over the following three-
configuration state function:

'('P ) =c,
~

Ssnpz 'P') +cz i
4d i 5p, 'P')

+C3 I 4d24f i
'P'&

then in order to confirm that the MCHF solution has
converged to a particular np level we must rely on the be-
havior of the radial solution P(r) which, in analogy
with hydrogen, means that an np orbital is required to be
positive near the origin and have n —2 nodes. The Ss and
np2 orbitals are then referred to as spectroscopic orbitals
in contrast to the correlation orbitals (4d i, Sp i, 4d2, and
4f i) which can be very diff'erent in form and for which
node counting is not applied in the MCHF procedure.

The four MCHF eigenvectors obtained for n =5—8 and
their position relative to the ionization limit are given in
Table II. The MCHF solution for n =8 is in compara-

TABLE II. MCHF expansions c,
~

5snp2 'P') +cz
~

4d, 5p, 'P')+c,
~

4d, 4f, 'P ) for the five lowest
'P' levels of Sr I. Also shown are the calculated and observed ionization energies.

Level' IMcHF (cm
—1) I' ' (cm ')

n=5
n=6
n =7
4d 5p
n=8

0.9038
0.9426
0.9297
0.8826
0.9245

0.4227
0.3313

—0.3620
0.4598

—0.3716

0.0123
0.0419
0.0683
0.0982
0.0844

23 374.7
11 271.0

6702.0
4161.6
3326.8

24 233.62
11 833.66

7025.20
4759.98
3469.78

'Adopting the level notation of Garton and Codling (Ref. 2).
Using the ionization potential I, =45932.09 from Baig and Connerade (Ref. 28), term values from

Moore (Ref. 21) with the exception of the 5s8p and 4d5p terms from Garton and Codling (Ref. 2).
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Pp (r) = gc„'
—1/2

gc„P„(r),

and selecting the second eigenvector of the (3 X 3) repre-
sentation (Ssp2, 4d&5p&, 4d25f, ). The total energy is ob-
viously invariant under this transformation and the cor-
responding eigenvector is given in Table II. It corre-
sponds exactly to the MCHF solution we would get if the
calculation using the reduced form would converge. The
p2 orbital built according to Eq. (1) has five nodes and
therefore should be labeled 7p. The diagonal matrix ele-
ments corresponding to Sspz and 4d, 5p, of the (3X3) in-

teraction matrix are —3131.3946 and —3131.3948 a.u. ,
respectively. This quasidegeneracy, which clearly makes
this representation unstable, is lifted in the explicit repre-
sentation or when additional terms are added to the ex-
pansion.

By analyzing the variational conditions corresponding
to the MCHF6 expansion, it is easy to show that too
many degrees of freedom are available if all np2 radial
distributions are variational. One can show that the same
solution is obtained by varying one (arbitrary) npz orbital
in the MCHF6 expansion, the mixing coefficients being
such that in all cases the same p2 orbital is obtained by

tively good agreement with the fifth experimental level.
This correspondence would be confirmed if we could find
another MCHF solution described by the same expansion
and lying somewhere between the n =7 and 8 MCHF ei-
genvalues. Following Garton and Codling we would ex-
pect this solution to be dominant in 4d5p 'P'. However,
all attempts to find such a solution using the MCHF& ex-

pansion but with 5s and 5p2 as correlation orbitals has
failed. To solve this stability problem we have instead in-

troduced a fixed spectroscopic-orbital basis
(Ss, 5p 2, 6p 2, 7p 2) for the lower Ssnp2 states (n =5-7)
and a variational and correlating orbital 8p2 for the rest
of the series, i.e.,

( P ) =ci
l
Ss5p z

'P ~+cz
~

Ss6p 2
'P'~

+c3
~

Ss7p z P ) +c4
~

4d, Sp, 'P')

+cs
~

Ss8p2 'P') +c6
~
4d25f, 'P') .

The underlined orbitals have been kept fixed in the varia-
tional process on orbital functions obtained for Ssnp
states in single-configuration HF calculations. By select-
ing the eigenfunction corresponding to the fourth eigen-
value at each iteration of the MCHF procedure we have
obtained a stable solution for the fourth 'P' eigenvalue in
this "explicit" representation. This way of circumventing
such stability difficulties has been proposed and used by
Froese Fischer. We want to point out that the explicit
(6X 6) and reduced (3 X 3) forms are strictly equivalent
only if the 5s is variational. The explicit solution has the
following expansion coefficients: c, =0. 1179, c2

=0.1881, c&
——0.7443, c4 ——0.4598, c5 ———0.4192, and

c6 ——0.0982, and it is lying 4161.6 cm ' below the ioniza-
tion limit.

We can obtain the "implicit" form from the "explicit"
simply by constructing a p2 radial distribution using the
equation

the transformation (1). If all npz orbitals are varied, the
correct MCHF solution has the surprising property that
all diagonal Lagrange multipliers e( np 2, np 2 ) are
equal [e(Sp2, 5p2 ) =e(6pz, 6p2 ) =c(7p2, 7pz) =E(8pz, 8pz)
=9635. 1 cm ' in the present case]. This property can be
derived from the MCHF equations (see Appendix) and
can be used to test whether the variational conditions are
applied correctly in an explicit MCHF calculation. Cases
where a rotation of the orbital basis leaves the total wave
function and energy unchanged usually require the use of
large accelerating factors in the MCHF procedure and
are therefore not computationally attractive, but the
analysis of them may provide insight into the structure of
the solution, in particular into the values of the off-
diagonal Lagrange multipliers. For the example just
given, we can show that the solution consisting of setting
the off-diagonal Lagrange multipliers to zero, in order to
remove the extra degrees of freedom and make the solu-
tion unique, corresponds to the reduced representation,

e., cz ——cs ——cs ——o.
The MCHF& expansion reported in Table II has been

extended by adding more components and using the re-
duced forms (see Table I). For the two highest eigenval-
ues, we included a 7s6p~ component, without any ortho-
gonality constraint between the 6p& and p2 radial distri-
butions. A similar approach has been used for the wave
function of 3'P', including a 7sz6p2 component. These
representations somewhat complicate the Hamiltonian
matrix elements but allowed us to achieve better conver-
gence while satisfying the orthogonality requirement be-
tween configuration state functions.

It was particularly difficult to obtain converged MCHF
solutions for the higher members of the 'D series. The
wave functions for 1 'D and 2 'D were calculated using
the same reduced forms. However, for the third eigen-
state an explicit form was used in which the 4d

&
and 5d

&

orbitals were kept fixed while the 6d, orbital was varia-
tional and represents the rest of the Ss nd, led, series.
When adding a further component having the same angu-
lar coupling, it is important to relax some orthogonality
constraints if an explicit representation is chosen for the
other states with this coupling. For example, the 4d& or-
bital of the new component 6s4d& appearing in the 3 'D
expansion is not required to be orthogonal to the 4d ~,

5d ), and 6d& orbitals. This degree of freedom is neces-
sary for the equivalence between the explicit

I Ss4d, , Ss5d, , Ss6d &, 6s4d& I

and implicit

j Ss6d, , 6s4d, )

representations.
Similar stability problems occurred for the 'F series

and we did not succeed in adding a further sf component
in the MCHF expansion of 3—5 'F'.

Concluding this section, we note that although HF cal-
culations now in most cases can be carried out in a rou-
tine manner, convergence problems still exist for MCHF
calculations for excited states which are not the lowest of
a given symmetry. However, referring to earlier stud-
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ies, in which no states higher than the second lowest
was attempted, it is clear that progress has been made in

choosing expansions for which convergence is easier to
obtain. Explicit forms have usually been found to be
more stable than implicit representations: starting with
implicit forms obtained from the variational solution of
the explicit form using Eq. (l), the MCHF program often
diverges even when large acceleration factors are used.

We report the final eigenvector compositions in Table
III. The accuracy of the results is evaluated by compar-
ing the MCHF and observed ionization energies ' '
(Table IV). The lowest 'S and 'P' terms have earlier been
calculated by Hansen using (SX5) and (3X3) MCHF
expansions. The eigenvector compositions are very simi-
lar in the two calculations and the total energies have
been lowered by only 160 and 170 cm ', respectively.

TABLE III. Eigenvector compositions of the MCHF expansions (Table I) for 'S, 'P', 'D, 'F', and 'G terms in Sr I.

Ss2
6s2

7$

5p 2

6p
2

4d
Sd
4f 2

5g2

$7p2
6s5P2
7s6p3
5p14d1
6p15d1
4dz4f,
Sdz5f,
4fzsgi

Ss4d 1

SsSd 1

Ss6d1
6s4d3

6P1
4d2
5d2

Slzz4f i

4f 2

4d45g2

1'S

4'P

3'D

0.959 11
—0.037 16
—0.003 23

0.272 77
0.008 98

—0.064 18
—0.003 42

0.008 67
—0.004 20

0.912 25
—0.093 16
—0.001 69
—0.390 11
—0.025 08
—0.078 49

0.007 70
0.009 41

0.250 16
—0.428 41
—0.160 13

0.036 66
—0.528 27

0.01696
—0.658 46

0.094 35
0.062 57

—0.033 33
0.004 37
0.005 33

5s 5P2

6s6P2
7s 7p2

Sp14d1
6p15d1
4dz4fi
Sdzsf&
4fzsgi

5$8p2
6s 5P2
7$ 6p3

Sp14d1
6p15d1
4dz4fi
Sd, Sf,
4fzsgi

4d15p1
Sd16p1
5s4f,
6s5f,
4dz4fz
SdzSfz
Sp25g1
6P26g1
4fzsS'z

1 'P'

5 'p'

0.899 18
—0.028 31
—0.002 92

0.435 37
0.029 94
0.013 13
0.004 63

—0.005 38

0.929 65
—0.050 79

0.002 26
—0.356 19

0.028 58
0.073 16
0.007 31
0.008 69

0.733 68
0.043 58

—0.671 70
—0.028 61
—0.071 50

0.006 74
—0.050 95

0.003 95
0.006 76

Ss6p2
6$ Sp2

7s7p2
5p14d,
6p15d1
4dz4f,
Sdzsf,
4fzsgi

Ss4d1
6sSd1
7s6d1

SP1
6P1
4d 2

5d
Saz4fi
6Pzsf i

4f 2

Sg1
4d35g2

4d15p1
5d16p1
5s4f,
6ssf4
4dz4fz
Sdzsfz
Sp25g1
6P26g1
4fzsgz

1'D

0.91440
0.16994

—0.008 02
0.363 29
0.029 15
0.045 29
0.004 94
0.005 17

0.91645
0.071 84

—0.004 28
0.367 71
0.002 51

—0.084 73
0.008 18
0.109 18

—0.009 60
0.003 07
0.000 34

—0.021 31

0.585 51
0.036 99
0.804 72

—0.021 69
—0.07043

0.006 74
0.052 15
0.002 14
0.006 46

5$17p2
6s15P2
7s,6p,
Sp14d1
6p15d1
4dz4fi
Sd, sf,
4fzsgi

Ss5d1
6s4d1
7s6d1
5p

2

6p
2

4d2
5d2
Slz'z4fi

6Pzsfi
4f2

4d35g2

5s4f i

Sssf (

5s6f,
4d15p1
4dz4f,
Sp25g1
4fzsgz

3 'P'

2'D

0.916 12
—0.137 58
—0.003 49
—0.369 57
—0.023 73

0.067 30
0.006 47
0.008 14

0.882 37
—0.156 17

0.012 13
—0.303 22

0.043 69
—0.307 77

0.035 32
—0.082 08
—0.005 23
—0.01373

0.001 27
0.01047

—0.005 03
0.965 88

—0.066 59
0.243 19

—0.031 60
0.049 69
0.003 89

Ss6f,
4d15p,
4dz4fz
SP25g1
4f35gz

4 'F'

0.989 31
0.138 17

—0.026 43
0.038 34

—0.002 26

5s4f,
Ss5f,
Ss6f,
Ss7f,
4d15p1
4dz4fz

4f35gz

5 'F'

—0.009 41
—0.015 82
—0.032 05

0.99409
0.095 32

—0.020 23
0.030 30

—0.001 67

5s5g1
6s6g1
4d2
5d
4d15g2
Sui4f i

6pisfi
4f 2

1'G

—0.033 98
—0.003 20

0.957 09
—0.19845
—0.027 88
—0.202 58

0.009 29
0.038 69

—0.005 66
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TABLE IV. Binding energies (cm '). III. COMPARISON BETWEEN MQDT AND MCHF

Level'

5s '5

5s5p P'
5s6p
Ss7p
4d 5p
5s8p

5s4d 'D
Ss5d
5p

2

4d5p 'F'
5s4f
5s5f
5s6f
5s7f

4d"G

MCHF

43 536.4

23 550.1

11 897.3
7083.4
4769.1

3437.7

25 188.4
11 078.4

9374.7

8285.4
6510.7
4366.4
3063.0
2255.8

5492.9

Obs.

45 932.1

24 233.6
11 833.7

7025.2
4760.0
3469.8

25 782.4
11 204.6

8971.2

7924. 1

6393.1
4413.2
3092.7
2276.0

5 (t:m ')

2395.7

683.5
—63.6
—58.2
—9.1

32.1

594.0
126.2

—403.5

—361.3
—117.6

46.8
29.7
20.2

In a very interesting recent paper, Aymar et al. " have
made ab initio R-matrix calculations of MQDT parame-
ters for the ' S, ' P', and ' D series in Sr I. Their paper
gives also a discussion of earlier semiempirical fits to the
observed energy levels in SrI as well as a comparison
with earlier MCHF results ' for Sr and Ca. The main
conclusion is that additional configurations (collision
channels) must be included in most cases compared to
what has been done in the semiempirical treatments and
that these additional configurations can substantially
change the previous MQDT parameters bringing MQDT
and MCHF predictions of, for example, wave-function
compositions into much closer agreement. It is therefore
interesting to compare this treatment with our improved
MCHF calculations. We will discuss the series separately
with the main emphasis on the 'P' series for which we
present new MCHF results.

'Adopting the level notation of Garton and Codling (Ref. 2).
Using the ionization potential I, =45932.09 from Baig and

Connerade (Ref. 28), term values from Moore (Ref. 21) with the
exception of the 5s8p and 4d5p terms from Garton and Codling
(Ref. 2).

The present calculations for the higher 'P' terms illus-
trate the strong dispersion of the 4d5p 'P' perturber
which effectively disappears, in a similar way' as for
Ca I, leaving two 'P' states (the third and the fourth) hav-
ing Ss7p as their main eigenvector component. The
MCHF and MQDT results are compared in Sec. III. In
order to discuss the validity of the MQDT approach,
Froese Fischer and Hansen calculated the lowest 'D
term using a more limited MCHF5 expansion. The
present calculation confirms their results. However, the
present results disagree somewhat with the MCHF~
wave-function composition obtained by Aspect et al. for
the third eigenstate. The comparison of these two eigen-
vectors shows a transfer from d +p to sd character, the
weights associated with the p, d, and sd basis states
changing from 35%, 61%, and 3.5% to 28%, 44%, and
27%, respectively. Our expansion is much more com-
plete and is fully variational, while their Ss orbital was
frozen in the MCHF procedure. The eigenvector compo-
sitions for the three lowest 'D terms illustrate the impor-
tance of the perturbers 5p, 4d, and even 5p4f, the last
two having been neglected in the MQDT analysis by
Esherick. For the 'F' series, the perturber 4d5p is
spread over several members of the Ssnf series. Howev-
er, it is predominantly mixed into the lowest states con-
ventionally labeled 4d5p (54%) and 5s4f (34%), respec-
tively. These eigenvector compositions support the label-
ing predicted' for the lowest 'F' term on the basis of
more limited MCHF4 expansions. The completely varia-
tional MCHF9 calculation for the lowest '6 term predicts
an ionization energy of 5493 cm ' and an eigenvector
composition of 4d (92%), 5p4f (4%), and 5d (4%).
This term has not been observed experimentally as men-
tioned later.

A. 'P' series

The 5s np /ep series is perturbed by the 4d np /ep series
in such a way that it is not immediately obvious where
the lowest member of the latter series, 4d Sp, is located, as
mentioned earlier. In 1968, Garton and Codling con-
cluded on the basis of extrapolations of the observed
energy-level values of the autoionizing 4dnp 'P' series,
which they identified above the 5s threshold from n =6,
that the lowest member, 4d5p, should be identified with
the 5s8p 'P' term in AEL. This identification was also
based on the observed quantum defects and intensities of
ground-state transitions but in the presence of strong CI
none of these criteria is entirely unambiguous. A similar
situation for the 'P' series in Ca I was discussed by Froese
Fischer and Hansen' and the two series have many simi-
larities as the following discussion will show.

The identification of 4d5p 'P' by Garton and Codling
was later justified by the two-channel MQDT treatments
due to Esherick and Armstrong et al. , who conclud-
ed that 4d5p interacts with a relatively small number of
5snp series members in such a way that no particular lev-
el has primarily 4d5p character. However, the largest
amount; of 4d 5p was found for the level identified as 4d 5p
by Garton and Codling. This conclusion was based on
the following arguments.

In the MQDT analysis it is possible to calculate the
contribution to a particular state from a particular "col-
lision channel" which is defined as all states with the core
in a particular state, for example, 4p 4d, coupled with an
outer electron np or ep to a particular symmetry such as
'P . The precise quantum number of the p electron is not
specified but Seaton ' has for the equivalent situation in
Ca argued that, since in that case, the total 3dp character
in an energy region comprising a number of low 4snp
states is approximately equal to 1, the 3dp amplitude
should be interpreted as belonging to the lowest state
3d4p. In fact, the summed character is slightly larger
than 1 for the eight lowest 'P' states' showing that some
amplitude must be coming from 3d np/Ep(n &4). It is
seen that this argument depends crucially on the fact that
a summed character of approximately 1 can be found in a



2836 N. VAECK, M. GODEFROID, AND JQRGEN E. HANSEN 38

reasonably small energy interval in the vicinity of the po-
sition where the level would be found in a single-
configuration calculation. For Ca and Sr such a calcula-
tion predicts that only the lowest member of the dp 'P'
series will be located below the first ionization limit, and
on this basis Esherick concluded that all dp amplitude
in the bound 5snp series in Sr I is due to 4d5p, while the
MQDT calculation as such only shows that the ampli-
tude has 4dp character. Esherick found a maximum of
"4d 5p" character (18%) in the level identified as
4d5p 'P' by Garton and Codling. He also found that the
sum of 4dp 'P' character in the bound spectrum exclud-
ing the lowest state 5s5p is 0.89, and he concluded that
the latter must contain the remaining 4d5p character
(0.11), an argument based on the assumption that all am-

plitude in the bound region must be due to 4d 5p alone.
In their recent paper, Aymar et al. " have shown that

a two-channel MQDT description of the 'P' series in Sr
in fact "does not achieve close agreement with the experi-
mental data; in particular the value of p2 appears too
small, indicating that the perturber 4d5p is located too
high. " Aymar et a/. finds that adding 4dn f
configurations in the R-matrix procedure leads to a sub-
stantial increase in p2 and a further increase is found by
adding additional configurations 5pnl+4d'el where 4d'
is supposed to take core relaxation effects into account
(the calculations use a frozen Sr++ core). From this it
can be concluded that the more complete calculation
gives a larger 4d5p percentage for the lower 'P' states
than the two-level calculation. It is interesting to com-
pare this result with the MCHF calculations in different
stages of completeness. This development is shown in
Table V, which contains the amount of dp character in
the lowest 'P' levels in different MCHF approximations.
These numbers are obtained by adding all contributions
of the type dp in the MCHF expansions, which means
that the quoted values have a similar interpretation to the
MQDT results; they correspond, due to Brillouin's
theorem, to adding all contributions from a 4dp collision
channel but also, unlike the MQDT results, all contribu-

tions from ndp (n ~4) channels plus contributions from
npd collision channels. These levels are further away
from the 5snp series and can be expected to have a small-
er effect on this series than the 4dp channel.

In Table V are shown the results of three types of
MCHF expansions, a 2X2 I5snp+4dnpI expansion, a
3X 3 expansion, which contains in addition a 4dnf series,
and the final expansion described in Sec. II. We see the
same effect described by Ayrnar et ai. ;" the amount of
dp character in the lower levels increases when additional
configurations are added to the MCHF expansion except
for the lowest state, which is rather stable against addi-
tion of configurations. In the 3X3 expansion the largest
amount of dp character is found in the fourth 'P' state in
agreement with the proposal of Garton and Codling and
in agreement with the two-channel MQDT result due to
Esherick. However, in the final calculation, the max-
imurn amount of dp character is found in the lowest 'P'
state with a smaller secondary maximum for the fourth
'P' state. The situation in the 'P' series in Ca is similar
except that the second local maximum is absent in the
MCHF calculations of Froese Fischer and Hansen. ' The
agreement with the MQDT composition due to Esher-
ick is not very good for any of the MCHF results. It is
perhaps in somewhat better agreement with the 3)&3 ex-
pansion than with any of the others. The "eigenvector
composition" found in the R-matrix calculation by Ay-
mar et al. " was not given in the paper but Dr. Aymar
has kindly supplied this information which is included in
Table V. We give in Table V the W coefficients for the
4dnp channel. These coefficients are defined by the rela-
tion W, =Z; /gz (Zk ), where the Z; are defined by
Seaton. ' Dr. Aymar supplied the Z coefficients for the
Ssnp and 4dnp channels. Seaton states that the W, values
will give a reasonable value for the amount of channel i in
a particular highly excited state. The use of the W values
for low-lying states is therefore somewhat doubtful, but
we observe that there is good agreement between the 8'
values and the results of our final calculation, except for
the lowest state where the W value is much larger than

TABLE V. The amount of dp character in percent in the 'P' series in Sr I obtained using different
MCHF approximations. Also, results of R-matrix calculations and MQDT fits are included.

Level'

5s5p
5s6p
5s7p
4d 5p
Ss8p

2&(2b

18.5
8.9
7.4

12.5

MCHF
3)& 3'

17.9
11.0
13.1
21 ~ 1

13.8

Final

19.0
13.3
13.7
15.3
12.8

R-matrix'

42.0
12.0
13.9
15.9
13.6

MQDTf

15
18
16

'Adopting the level notation of Garton and Codling (Ref. 2).
Ssnp~+4d, Sp& (fixed core).

'5snp2+41, 5p, +4d24f (fixed core).
Relaxed core and final MCHF expansions (see Table III}.

'Private communication from M. Aymar (see also Ref. 11).
'MQDT analysis of Esherick (Ref. 23).
~The significance of this number is discussed in the text.
"Obtained by subtracting the calculated amount of 4dp character over the bound states (except the
lowest one) from 100 {see text).
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the MCHF result. For the higher states the sum of the
Z values is 1+0.03, whereas for the lowest state the sum
is 1 ~ 56. This result, in combination with the expectation
that the 8', are reliable measures of eigenvector composi-
tion only for high members of Rydberg series, means that
there is no obvious disagreement between MCHF and R-
matrix calculations. Since core-polarization effects are
included in the R-matrix calculations to some extent it is
not surprising that the two sets of results are slightly
different.

B. 'Sand 'D series

For the 'S series we are not presenting new results in
this paper, but we note that the isotope shift investigation
due to Aspect et al. confirmed the importance of a 4d
component in the perturber which conventionally has
been labeled Sp . A similar conclusion was reached by
Aymar et al. ,

" although they found a weak coupling be-
tween the Ssns series and the perturbing channels which
made the wave-function composition of the perturber
very sensitive to small changes in the MQDT parameters.

For the 'D series, the situation is now clearer. The
three-channel model of Esherick, Sspgd +4d 6s +5p,
predicted that the bound Ssnd series was not perturbed
by 4d, while the MCHF calculations of Froese Fischer
and Hansen for the lowest 'D term and by Aspect et al.
for the perturber showed that the latter had more 4d
than Sp character. Our improved calculations for the
three lowest 'D terms show that 4d is more important
than Sp for the second and third 'D term and a similar
conclusion was reached by Aymar et al. ,

" who found
that the Ssnd-4dnd mixing is stronger than the Ssnd-Spnp
mixing below the Sr+ Ss threshold, while the situation is
reversed over the threshold.

C. 'F' series

There is no MQDT analysis available for the 'F' series,
but Rubbmark and Borgstrom found that it is possible
to get an acceptable description of this series by use of
Langer's formula and including in the fit the 4d5p 'F'
term as a perturber. An equally good fit to Langer's for-
mula was obtained by interchanging the designations of
4d Sp 'F' and 5s4f 'F', illustrating that the designation of
the perturber is somewhat arbitrary due to strong CI as
predicted by Hansen and Persson. ' Our MCHF eigen-
vector composition confirms this configuration mixing for
the five lowest 'F' members. The 4dSp perturber has a
shorter-range effect in the 'F series than in the 'P series.
However, it is somewhat surprising that Langer's formu-
la, which can be derived from perturbation theory as-
suming that the interaction is small compared to the dis-
tance between adjacent series members, works so well for
a strongly perturbed series as is the case here.

IV. OSCILLATOR STRENGTHS

We have calculated electric dipole (El) and electric
quadrupole (E2) oscillator strengths for the transitions
involving the terms 1 'S, n 'P (n = 1 —5), n 'D (n = 1 —3),
n 'F'(n= 1 —5}, and 1'G. Length (L) and velocity (V)

values were obtained using theoretical and observed
wavelength values. For comparison with experiment we
use the transition probabilities calculated using the ob-
served transition energies.

A. Electric dipole transitions

The El results are reported in Tables VI and VII.
Table VI gives the oscillator strengths, transition proba-
bilities, and transition energies for all the transitions con-
sidered. The general agreement between length and ve-
locity forms is quite satisfactory. Strong cancellation due
to destructive interference between the different contribu-
tions to the line strength S' occurs for Ss 'S —5s6p 'P',
5s4d 'D —5s5p 'P', and Ss4d 'D —4d5p 'F'. The last two
transitions have been discussed previously by Hansen
and Hansen and Persson, ' respectively, using shorter ex-
pansions. These three lines are clearly affected by the
perturbers Sp ('S, 'D), 4d ('S, 'D ), and 4d5p ('P', 'F'}.

B. Ss 'S —'P' series

Parkinson et al. have measured f values for the
5s 'So —(5snp+4d5p) 'P; transitions for n up to 26 us-

ing the Hook method. Less extensive measurements have
also been reported by Penkin and Shabanova. The ab-
solute values of the oscillator strengths in the work of
Parkinson et al. were obtained by calibrating to the
measured lifetime of the lowest 'P level as measured by
Lurio et al. A later lifetime measurement by Kelly
et al. gave the same f value within the stated error lim-
its but assuming a branching ratio of 5% for the only
other decay (to Ss4d 'D2) from 5s5p 'P'. Hansen noted
that this branching ratio corresponds to a gf value of 19
for the 5s 4d 'D -Ss Sp 'P' transition which lies in the in-
frared. With a more reasonable gf value the branching
ratio is less than —,%%uo, which is confirmed in the present
calculation, and this leads to a f value 6% larger than
that used by Parkinson et al. All of the measured gf
values should therefore in principle be increased by 6%%uo.

However, the error limits on the experimental values are
larger than 10% except for the two lowest levels, and we
have therefore chosen to retain the original gf values.
An additional reason for this is that Jonsson et al. have
found that the measurements by Kelly et al. for the
higher 'P' states are less accurate than stated in the paper
as mentioned later. For the lowest 'P' state, Jonsson
et al. have confirmed the value due to Kelly et al. but
with a larger error so that it is not possible to conclude
that the latter value is better than the value from Lurio
et al.

We show the results of two MCHF approximations in
Table VII in both cases using the experimental energy
differences to calculate the gf values, namely, results
from a (3)& 3) 'P expansion in combination with a (5 X 5)
'S expansion and the results using the final MCHF ex-
pansions. These results are compared to the experimen-
tal results from Parkinson et al. and from Penkin and
Shabanova. The minimum in gf value for the second
'P' state is reproduced in the calculation and the agree-
ment is generally better than 20% except for the weak
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TABLE VI. Electric dipole oscillator strengths gf and transition probabilities A (sec ) using the length (L) and velocity (V) forms
and using the calculated and observed transition energies.

b.E (calc.)

I gf I

4E (obs. )

bE (calc.)

(cm ')
AE (obs. )

AE (calc. )

A (sec ')

bE (obs. )

Ss' 'S~SsSp 'P'

Ss 'S~Ss6p 'P'

Ss 'S —+5s7p 'P'

Ss 'S~4dSp 'P'

Ss 'S~Ss8p 'P'

Ss4d 'D~SsSp 'P'

Ss4d 'D Ss6p 'P'

Ss4d 'D~Ss7p 'P'

5s4d 'D~4dSp 'P'

Ss4d 'D Ss8p 'P'

L 1.9536
V 1.8459

L 0.0048
V 0.0030

L 0.0186
V 0.0191

L 0.0419
V 0.0399

L 0.0407
V 0.0376

L 0.0080
V 0.1212

L 0.3281
V 0.4542

L 0.2514
V 0.2997

L 0.2103
V 0.2269

L 0.1374
V 0.1374

L 2.1210
V 1.7002

L 0.0051
V 0.0028

L 0.0198
V 0.0179

L 0.0445
V 0.0376

L 0.0431
V 0.0355

L 0.0075
V 0.1282

L 0.3443
V 0.4328

L 0.2605
V 0.2893

L 0.2166
V 0.2204

L 0.1410
V 0.1340

19986.3

31 639.1

36 453.0

38 767.4

40098.8

1638.3

13 291.1

18 105.0

20419.4

21 750.8

21 698.5

34 098.3

38 906.9

41 172.1

42 462.3

1548.8

13 948.7

18 757.1

21 022.5

22 312.6

L 1.735 X 108

V 1.639X10

L 1.059X10
V 6.670 X 10'

L 5.483X10
V 5.653 X 10

L 1.400X10'
V 1.334X10'

L 1.456X10'
V 1.343 X 10'

L 4.760X10
V 7.233 X10'

L 1.289X10
V 1.784X 10'

L 1.832X10
V 2.184X 10

L 1.950X10'
V 2.104X10'

L 1.446X10
V 1.446 X 10'

L 2.220X10'
V 1.780X10

L 1.326X10'
V 7.188X10

L 6.666X10
V 6.034X 10

L 1.677X10'
V 1.417 X 10'

L 1 729X 1o
V 1.422 X 10'

L 4.022X10'
V 6.838X 10

L 1.490/10
V 1.872X 107

L 2.038X10'
V 2.263X10

L 2.128X10
V 2.166X 10'

L 1.561X10
V 1.483 X 10'

SsSd 'D~SsSp 'P'

Ss5d 'D —+5s6p 'P'

5s5d 'D~Ss7p 'P'

Ss 5d 'D 4d Sp 'P'

5s5d 'D~Ss8p 'P'

L 0.2798
V 0.1903

L 0.4615
V 0.8703

L 0.2979
V 0.4082

L 0.0845
V 0.1115

L 0.0366
V 0.0436

L 0.2924
V 0.1822

L 0.3545
V 1.1330

L 0.3117
V 0.3902

L 0.0863
V 0.1092

L 0.0371
V 0.0431

12 471.8

818.9

3995.0

6309.3

7640.7

13028.9

629.1

4179.4

6444.7

7734.8

L 5.807X10
V 3.949 X 10'

L 4.129X10
V 7.787X10

L 1.057 X 10
V 1.448X10

L 7.477X10
V 9.867X 10'

L 4.756X10'
V 5.664X 10'

L 6.621X10'
V 4.125 X 10'

L 1.871X10
V 5.981X 104

L 1.210X10
V 1.515X10'

L 7.969X 10'
V 1.008 X 10'

L 4.934X10'
V 5.734X10'

Sp 'D~SsSp 'P'

Sp 'D~Ss6p 'P'

Sp 'D —+ 5s 7p 'P

Sp 'D 4d5p 'P'

Sp 'D~Ss8p 'P

5s4d 'D~4dSp 'F'

Ss4d 'D~5s4f 'F'

L 2.6479
V 2.7063

L 0.4302
V 0.2692

L 0.4014
V 0.3111

L 0.0430
V 0.0245

L 0.0077
V 0.0030

L 0.0093
V 0.0563

L 0.7280
V 0.5490

L 2.8509
V 2.5136

L 0.4882
V 0.2372

L 0.3409
V 0.3662

L 0.0393
V 0.0268

L 0.0071
V 0.0033

L 0.0098
V 0.0533

L 0.7557
V 0.5288

14 175.4

2522.6

2291.3

4605.6

5937.0

16 903.1

18 677.7

15 262.4

2862.5

1946.0

4211.3

5501.4

17 858.3

19 389.3

L 7.098X10
V 7.255X10'

L 3.652X10
V 2.285X 10

L 4.686X10
V 3.631X 10'

L 2.027X10
V 1.157X10

L 6.022X10
V 2.362X 104

L 2.532X10
V 1.532/10

L 2.420X10'
V 1.825 X 10'

L 8.859X10'
V 7.811X10

L 5.336X10'
V 2.593X10

L 2.871X10
V 3.084X10

L 1.549X10
V 1.058X10'

L 4.791X10'
V 2.189X 104

L 2.986X10
V 1.619X10

L 2.707 X 10'
V 1.895X10
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TABLE VI. (Continued).

AE (calc. ) bE (obs. )

hE (calc. )

(cm-')
AE (obs. )

AE (calc. )

(sec ')

bE (obs. )

Ss4d 'D ~ 5s 5f 'F'

Ss4d 'D~Ss6f 'F'

Ss4d 'D~Ss7f 'F'

L 0.4335
V 0.3615

L 0.2391
V 0.2051

L 0.1439
V 0.1244

L 0.4449
V 0.3522

L 0.2452
V 0.2000

L 0.1475
V 0.1214

20 822. 1

22 125.4

22 932.6

21 369.2

22 689.7

23 506.4

L 1.791/10
V 1.493x10'

L 1.115/10
V 9.569/10'

L 7.209x10'
V 6.234X 10

L 1.936/10'
V 1.533/10'

L 1.203/10
V 9.813/10'

L 7.764/10'
V 6.390x 10'

5s5d 'D~4d5p 'F'

5s5d 'D~Ss4f 'F'

5s5d 'D~5s5f 'F'

5sSd 'D~Ss6f 'F'

5sSd 'D~Ss7f 'F'

L 1,7943
V 1.9530

L 1.6932
V 1.5803

L 0.1371
V 0.1553

L 0.0124
V 0.0154

L 0.0012
V 0.0019

L 2.1075
V 1.6627

L 1.7836
V 1.5002

L 0.1387
V 0.1535

L 0.0126
V 0.0152

L 0.0012
V 0.0019

2793.0

4567.6

6712.0

8015.3

8822.5

3280.5

4811.5

6791.4

8111.9

8928.6

L 1.334/10'
V 1.452X10

L 3.366/10'
V 3.142/ 10'

L 5.886x10'
V 6.666/ 10'

L 7.593x104
V 9.420/ 10

L 8.670/10
V 1.420x 10'

L 2.161X10
V 1.705/10

L 3.935/10'
V 3.309/10'

L 6.098/10
V 6.745/10

L 7.871/10
V 9.534x 104

L 8.986x 10'
V 1.437 x10'

5p 'D 4d5p 'F'

5p 'D ~5s4f F'

5p 'D~SsSf 'F'

5p''D~Ss6f 'F'

5p' 'D~Ss7f 'F'

4d 6~4d5p F

4d' 'G ~Ss4f 'F'

4d2'G~SsSf 'F'

4d 'G~Ss6f 'F'

4d 'G~Ss7f 'F'

L 0.0831
V 0.0227

L 1.3830
V 1.9651

L 0.0057
V 0.0509

L 0.0026
V 0.0041

L 0.0042
V 0.0004

L 0.8694
V 1.0386

L 0.1418
V 0.2775

L 0.0249
V 0.0023

L 0.0141
V 0.0054

L 0.0080
V 0.0040

L 0.0799
V 0.0236

L 1.2450
V 2.1830

L 0.0052
V 0.0559

L 0.0025
V 0.0044

L 0.0040
V 0.0005

1089.3

2864.0

5008.3

6311.7

7118.9

2792.4

1017.8

1126.6

2429.9

3237.1

1047.1

2578. 1

4558.0

5878.5

6695.2

L 9.399/10'
V 2.567 x10'

L 1.081/10
V 1.536/10'

L 1.359/104
V 1.216X 10

L 9.994x10'
V 1.561/10

L 2.033/10
V 2.063/10

L 5.024x10'
V 6.002x10'

L 1.089/10
V 2.131x10'

L 3.006x 10'
V 2.780 x 10'

L 7.941/10'
V 3.054/ 10'

L 7.978x10'
V 3.947/ 10'

L 8.348/10
V 2.467X10

L 7.885X10'
V 1.383/10'

L 1.024/10
V 1.107x10'

L 8.074X10
V 1.454/104

L 1.691/10
V 1.940/10'

transition to the second 'P state where the deviation is
42%%uo. It is interesting to compare these results with the
situation in the 'P series in Ca where Parkinson et al.
also found a (more pronounced) minimum for the second
'P' state. This minimum was not reproduced by the
MCHF calculations due to Froese Fischer and Hansen'
which generally show larger discrepancies with experi-
ment than the Sr results. An increase of 6% in the exper-

imental gf values for Sr, as suggested by the lifetime due
to Kelly et al. , would give better agreement between
the length value and experiment for the lowest and third
lowest 'P states, while the agreement would be some-
what worse for the other transitions.

Kelly et al. deduced from their lifetime measure-
ments for the Ss6p 'P' state (v=3.64+0. 14 nsec) the
weighted oscillator strength gf=6.3+0.25 for
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TABLE VII. Calculated gf values for 5s' 'S 5snp 'P transitions in Sr I. Observed transition ener-
gies are used and length (L) and velocity (V) values are given.

This work
Transition'

5s S—5s5p P'

5s 'S —5s6p 'P'

Ss 'S-5s7p 'P'

5s 'S-4d5p 'P'

5s 'S —Ss8p 'P'

Ib

L
V
L 0.0129
V 0.0100
L 0.0090
V 0.0080
L 0.0837
V 0.0563
L 0.0486
V 0.0355

2.1210
1.7002
0.0051
0.0028
0.0198
0.0179
0.0445
0.0376
0.0431
0.0355

Observed

1.92+0.06"'

0.007 24+0.0011
0.006 46+0.0010'

0.0158+0.0019
0.0135+0.0006'
0.0447+0.0066
0.0323+0.0015'
0.0457+0.0068"
0.0417+0.0020'

'Adopting the level notation of Garton and Codling (Ref. 2).
Using I 5s, 4p2, 4d, 4f2, 5g2 'SI and I5snp2, 4d, 5p„4d,4f 'P'I MCHF expansions.

'Using the final MCHF expansions of Table III.
Hook method from Parkinson et al. (Ref. 35); absolute scale for the f values derived from zero-field

level-crossing measurement of the Ss5p 'P' lifetime by Lurio et al. (Ref. 37) and assuming no branching
to 5s4d 'D.
'Hook measurements from Penkin and Shabanova (Ref. 36); same absolute scale as in footnote d.

5s4d 'D —5s 6p 'I", which disagrees with our value

(gft ——0.3443) by a factor of 20. Taking the more recent
lifetime determination by Jonsson et al. (r=65+5 nsec)
and the Hook oscillator strength of Parkinson et al.
(gf =0.00724) corresponding to a transition probability
A =1.87)&10 sec ' for the Ss 'S-Ss6p 'I' transition,
we obtain gf =0.3124 for 5s4d 'D —5s6p 'P', which
agrees well with our calculated value.

In both the Ca and Sr calculations it is found that there
is better agreement between length and velocity values
when calculated energies are used instead of the observed
as we have done in this paper.

We conclude that the MCHF calculations for Sr seem
more accurate than those' for Ca. This is perhaps be-
cause it is possible to give a better description of the 4d
orbital in Sr? than of the 3d orbital in Ca I which is very
sensitive to the exact details of screening and coupling.

C. Electric quadrupole transitions

We report, in Table VIII, oscillator strengths and the
corresponding transition probabilities for Ss 'S—n 'D
(n =1—3), SsSp 'P' n'F (n =1—5), Ss6—p 'P' 5s4f 'F', —
Ss4d 'D —4d 'G, and for some transitions between 'D
states obtained using both observed and calculated transi-
tion energies. All the other E2 transition probabilities
connecting the terms considered in Table I are at least
one order of magnitude smaller than the ones given in
Table VIII. The agreement between length and velocity
values is systematically better than for the E1 transitions.

The E2 transitions 3s 'S —(3s3d+3p ) 'D have been
observed in the spark spectra of Mg-like ions. The
equivalent transition 4s 'S —4s3d 'D appears in the emis-
sion spectra ' of Car and the corresponding transition
probability has been measured recently. In Sr I, a very
weak absorption line from the ground state has been
identified by Rubbmark and Borgstrom as the electric

quadrupole transition 5s 'S —Ss4d 'D but no measure-
ment of the transition probability is available.

We compare our 1 'S-1 'D transition probability with
other recent theoretical results in Table IX. FOTOS
many-electron calculations have been performed by Beck
and Nicolaides which give an E2 transition rate 35%
larger than the value calculated more recently by
Bauschlischer et al. using elaborate CI techniques in
Gaussian-type orbital (GTO) basis sets. Both calcula-
tions include valence and some core-valence correlation
effects. Relativistic effects were considered by
Bauschlischer et al. using a relativistic effective-core
potential, but these affect the final transition rates by 9%
only. The huge core-valence effects on the E2 transition
rate (a decrease of 37%) found by Bauschlischer et al.
are somewhat surprising. These authors found a similar
reduction in Ca I, obtaining a very good agreement with
the recent experimental value. The reduction of 13%
due to core-valence correlation found by Beck and
Nicolaides is more in line with other results. For exam-

ple, Glass has recently reported that the static polariza-
bility of Car is only slightly affected by the inclusion of
core and core-valence effects. Moreover, core-
polarization effects were estimated to be less than
10—15% on some electric dipole transition probabili-
ties in Zn I for which the 3d orbital is expected to be
more polarizable than in Sr.

Our values are not relativistic and do not include core-
valence correlation effects. They agree very well with the
"valence-CI" (VCI) results of Bauschlischer et al.
which point to the completeness of their Gaussian basis
set for the valence problem. The single-configuration
FOTOS results seem to differ strongly from our value,
but Beck and Nicolaides used the radial functions from a
MCHF calculation to evaluate the transition probability
in the single-configuration approximation. The use of the
final MCHF instead of the HF radial functions induces in
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our calculations an increase of 18% and 59% in the
length and velocity forms of the radial quadrupole in-

tegral (Ss~~g
~

4d ), bringing our "HF" values to 68.2
and 62.7 sec, respectively. Valence correlation does
not modify very much the final transition rate; the
5p 'S 'D—contribution to the E2 (L) line strength S'
for the 5s 'S —5s4d 'D transition is 11%.

V. LIFETIMES

The theoretical lifetimes obtained using length (L) and
velocity (V) oscillator strengths and the observed transi-

tion energies for all the decay channels are reported in
Table X. For the 'P' and 'F series our length values
agree quite well with the radiative lifetimes measured by
Jonsson et al. using pulse-modulated laser spectroscopy
(PUMOLS) techniques. Our lifetime values confirm that
the Hanle-effect measurements of Kelly et al. ' are un-
reliable for 5s6p, 5s7p, and 5s8p 'P'. For the 'F' series,
our velocity values are too high except for the perturber
4d5p, and our length values are systematically closer to
the measurements of Jonsson et al. than to the time
resolved decay measurements of Gornik. There are no
experimental lifetime values for the low-lying 'D terms

TABLE VIII. Electric quadrupole oscillator strengths gf and transition probabilities A (sec ) using the length (L) and velocity
( V) forms and using the calculated and observed transition energies.

/gf f

x10
hE (calc.) hE (obs. )

hE (calc.)

(cm-')
AE (obs. )

hE (calc.)

A (sec ')

AE (obs. )

5s 'S~Ss4d 'D

5s 'S~SsSd 'D

5s 2 'S 5p' 'D

L 0.9645
V 1.0123

L 1.9336
V 1.8544

L 0.1804
V 0.1869

L 1.2774
V 1.1117

L 2.3682
V 1.9841

L 0.2285
V 0.2022

18 348.0

32 458.1

34 161.7

20 149.7

34 727.5

36 960.9

L 4.332X10'
V 4.546 X 10'

L 2.718X102
V 2.606X 10

L 2.809X10'
V 2.909X 10'

L 6.919X10'
V 6.021X10'

L 3.810X10'
V 3.192X10

L 4.165X10'
V 3.685X 10'

5s5p 'P'~4d5p 'F'

5s5p P'~Ss4f 'F'

5s5p P'~SsSf 'F

SsSp 'P'~Ss6f 'F'

Ss5p 'P' +Ss7f 'F'—

L 1.4374
V 1.3866

L 0.8036
V 0.8156

L 0.8267
V 0.8457

L 0.4779
V 0.4938

L 0.2842
V 0.2944

L 1.7532
V 1.4815

L 0.9223
V 0.8539

L 0.9118
V 0.8737

L 0.5251
V 0.5096

L 0.3116
V 0.3036

15 264.8

17 039.4

19 183.8

20487. 1

21 294.3

16 309.5

17 840.5

19 820.4

21 140.9

21 957.6

L 3.192X10'
V 3.079X10'

L 2.223X 10'
V 2.256X 10'

L 2.899X 10'
V 2.966X 10'

L 1.911X10'
V 1975X10'

L 1.228X10'
V 1.272X 10'

L 4.444X10'
V 3.755 X 10'

L 2.797X10'
V 2.590X 10'

L 3.413X10'
V 3.271 X 10'

L 2.236X10'
V 2.170X10'

L 1.432X10'
V 1.395 X 10'

5s6p 'P'~Ss4f 'F L 1.6787
V 1.6540

L 1.7298
V 1.6706

5386.6 5440.6 L 4.641
V 4.573

L 4.879
V 4.712

5s4d 'D~4d2 '6 L 2.9241
V 2.9806

19 695.5 L 8.407 X 10'
V 8.569X 10'

Ss 5p 'P'~ 5s 6p 'P'

5sSp 'P'~Ss7p 'P'

Ss5p 'P'~4d5p 'P'

L 0.5461
V 0.5596

L 0.0872
V 0.0947

L 0.0148
V 0.0184

L 0.6580
V 0.5955

L 0.099S
V 0.0990

L 0.0165
V 0.0191

11 652.8

16466.7

18 781.1

12 399.9

17 208.4

19473.7

L 1.649/10'
V 1.689X 10'

L 5.255
V 5.708

L 1.160
V 1.444

L 2.250X 10'
V 2.035X 10'

L 6.550
V 6.515

L 1.390
V 1.610

Ss6p 'P'~Ss7p 'P'

5s4d 'D~Ss5d 'D

Ss4d 'D ~5p 'D

L 0.3759
V 0.3771

L 0.6705
V 0.6937

L 0.2882
V 0.3027

L 0.3746
V 0.3767

L 0.7394
V 0.7167

L 0.3462
V 0.3218

4813.9

14 110.1

15 813.7

4808.5

14 577.8

16 811.2

L 1.937
V 1.943

L 1.781X 10'
V 1.843X10'

L 9.614
V 1.010X 10'

L 1.926
V 1.936

L 2.096X10'
V 2.032 X 10'

L 1.305 X 10'
V 1.213X 10'
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TABLE IX. Electric quadrupole transition rates (in sec ')

for Sr I 5s4d 'D-Ss 'S (L=length; V=velocity).

This work

FOTOS'
b

CI' VCI
CVCI

MRCVCI

HF
MCHF

L

68.0
60.6

69.2
43.5
44.7

49.0
69.2

V

60.6
57.3

24.8
60.2

'Beck and Nicolaides (Ref. 43): single configuration using radial
functions from a MCHF calculation.
FOTOS from Beck and Nicolaides (Ref. 43).

'GTO calculations by Bauschlicher et al. (Ref. 44) using a rela-
tivistic effective-core potential. VCI means valence-CI; CVCI
means core-valence-CI; MRCVCI means multireference core-
valence-CI calculations.

except for the third one for which our theoretical values
support the Hanle-effect values of Kelly and Mathur in
comparison to the two other experimental values.

The 'G term has not been observed. A limited MCHF
expansion

I Ss6hi, 4d, 4f, , SP~5g~, 4fzSg2 'H'I

calculation gives the lowest 'H' term lying 2437 cm
above the 4d '6 term which in this situation can only

decay to the lowest 'F level. We then predict a long life-
time (v=2 psec) which is consistent with the situation in
Ba 1 where the corresponding Sd 'G term has been found
recently and appears to have an even longer lifetime. '

This reflects the fact that the lowest 'F term in Bat is
above Sd 'G.

The observed deviations from the expected simple scal-
ing law r-(n*) are reproduced perfectly by our calcula-
tions for the 'P' series (see Fig. 1). In the length form,
the decay channels to 5s '5 and to Ss4d 'D contribute
(100%,0%), (8%,92%), (23%,71%), (43%,55%), and
(52%,47%) to the lifetimes of the five lowest members of
the 'P' series, respectively. The effect of the perturber
4d5p 'P' on the oscillator strength of the 5s 'S —'P'
series was discussed in Sec. IV. For the Ss4d 'D —'P'
series, the 4dSp 'P' perturber contributes =45% (in the
length form) to the corresponding S' value.

The situation is much clearer for the 'F' series. The
calculated lifetime values reproduce the observed lifetime
trend very well (see Fig. 2). The deexcitation channel
n 'F'~5s4d 'D is clearly dominant for all members of
the series, except for the lowest one (4d Sp) for which the
decay to SsSd 'D contributes 88% (in the length form) to
the lifetime. The n 'F'~5s4d 'D decay rates are strongly
affected by the 4d 5p 'F' and 5p 'D perturbers which
contribute to the S' values (60%,19%) and (30%,10%)
for n =4 and 7, respectively. Our calculations then show
that the smoothness of an observed lifetime trend, such as
the one depicted in Fig. 2, does not imply the absence of
perturbations.

TABLE X. Lifetimes (nsec) of Rydberg levels in Sr I.

MCHF
Level

5sSp 'P'
Ss6p
5s7p
4d Sp
Ss8p

5s4d 'D
5sSd
5p

2

4d5p 'I"'

Ss4f
Ss5f
Ss6f
Ss7f

4d' '6

Length

4.50
61.63
35.03
25.64
29.90

14.45 X 10'
150.61
11.22

405.19
31.45
50.04
82.48

128.37

1948.0

Velocity

5.62
51.44
32.80
27.05
33.73

16.61 X 10
238.96

12.76

300.62
42.30
62.05

100.75
156.10

1609.0

4.68(10)'
3.64(14)'
4.93{32)'

5.46(17)'

9.53(10)

33.5(12)'
33.6(13)'
98.5{12)'

126(5)"

Experimental

4.97(15)
65(5)'
39.2(20)'
23.4(23)"'

27.1(13)'

23.8{13)'

296(22)'
31.3(9)'
45.0(21)'
78.0(3)'

120(5)'

25{3)'

'Hanle measurements of Kelly et al. (Refs. 38 and 39).
Hanle measurements of Lurio et al. {Ref.37).

'PUMOLS measurements of Jonsson et al. (Ref. 3).
Hanle measurements of Kelly and Mathur (Ref. 49).

'Time resolved measurement of Gornik {Ref.48).
'Delayed coincidence measurements due to Erdevdi and Shimon (Ref. 53).
~Time resolved decay measurement of Andra et al. {Ref.52).
"PUMOLS measurements of Grafstrom et al. (Ref. 50).
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FIG. 1. Experimental lifetimes from Jonsson et al. (Ref. 3j

(0) compared with theory (length ~ and velocity A) for the
5snp 'P' series and for 4d 5p 'P' plotted vs the effective principal
quantum number (log-log scale). The (n*)' dependence expect-
ed for unperturbed Rydberg series is indicated by the solid line.

30—

8 n"

FIG. 2. Experimental lifetimes from J6nsson et al. (Ref. 3)
(0) compared with theory (length ~ and velocity A) for the
5snf 'F' series and for 4d 5p 'F plotted vs the effective principal
quantum number (log-log scale). For n =4, the (length) value is
equal to the observed lifetime and is not explicitly indicated on
the figure. The (n )' dependence expected for unperturbed
Rydberg series is indicated by the solid line.
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sponding MCHF equations can be derived' by requiring
the total energy

z=(e 'iHIe
to be stationary with respect to variations in the radial
functions,

LP„& A(n'I')+(azla, ——) 3 (n "I')—(a2la, )LP„-I

APPENDIX

Let a two-configuration multiconfiguration Hartree-
Fock wave function

+ e(n 'I', n 'I')P„ I + g e(n 'I', n; I')P„ I
i 61'

LP„-I A(n "I')+(a& la2)A——(n'I') —(a, la2)LP„&

(A2)

MCHF2'=a&
~ y, nln'I'LS)+a2

I y, nln "I'LS ) (Al) +e( n "I', n "I'
)P„, I + g e( n "I', n; I' )P„ I

i 61'
describe a two-electron system. y, stands for the set of
closed shells. The two configurations are assumed to
differ only in the n value of one electron. The corre- with

(A3)
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A(n, l, )=g (41, +2)(2lr)Y (n, l„n, l, )P„ t
—[I;] 'g(I, (~C"~~l, ) (2/r)Y"(n, l„n;I; )P„ t

C k

++[a"(2lr) Y"(nl, nl )P„ t +P"(2lr) Y"(nl, n; I; )P„t ] .
k

(A4)

The one-electron operator L and the function Y"(i,j ) are defined by Froese Fischer. ' The + and —signs refer to
singlet and triplet terms, respectively, and the a" and p" coefficients are given by

11' L
pk (I~~Ck~~I~)2

.

(A5)

The four quantities e(n 'I', n'I'), E(n 'I', n "I'), e(n "I',n'I'), and e(n "I',n "I') can be evaluated from the MCHF equations
(A2) and (A3) as

e(i,i) =L, ;+KL, —g (41, +2)[F (c,i )+KR (cj;c,i )]—[I; ] 'g(l, ~[C"(~1;) [G"(c,i)+KR "(cj;i,c )]

+[a—"[F"(nl,i)+KR "(nl,i; nl j )]+p"[G"(nl, i )+KR "(nl,i;j,nl)] j,
k

(A6)

e(j,i)=L;~+K 'L;, —g (41, +2)[R (c,i;cj )+K 'F (c i)] [I;] 'g—(I, ~~C"~~I;) [R "(c,i;j,c)+K 'G"(c i)]
C

—g [a"[R"(nl,i;nl j )+K 'F"(nl, i )]+p"[R"(nl, i;j,nl)+K 'G "(nl, i )])],
k

(A7)

with

K=(az/a, ) if i=n'I', j=n "I',

K =(a, /az) if i =n "I', j =n'I' .

By comparing (A6) and (A7), we see that

(A8) aze(n "I',n'I')=a i(e'n 'I, n "I') . (A 1 1)

Equations (A9) and (Al 1) are compatible only if the diag-
onal Lagrange multipliers are identical, i.e.,

where q, and q, are the occupation numbers of the (n, l, )

and (n I) orbi.tais, respectively. In our two-configuration
approximation (Al), this gives

e(t, t)=Ke(j,i) . (A9) e(n'I', n'I') =e(n "I',n "I') . (A12)

q;e(i j )=qje(j,i)=k, , (A 10)

On the other hand, the quantities e(i,j ) and e(j,i) are re-
lated by This property is independent of the term considered and

applies also to more extended multiconfiguration expan-
sions.
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