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Four time correlation functions of a Lennard-Jones (LJ) fluid at a reduced density of
n*=noLJ ——0.845 and a reduced temperature of T* =k&T/cLJ ——1.71 have been determined numer-

ically using molecular dynamics. They were computed as a function of wave number k for reduced
wave numbers 0& ko L& & 15 and for reduced times 0& t/~ &2.6, where v is an average collision
time. From these four, all 25 correlation functions can be derived between three conserved and two
nonconserved quantities: the number density, energy density, longitudinal velocity, momentum

flux, and energy flux, respectively. They can be fitted consistently by five exponentials that corre-
spond to the five eigenmodes of a 5X 5 k-dependent, but not t-dependent, matrix based on the
above-mentioned five quantities. Three of these eigenmodes are extensions of the usual hydro-

dynamic modes and suffice to describe the density-density correlation function alone. A comparison
with previous work on Lennard-Jones, noble-gas, and hard-sphere fluids is made.

I. INTRODUCTION

In this paper molecular-dynamics (MD) results are re-
ported for three microscopic correlation functions in a
dense Lennard-Jones (LJ) fluid in equilibrium at a re-
duced temperature T' =ks T/EL, = l.71 and a reduced
density n"=oLJ ——0.845: the density-density [F„„(k,t)],
the density-energy [F„,(k, t)], and the energy-energy
[F„(k,t)] time-correlation functions. Here ks is
Boltzmann's constant, o.„J is the LJ particle diameter, c„J
the LJ well depth, k a wave number, and t the time.

Apart from their intrinsic interest and their relevance
for the corresponding noble-gas correlation functions, the
knowledge of F„„(k,t), F„,(k, t), and F„(k,t) is also im-
portant for the following reasons.

(1) The three functions F„„(k,t}, F„,(k, t), and F„(k,t)
allow a unique determination of the three generalized
transport coefficients the longitudinal viscosity
P(k, co), the thermal conductivity A, (k, co), and the gen-
eralized ratio of specific heats y(k, co) as a function of k
and the frequency co. Although we could have deter-
mined these coefficients directly from MD simulations,
using explicit theoretical expressions for them, such a
direct numerical evaluation is considerably more compli-
cated in practice than the indirect determination per-
formed here, via F„„(k,t), F„,(k, t), and F„(k,t). This
will be discussed in Sec. IV E.

(2) From the three independent functions F„„(k,t),
F„,(k, t), and F„(k,t), the entire set of microscopic hy-
drodynamic time-correlation functions can be derived.
Thus if one introduces, in addition to the microscopic
density and energy fluctuations, the microscopic longitu-

dinal velocity fluctuations labeled u, the temperature fluc-
tuation T, the longitudinal stress-tensor fluctuation o.,
and the longitudinal heat-flux fluctuation q, then the
complete 5 X 5 correlation matrix F~t(k, t), with

j, l =n, u, e, o., q or j, l =n, u, T, o.,q, can be obtained from
F„„(k,t}, F„,(k, t), and F„(k,t) alone. Here the micro-
scopic temperature fluctuations T (Ref. 4) is a linear com-
bination of n and e [cf. Eqs. (2.19)—(2.23)], and longitudi-
nal refers to the direction parallel to a wave vector k with
length k =

~

k
~

.
For a fluid of hard spheres, Alley and Alder deter-

mined the 3X3 matrix F~t(k, t) with j,!=n, u, T for a
number of densities from MD. They found at high densi-
ties that they could describe their MD data for Fjt(k, t) in
terms of the F,i(k, O) and a 3 X 3 matrix H' '(k) which de-
pends upon k but not upon t. Since the elements of
H' '(k) refer to the three hydrodynamic variables n, u,
and T, such a description can be considered as a generali-
zation of the hydrodynamic description and we will call
this the hydrodynamic model for the fluid. In this
description all nine correlation functions Ft(k, t), with

j, l =n, u, T, are given by a sum of three exponentials re-
lated to the three eigenmodes, i.e., eigenvalues and eigen-
vectors, of the matrix H' '(k}. These high-density MD
results could be understood on the basis of the revised
Enskog theory (RET) of a hard-sphere fluid. However,
at low and intermediate densities of the hard-sphere fluid
the F t(k, t) (j,!=n, u, T) could not be satisfactorily de-
scribed by a 3)&3 k-dependent matrix. Instead a 5)(5
matrix H' '(k) was needed. This matrix described not
only the nine time-correlation functions mentioned previ-
ously, but in fact all 25 correlation functions between n,
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BFJt (k, t)

C}t

5
= —g H , (k)F I(k, t) (j,l =1, ... . , 5) . (1.1)

Here Hjt(k) is a (5X5) correlation matrix, which only
depends on k but not on t. We have omitted the super-
script 5 on the 5 )& 5 matrix H(k) The subscripts.

u, T, o. and q.
The question arose then whether, also for the dense

Lennard-Jones fluid considered here three exponentials
would suffice to describe F„„(k,t), F„,(k, t), and F„(k,t)
and consequently the nine F t(j, t), with j,I =n, u, T (or e),
just as in the case of a dense hard-sphere fluid, or that
perhaps a more elaborate description was necessary.

Before we address this question, we remark that, for
the density-density correlation function F(k, t) =F„„(k,t)
alone, many successful descriptions exist in the literature,
using so-called k- and t-dependent memory kernels. '
It was not clear to us, however, how such descriptions
could be consistently applied to the three independent
correlation functions considered in this paper. In partic-
ular, from the definition of the correlation functions it
follows that their time dependence is given by the same
time-evolution operator exp(tL), where L is the Liouville
operator. It is not clear to what extent this restricts the
assumptions one can make about the time dependence of
the memory kernels.

In the absence of a solution to this problem, we pro-
ceeded in the simplest possible way by assuming, as was
done by Alley and Alder for hard-sphere fluids, that all
nine correlation functions F t(k, t), with j,l =n, u, e, for
the dense LJ fluid could be fitted by a sum of three ex-
ponentials, due to the three eigenmodes of a 3 X 3 matrix,
with the condition that the hydrodynamic limit was
correctly obtained for k —+0. This turned out to be im-
possible and we proceeded to fit the data for the nine
F~t(k, t), with j,l =n, u, e, and subsequently the 25
F t(k, t), with j,l =n, u, e, o, q, to five exponentials, related
to the eigenmodes of a 5 X 5 matrix H' '(k). This matrix
effectively replaces the Liouville operator L, as in the
case of hard-sphere fluids at intermediate densities. Such
a representation of our data was indeed possible and the
results and an attempt at their interpretation are present-
ed here.

We remark that we have actually computed not only
F„„(k,t), F„,(k, t), and F„(k,t), but also the (dependent)
longitudinal velocity autocorrelation function F„„(k,t) by
an independent MD calculation. This is in the spirit of
Rahman, "who calculated both F„„(k,t) and F„„(k,t) by
MD to study the dynamic structure factor S(k, co). He
found that some details of the microscopic dynamics,
relevant for S(k, to), show up more clearly in F„„(k,t)
than in F„„(k,t). ' "" Here we use F„„(k,t) to increase
the accuracy of the results for the F~t (k, t), with

j, l =n, u, e, o.,q.
Thus, using the four correlation functions F„„,F„„,

F„„and F„, we find that all 25 time-correlation func-
tions Fjt(k, t) between n, u, e, o, and q can be described,
in good approximation, for 0& ko Lz & 15, by the equa-
tions

i,j= 1, . . . , 5 refer to n, u, e, o,q, respectively.
As a consequence of Eq. (1.1), the F &(k, t) can all be

represented in terms of the five eigenmodes of the matrix
H;(k) as a sum of five exponentials. As before, we call
these modes the effective eigenmodes of the fluid. For
small k, i.e., koLJ & 1, Eqs. (1.1) contain the linearized
hydrodynamic equations for the nine hydrodynamic
correlation functions between the three conserved quanti-
ties n, u, and e that were first discussed by Landau and
Placzek in the context of the light scattering of a fluid, '

3

Fq—t(k, t)= —g H&,"'(k)Ft(k, t) (j, l =1,2, 3) .
i=1

(1.2)

Here the (3 X 3) hydrodynamic matrix HJ,"'(k) can be ex-
pressed in terms of two thermodynamic quantities and
two transport coefficients of the fluid. Its three eigen-
modes are the three (longitudinal) hydrodynamic modes:
one heat mode and two sound modes, the eigenvalues of
which vanish for k going to zero. For these values of k
the Fjt(k, t) (j, l =1,2, 3) can be represented in terms of
these three eigenmodes as a sum of three exponentials.

Although, according to Eq. (1.1), F&&(k, t)=F(k, t) is
in principle a sum of five exponentials, it can, for all k
with 0& ko LJ & 15, be represented in practice by only
three out of five exponentials. However, the character of
the three modes that describe F(k, t) changes continuous-
ly with k. For kyar L» 1 the three exponentials are the ex-
tensions of those in the hydrodynamic regime for
kcrLt&1 and given by the three eigenmodes of Hjt(k)
that correspond to the three lowest eigenvalues of H,&(k).
These three eigenmodes reduce for kcrLJ & 1 to those of
HI" (k) and are called the three extended hydrodynamic
modes. The other two (nonhydrodynamic) eigenmodes of
H, (kt) are kinetic modes, the eigenvalues of which do not
vanish for k going to zero. We emphasize that the three
extended hydrodynamic modes can involve combinations
of the two nonhydrodynamic quantities o and q as well as
of the three hydrodynamic quantities n, u, and e.

The description of F(k, t) with three exponentials or,
equivalently, of S (k, co) with three Lorentzians, makes a
comparison possible with other such descriptions dis-
cussed in the literature. ' ' ' We will consider, in
particular, the representation of F(k, t) by three exponen-
tials used by Copley and Lovesey ' or, equivalently, by
Kahol et al. in their viscoelastic model.

In this model, the coupling of the microscopic quanti-
ties n, u, and o with T and q is assumed to be negligible,
as suggested originally by Ailawadi et al. As a conse-
quence, the generalized transport coefficients A, (k, co) and
y(k, co) are irrelevant for S(k, co) and S(k, to) is described
by the longitudinal viscosity P(k, co) and the frequency
moments (co")=f + "co"S(k,co)dao of S(k, co) with
n =0,2, 4 alone.

Assuming that P(k, co) is Lorentzian, this model leads
to a representation of F(k, t) by three exponentials, where
the corresponding eigenvectors are linear combinations
of n, u, and o only. ' The present MD data for F„„(k,t),
F„,(k, t), and F„(k,t) are consistent with a Lorentzian-
shaped P(k, co). However, the contributions of A.(k, co)
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and y(k, co) to S(k, co) cannot be neglected, implying that
the coupling of n, u, and 0. with T and q is not weak
enough in the Lennard-Jones fluid for the viscoelastic
model to hold. This is in agreement with earher esti-
mates for A, ( k, co ) and y( k, co ) made by Sjodin and
Sjolander and by Bosse et al. '

The outline of this paper is as follows. The MD experi-
ments are described in Sec. II, the results for the correla-
tion functions are given in Sec. III, and a discussion is
given in Sec. IV.

II. EXPERIMENT

for the microscopic energy density (j=3),

for the longitudinal momentum flux (j=4), and

Ai5" (lt)= ,'mv—i+—,
' g i'(ri, , r, ) vi.k/k
i=1
i~I

(2.8)

A. Definitions

%e consider a three-dimensional fluid of N =864 parti-
cles interacting through a cut-off Lennard-Jones potential
P(r, r, ) which vanishes for r &r„ is continuous at r =r„
and is given by

Bf(rli rc ) ik ri;(e "—1)
Bri;

(2.9)

for the longitudinal energy fiux (j= 5 }.
These 25 correlation functions Fi (k, t} are symmetric

in j and I, i.e.,

(cJLJ/r, )' —+(aLJ/r, ) ] (2.1) F i(k, t)=F,, (k, t}, (2.10)

for r (r, . Here we use r, =2.5aLi, so that P(r, r, ) is very
close to the exact LJ potential i'(r, oo ).

The 25 corelation functions F i(k, t) of interest are, for
k&0, given by

F/i(k, t) = (a (k)'e' ai(k) ), (2.2)

ivL=g v,'
Br,

(2.3)

where r;J ——r; —r, r; =
~ r;J ~, and m is the mass of a par-

ticle. The five wave-vector (k&0)-dependent microscop-
ic quantities a (k) in Eq. (2.2) are given by

5)4, 7

N

a (k)= —g A' '(k)e
i=i

(2.4)

where j or l = 1, . . . , 5, k =
~

k i, the asterisk denotes
complex conjugation, and the brackets denote the canoni-
cal ensemble average at a reduced density
n ' =n a.

LJ
——0.845 and a reduced temperature

T' =k~ T/eU = l.71. The time-evolution operator
exp(tL) replaces the position r. and velocity v of an ar-
bitrary particle j at t =0 by its position r (t) and velocity,
v (r}, respectively, a time t later, and L is the Liouville
operator given by

F4!(k,r) =— F21(k, r)—,l
(2.11)

Fsi(k, t}=——F3i(k, t},1

so that they can all be expressed in terms of F»(k, t),
F (i3k, t), and F33(k, t) by at most fourfold time deriva-
tives, or, if one includes Fzz(k, t) as well, to increase the
accuracy, by at most threefold time derivatives. Equa-
tions (2.10) and (2.11) are obtained by using the conserva-
tion laws (A14) given in Appendix A and that L is an
anti-Hermitian operator.

B. MD simulations

We determined the four correlation functions F»(k, t),
Fzz(k, t), F, (k3, t), and F33(k, t) in the following way. In
our MD experiment we used periodic boundary condi-
tions and we calculated r (t) and v .(t) over a tim. e range
of 260~ with a time increment of 0.013~, where

r =(moLJ/4kiiT)'

and, using the fact that the velocity vl(t) is the time
derivative of the position r, (t) of particle j at time t, they
are related by (I = 1, . . . , 5 )

F2i(k, r) = F,i(—k,—r),l 8

where 1 labels the N particles, and where

for the microscopic number density (j = 1),

A~i" (k)=vi lr/k

for the microscopic longitudinal velocity (j =2),
N

A3" (k.)= ,'mv(~+ ,' g Q—(r(,, r, )—
i=1
i~I

(2.5)

(2.6)

(2.7)

is the average time a particle needs to traverse crLJ with
thermal speed. Then, F11, F22, F13, and F33 were ob-
tained by time averaging 400 values of the quantities
within angular brackets on the right-hand sides of Eq.
(2.2} for 23 values of k and 0(t (2.6r . The errors in

F„,F22, F,3, and F33 were estimated by repeating the
simulation six times with di5'erent initial configurations.
Thus over 9000 data points were obtained that will be an-
alyzed below in terms of approximate eigenmodes of the
operator I..
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C. Initial values

Before this eigenmode analysis, we will discuss the ini-
tial values at t =0 of the 25 correlation functions FII(k, t).
These appear in the formal solution of Eq. (1.1},

eralized thermal expansion coefficient, and c (k) is the
generalized specific heat at constant pressure per particle.
For later we will need two more generalized thermo-
dynamic quantities that are not independent of the
preceding:

F;(k, t)=[e '—'"'V(k)].
I . (2.12)

Here H(k} is the 5X5 time-evolution matrix, with ele-
ments H;(k), introduced in Eq. (1.1) and V(k) is the
5X5 initial-value matrix, with elements Vji(k) given by
the initial values of the F,I(k, t), i.e., by the equal time-
correlation functions

c,(k}=[V33(k}—V,3(k)/V„(k)]/ktI T

=cz(k) —kIIT a(k) /S(k) (2.17)

is the generalized specific heat at constant volume per
particle and

VII(k) =FJI(k,O) = ( [a (k)]'aI(k) ) . (2.13) y(k)=c (k)/c„(k) (2.18)

V„(k)
0

V(k) = VI3(k)

V,4(k)

0

V22(k)

0

V23(k)

Vi3(k) VI4(k)

0 0

V33 ( k ) V34 ( k )

V34(k) V44(k)

0 0

V25(k)

0

V33(k)

We determined the initial-value matrix V(k} from the
MD results for Fii(k, t), F23(k, t), Fi3(k, t), and F33(k, t)
for t =0 as follows. Using the fact that V;(k) is sym-
metric in j and! [cf. Eq. (2.10)] and that VJI(k) =0 when j
refers to a microscopic quantity which is even in the mi-
croscopic velocity (i.e., j =1,3,4) and! refers to a micro-
scopic quantity which is odd (i.e., !=2, 5) in the micro-
scopic velocity, one has that V(k) is of the form

is the generalized ratio of the specific heats.

D. Correlation matrix

As shown in Appendix A, the 5)(5 correlation matrix
H(k) in Eqs. (1.1} and (2.12) is asymmetric. It contains,
in addition to three generalized k-dependent transport
coefficients, the six independent functions of k that occur
in V(k), i.e., a total of nine functions of k. However, for
the eigenvalues of H(k) only the three k-dependent trans-
port coefficients and four independent combinations of
the VII(k), i.e., seven independent functions of k, are
relevant. This reduction can be achieved by introducing
five k-dependent orthonorinal linear combinations bI(k)
of the five microscopic quantities a (k), i.e.,

(2.14)

The nine nonvanishing elements of V(k) can be expressed
in terms of six independent functions, four of which are
generalized k-dependent thermodynamic functions,
known from the theory of critical phenomena. ' '
Thus

5

b (k)= g U,I(k)ai(k),

which satisfy

([bI(k)]'bi(k)) =5II .

(2.19)

(2.20)

V„(k)=S(k),
k~T

V32(k) = V,4(k) =
m

The 5X5 transformation matrix U(k) with elements
UkI(k} is related to V(k) by [cf. Eqs. (2.11), (2.19), and
(2.20)]

V]3(k)=ktIT [h (k)S(k) —a(k)] U (k)U(k)= V '(k), (2.21)
V33(k)=[ kaTc (k)+h (k) S(k)

—2kIIT a(k)h (k)],
k, T

V34(k) = V23(k}= h (k)

a'
V44(k) = — lim F (k, t),

o gt2

(2.15)
where the elements of the transposed matrix UT(k) of
U(k) are given by UJI(k) = UIJ(k). In the literature, vari-
ous sets of orthonorrnal variables b (k) have been stud-
ied. ' ' ' Here we consider, in particular, the set ob-
tained by a successive orthogonalization of n, u, e, o, and
q:

Q2
V5, (k) = — lim F3,(k, t} .

k f

orat

Here S(k) =F»(k, O) is the static structure factor,

m
h (k) = — lim F,3(k, t)

7 k t opt
(2.16)

U„(k)
0

U(k) = U3, (k)

U4, (k)

0

U22(k)

0

U52(k)

U33(k) 0

U43(k) U44(k)

0 0 U33(k)

is the generalized enthalpy per particle, a(k) is the gen- (2.22)
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kit T a(k)
U3, (k) = U33(k) —h(k)

U44(k) = V44(k)—
kqT y(k)

S(k)

—1/2

ka Ta(k)
U43(k) = —U44(k)

mS k)c„k
ka T[c (k) —a(k)h (k)]

mS(k)c„(k)
—1/2

k~T
U35(k) = V53(k) — h (k)

m

where the matrix elements of U(k) are given by

U„(k)= 1/3/S (k),

U33(k) =(m/ki) T)'

U (k)=[k T c„(k)]

(2.23)

and explicit formal expressions for the three transport
coefficients z (k), z (k), and z (k) are given in Appen-
dix A.

We refer to the four fbi(k) in H(k) as "elastic forces, "
since when the dissipative forces, i.e., the three transport
coefficients in H(k), are set equal to zero, H(k) is an
anti-Hermitian matrix, whose eigen values are purely
imaginary, so that the eigenmodes of exp[ —tH(k)] are
purely oscillatory in time and no dissipation occurs.
With the three transport coefficients included, H(k) is a
symmetric (non-Hermitian) matrix with real and pairs of
complex-conjugate eigen values, so that dissipation
occurs. The behavior of the eigenmodes of H(k) will be
determined by the interplay of elastic and dissipative
forces: when the former dominate the behavior will be
oscillatory, when the latter dominate it will become over-
damped.

We determined the correlation matrix H(k) of Eq. (1.1)

from the MD F&i(k, t) using the eigenmodes of H(k).
These are defined by

U53(k}=—U55(k)h(k) . H(k)g"(k)=z;(k)1{"(k) (i =1, . . . , 5), (2.29)

Then the b.(k) can be identified with the five orthonor-
mal microscopic quantities: number density (j =1), lon-
gitudinal velocity (j =2), temperature (j =3), longitudi-
nal momentum fiux (j =4), and longitudinal heat fiux
(j=5). Equations (2.12) for the F i(k, t) can now be writ-
ten in the form [cf. Eqs. (2.12) and (2.21)]

5

g i/i'i'(k)i/i')J'(k) =5,),
l=l

(2.30)

where z;(k) is an eigenvalue and i(('i"(k) is the correspond-
ing eigenvector, with components g'i'(k) (1 =1, . . . , 5).

The eigenvectors satisfy, for all k, the orthonormality
condition

F i(k, t)=[U (k)e '—"(U ) (k)]~i,

where [cf. Eq. (2.21)]

U '(k}=V(k)U (k}
and

H(k) = U(k)H(k)U '(k),

with (cf. Appendix A)

(2.24)

(2.25)

(2.26)

so that the matrix elements of H(k) are given by

5

H i(k)= g z, (k)g,"(k)g'i'(k),

and those of e '—' ' by

5

[e —(H(k)] y i y(i)(k)y(i)(k)

(2.31)

(2.32)

H(k}=
if„„(k)

0

if„„(k)
0

if„T(k)
if„(k)

0

0 0

if„T(k) if„ (k)

0 0 ifT (k)

0 z (k)
ized

(k)

ifT (k)
ized

(k} z (k)

5

Fi, (k, t)= g Ai,'(k)e (2.33)

Then the F&~(k, t) can be expressed in terms of the eigen-
modes of H(k) as a sum of five exponentials [cf. Eqs.
(2.22) and (2.32}],

Here

with the amplitudes A '/'(k }given by

5

A~~/'(k) = y UJJ '(k)1/J'l'(k)){{i'il'(k)( U ) ~ '(k) (2.34)

f„„(k)=

f„(k)=

fT (k)=

k,
mS(k)

ks T [y(k} 1]—
(2.28)

k,
m S(k)V44(k) kiiT y(k)—

mki) TS(k)

m V33(k) —ka Th (k)
k

mki) T c„(k)

From a weighted least-squares-fitting procedure on the
basis of Eqs. (2.33) and (2.34) and using Eq. (2.28) for
f„„(k),f„T(k), f„(k), and fT (k), we determined the
three transport coefficients z (k), z (k), and z (k) in

H(k) as those that gave the best fit to the four MD corre-
lation functions F»(k, t), F22(k, t), F»(k, t), and F33(k, t)
for all times t The matr. ix elements of H(k) did not
change significantly if, to increase the accuracy, we also
used f„T(k), f„(k), and fT~(k) as adjustable parameters
in this fitting procedure. In this way the correlation ma-
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FIG. l. MD results (vertical bars) for the reduced correlation functions FJI(k, t)/x, xI [cf. Eq. (2.2)] as functions of t/t with

jl =11, 22, 13, and 33 (as indicated) and koLJ ——1.24 (a), 2.49 (b), 3.73 (c), and 4.98 (d) for a LJ fluid at T =1.71 and n =0.845,
where x

&

——1, x& ——(kz Tlm)', and x3 ——cLJ. Also shown are the best fits on the basis of Eq. (1.1) (solid curves).

trix H(k) in Eq. (1.1), which describes the time evolution
of all 25 F t (k, t) for all t, was obtained.

III. RESULTS

The MD results for F&t(k, t), Fzz(k, t), Ft3(k, t), and

F33(k, t) at ko LJ
——1.24, 2.49, 3.73, and 4.98 are shown in

Fig. 1 and at ko'LJ=6. 22, 7.47, 8.71, and 9.95 in Fig. 2.
We also show the best fits to the MD data with the five

modes of H(k), obtained from the least-squares-fitting
procedure described in Sec. II D. We observe that the
quality of the best fits is good, so that the 25 F &(k, t) can
indeed be described by Eq. (1.1).

The generalized thermodynamic quantities S(k), h (k),
a(k), c„(k), and y(k) are shown in Figs. 3(a)—3(e), respec-
tively, as functions of ktr L& and we plot [cf. Eq. (2.28)] the
elastic forces f„„(k)and f„(k) in Fig. 4(a) and f„T(k)
and fr (k) in Fig. 4(b). In addition, the three transport
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FIG. 2. MD results (vertical bars) for F~I(k, t)/x~xI as functions of t lt with jl =11,22, 13, and 33 and ko.LJ ——6.22 (a), 7.47 (b),
8.71 (c), and 9.95 (d); the best fits (solid curves), as in Fig. 1.
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coefficients z (k), z (k), and z (k) are displayed in Fig.
4(c) as functions of koLJ. Thus all quantities which
determine the initial value matrix V(k) [cf. Eq. (2.13)],
the transformation matrix U(k) [cf. Eq. (2.22)], and the
correlation matrix H(k} [cf. Eq. (2.27)] are displayed in
Figs. 3 and 4.

We shall now discuss the nature of the eigenmodes of
H(k) and their relevance for the correlation functions
Fjt(k, t}, i.e., the dynamical processes relevant for the
Ft(k, t). To that end, we consider first the behavior of
the matrix H(k) and its eigenmodes for small k, i.e., in
the hydrodynamic regime.

A. Hydrodynamic modes

The matrix H(k) has five eigenmodes, three of which
reduce to the usual hydrodynamic modes for small k. In
order to identify these three eigenmodes of H(k) we first

discuss the small-k behavior of the matrix V(k), which
then allows us to obtain the small-k behavior of H(k).

1. V( k)

S(0)=nk&TttT —n——ktt T(BV/Bp)T/V,

h (0)=h =(E+pV)/N,

a(0)=a=(BV/BT) /V,

c„(0)=c„=(BE/BT)„/N,

cz(0) =cz ——T(BSIBT)z IN,

y(0) =y =cz/c, ,

(3.1)

For k~O a11 elements of the equal time-correlation
matrix V(k) tend to finite limiting values that involve the
bulk thermodynamic properties of the fluid [cf. Eqs.
(2.15) and (2.16}],
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FIG. 3. (a) Static structure factor S(k), (b) reduced enthalpy
per particle h(k)/cLJ, (c) reduced linear-expansion coeScient
a{k)T, (d) reduced specific heat per particle at constant volume

c„(k)/k~, and (e) the ratio of specific heats y(k)=e~(k)/c, (k)
as functions of ko.LJ for a fluid at T*=1.71 and n*=0.845
(crosses). Also shown are the corresponding ideal-gas values
(dashed curves) and in (a) the S(k) of an equivalent fluid of hard
spheres with diameter can =0.981o.L&, which fits the S(k) of the
LJ fluid best (solid curve).

k(7
LJ

FIG. 4. Reduced matrix elements of the correlation matrix
H(k) [cf. Eq. (2.27}] for a LJ fluid at T*= l.71 and n *=O. I(45

as functions of ko„t. Shown are f„„t [closed circles in (a)],
f„ t [crosses in (a}],f„Tt [closed circles in (b)], fr~t [crosses
in (b)], z t [crosses in (c)], zest [open circles in (c}],and zq t
[closed circles in (c)].
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where ~T is the isothermal compressibility, h is the
enthalpy per particle, a is the volume expansion
coe%cient, c, and c are the specific heat per particle at
constant volume and pressure, respectively, y is the ratio
of specific heats, p is the pressure, V is the volume, and E
and S are the total energy and entropy of the fluid, re-
spectively. For the k =0 values of the two matrix ele-
ments V44(k) and Vss(k), no expressions in terms of ther-
modynamic quantities exist.

2. H(k)

For k ~0 the four elastic forces in H(k) depend linear-

ly on k, i.e., [cf. Eq. (2.28)],
' 1/2

f (k)= — ck+O(k ),un

T (3.2)' 1/2

f„r(k)= ck+O(k ),

where c =[k~Ty/mS(0)]'~ is the adiabatic speed of
sound and

Static and
dynamic

properties

S(0)
aT

CU IkB
y

E/Nc, LJ

P&u/&LJ
h /CLI

c7 /(x~
V uaVrr/o'Ly

V TqVa IVLJ
z (0)t
z, (O)~.

DTW /OLJ
$T /KLJ
I v /OLJ

Experimental
results

0.048+0.001
0.25+0.02
2.33+0.02
1.55+0.10
2. 11+0.02
6.25+0.06
5.2820.05
2.85+0.05
3.7+0.2
3.9+0.2

8+2
11+2

0.90+0.15
1.7+0.3
1.1+0.2

TABLE I. Static (thermodynamic) and dynamic (transport)
properties of a LJ Quid at reduced density naLJ ——0.845 and re-
duced temperature T = 1.71.

f„(k)=v„k+O(k'),
fTq(k)=vrqk+O(k ),

with the velocities v„and VTq given by

m S(0)V44(0)—kiiT y

mkii TS (0)
' 1/2

m Vss(0) —ka Th
VTq =

mkgT c„

(3.3)

(3.4)

where DT is the thermal diffusivity,

2
VTq A,

yzq(0) nmc

and A, is the thermal conductivity (see Appendix B).
(b) Two sound modes (i =+) with eigenvalues

(3.7)

3. Eigenmodes

The five eigenmodes of the 5X5 matrix H(k) [cf. Eq.
(2.29)] for k ~0 are obtained by using standard perturba-
tion theory around H(0) with k as a small parameter.
We omit the details of the derivative, since it is straight-
forward and we only quote the final results for the eigen-
values z,.(k) and eigenvalues P"(k) of H(k). There are
three hydrodynamic modes, whose eigenvalues go to
zero, and two kinetic modes, whose eigenvalues go to a
nonzero value, when k~0. The three hydrodynamic
modes are the following.

(a) A heat mode (i =h ) with eigenvalue

zi, (k)=DTk +O(k ) (3.5)

In addition to these elastic forces, there are three trans-
port coefficients in H(k), of which zz~(k) tends to zero
linearly in k, while z (k) and z~(k) approach finite
values, z (0) and z (0), respectively. All of the quantities
in Eqs. (3.1)-(3.4) as well as z (0) and z (0) are deter-
mined from the MD results by extrapolation of the ma-

trices V(k) and H(k) computed at finite values of k, to
k =0. They are given in Table I.

z&(k) =ki r0, (k)+z, (k),
where

ro, (k)=ck+O(k )

is the sound propagation and

z, (k)=I k +O(k )

(3 8)

(3.9)

(3.10)

In Eq. (3.10) I is the sound-damping coefficient,

I =—,'(y —1)DT+

where

2

=(~4'+ g)/nm
z (0)

(3.12)

(3.13)

is the longitudinal viscosity, where ii and g are the shear
and bulk viscosities, respectively (see Appendix B).

The two kinetic modes (i =4, 5) are given by

is the sound damping and corresponding eigenvectors

y'*'(k)=2 ' (y ' ' +1 [(y —1)/y]' 0,0)+O(k) .

(3.11)

and eigenvector

f'"'(k) =([(y—1)/y]', 0, —y ',0,0)4-0 (k), (3.6)

z4(k)=z (0)+O(k ),
q'"(k) =(O, O, O, I,O)+ O (k)

(3.14)
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and

z~(k)=z (0)+O(k ),

q"'(k) =(0,0,0,0, 1)+O(k),

(3.15)

which have no hydrodynamic analogous and give the rate
of decay of the momentum and heat flux autocorrelation
functions, respectively. We note that the values of DT
[cf. Eq. (3.7)], P [cf. Eq. (3.13)], and I [cf. Eq. (3.12)] are
given in Table I.

Thus all eigenvalues are real, except for the two sound
modes for which the eigenvalues are each other's com-
plex conjugate [cf. Eq. (3.8)]. We further remark that the
three hydrodynamic heat- and sound-mode eigenfunc-
tions have no kinetic components (i.e., QJ"(k)=0 for

j =4 or 5, i =h [cf. Eq. (3.6)], and i =+ [cf. Eq. (3.11))).
As a consequence, the nine hydrodynamic correlation
functions F~t(k, t) in Eq. (2.41), with j or l = 1,2, 3, are for
k~0 determined by the heat and sound modes alone,
i.e., for k~O,

The two extended kinetic modes, on the other hand, do
not remain real for all k as they were for small k. In Fig.
6 we show the extension of the kinetic eigenvalues z4(k)
and z5(k) frotn their (real) values for small k [cf. Eqs.
(3.14) and (3.15)] to larger values of k. We observe in Fig.
6(a) that zz(k) and z5(k) are real up to ko LJ

——3.5 as well
as in the regions 5.5&ko.LJ&6.0 and 10.5&kcrLJ&11.
For the remaining values of ko LJ, up to ko.„J——15, they
are complex and each other's complex conjugate.

We note that, although for ko „J& 1 the MD results for
all F.t(k, t) can only consistently be described by five ex-
ponentials, F» ( k, t)—or equivalently S ( k, to )—alone
can, within the accuracy of the MD results, still be de-
scribed in terms of only three (extended) hydrodynamic
eigenmodes of K(k}. This is consistent with earlier fits of

10

1„b

F t(k, t)= g A'/'(k)e
i =h, k

(3.16) N 5—

and described by a sum of the same three exponentials
that would occur if conventional hydrodynamics were
used.

In particular, for the intermediate scattering function
F(k, t)=F&t(k, t}, one has for the amplitudes AI~'(0)
=S(0)(y —1)/y and A I+, '(0)= AI) '(0)=S(0)/(2y)
[cf. Eqs. (3.16), (2.15), (3.6), and (3.11)]. Thus the dynam-
ic structure factor

IQ—

I & i i i !

1 2 "(k)
S(k, to) =—Re

q ~ ico+z, (k)
(3.17)

is given by the Landau-Placzek formula, containing a
sum of three Lorentzians, ' i.e., a central Rayleigh line
due to the heat mode and two Brillouin lines centered
around +cd, (k) due to the two sound modes of the fluid.

This is in agreement with the MD results for F&t(k, t),
F22(k, t), F,3(k, t), and F33(k, t), which can indeed all be
described by Eq. (3.16) for the smallest ko LJ value used,
i.e., for ktr„t=0. 62. In fact, hydrodynamics is valid for
ko LJ & 1. However, for ko.„J& 1, the hydrodynamic
description fails and all five k-dependent eigenmodes of
H(k) need to be used [cf. Eq. (2.33)] to represent the MD
results simultaneously (cf. Figs. 1 and 2}.

b

3
Ch

10—

)

l $ I

10 15

LJ

1 i i i i I

I 1
1

I I & 1
1

I

(c)

B. Extended hydrodynamic and kinetic eigenmodes of H(k)

For values of ko.LJ & 1, three of the five eigenmodes of
H,.J(k) are direct extensions of the heat and sound modes
at small k, while two are extensions of the two kinetic
modes at small k. We note that the three extended hy-
drodynamic modes are similar to the hydrodynamic
modes in that the extended heat-mode eigenvalue zt, (k) is
real for all k [cf. Fig. 5(a)], while the extended sound-
mode eigenvalues z+(k) are complex functions of koLz,
with z, (k)=Rez~(k) and co, (k)=

~
Imz+(k)

~
[cf. Figs.

5(b) and 5(c)].

FIG. 5. Reduced-heat mode eigenvalue zz t, sound damping
z, t, and sound dispersion co, t [open circles in (a), (b), and (c),
respectively] obtained from H(k) for a LJ fluid at T = 1.71 and
n*=0.845 as functions of ko.LJ. The zest, z,t, and co, t ob-
tained from a least-squares-fitting procedure applied to F»(k, t)
and F22(k, t) alone (cf. Ref. 12) are shown as crosses in (a), (b),
and (c), respectively. Note that z, is double valued [triangles in
(b)] when co, =0. The dashed curve in (c) is the hydrodynamic
sound dispersion ckt (cf. Table I). Also shown are the zest,
z,t, and co, t calculated from the revised Enskog theory (cf.
Ref. 5) for a fluid of hard spheres at n a =0.80 [solid curves in
(a), (b), and (c), respectively].
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e v r } i s i i ( I I & & t

(a)
A. Viscoelastic model

According to viscoelastic theory, ' ' ' the correlation
functions G.&(k, t), with j or I =1,2,4, are for kaLJ & 1 in

good approximation given by the functions GJI(k, t},
which satisfy the viscoelastic equation

a G—J"I(k, t) = — g H;. (k)G,I(k, t),
Bt i =1,2,4

(4.4)

b

IO—

)(
O -)a x-. .;x ~s s» l a

lO l5

kcTL J

) t s i t I I t l i I0 with j or I =1,2, 4. Equation (4.4) follows from Eq. (4.2)
when temperature fluctuations are neglected, i.e., when

y(k) in H(k) is replaced by 1. Then f„T(k)=0 for all k
[cf. Eq. (2.27)] and o only couples with u, so that the
cross transport coefficient z (k) can be neglected. Then
H(k) separates into a 3 X 3 matrix with j or I =1,2, 4 and
a 2X2 matrix with j or I =3,5. Since for S(k, co) only
the 3)&3 matrix is relevant, the viscoelastic prediction
S"(k,co) for S(k, co) reads [cf. Eqs. (2.27), (4.3), and (4.4)],

S'(k, co)= Re
S(k) 1

ico+f„„(k) Ifico+k P"( k, i co)]

FIG. 6. Reduced eigenvalues z4t (crosses) and zst (open
circles) of H(k) as functions of ko.LJ. The real parts are shown
in (a) and the absolute values of the imaginary parts, which are
equal, in (b).

F»(k, t) by three exponentials, as carried out for a LJ
fluid' and for liquid argon. '

IV. DISCUSSION

We now discuss two earlier attempts to describe
S(k, co) by the three eigentnodes of a 3X3 matrix: the
viscoelastic model ' ' ' and the hydrodynamic mod-
el. ' This is most conveniently and simply done on the
basis of the five orthonormal microscopic quantities bj(k)
introduced previously in Sec. II [cf. Eq. (2.19)], since the
bJ(k) contain for j=3 the microscopic temperature as an
independent variable. Defining their correlation func-
tions G I(k, t) by

(4.5)

where the generalized k- and (z =ico)-dependent longitu-
dinal viscosity P"(k, ico) is given by

„(k)'
P"(k, ico) =

k 2 i co+z (k)
(4.6)

We note that limk of"(k,O) =P, with P the longitudinal
viscosity given by Eq. (3.13) [cf. Eq. (2.28)].

Thus S'(k, co) is given by a sum of three Lorentzians,
which are determined by the three eigenmodes of the
3X3 matrix Hj, (k), with j,i =1,2, 4, where the corre-
sponding eigenfunctions are linear combinations of the
density, velocity, and momentum flux.

Using our MD results for f„„(k),f„(k), and z (k),
S"(k,co) can be computed from Eqs. (4.5) and (4.6) and is
shown in Fig. 7 as a function of m~ for 16 values of
kaU In the sam.e figure the S(k, co), derived from a best
fit to the MD results from the F 1(k, t), is also shown as a
function of cow, where [cf. Eqs. (2.31) and (4.3)]

GJI(k, t)=([ b( j)k]'e' bI(k)), (4.1)
( ico+z;(k)

(4.7)

a
G I(k, t)= ——g H. I(k}GI(k,t),at J'

i=1
(4.2)

so that S(k, co) is given by

S(k, co) = Re J dt e '"'G»(k, t)
S(k}

7T 0

Re[ico+H(k)]))
S(k)

(4 3)

We first consider the viscoelastic theory.

the time evolution of the GJI(k, t) is given by the equa-
tions

We note that S (k, co) is badly represented by S"(k,co)
in the hydrodynamic regime, i.e., for kcrLJ&1. This is
due to the fact that the viscoelastic equations [Eq. (4.4)]
do not reduce to the usual hydrodynamic equations for
k ~0 ' since temperature fluctuations cannot be
neglected then.

For ko LJ & 1, where the viscoelastic theory is assumed
to be valid, ' we observe the following in Fig. 7.
S(k,co) is poorly described by S"(k,co) for kcrLJ & 5 and
k a Lt & 7 and very well described by S"(k, co ) for
5 (ko.LJ Q7. We note, however, that for ko„J around 6,
S(k, co) is not only well represented by the viscoelastic
theory but also by the hydrodynamic theory. The reason
for this will be discussed in Sec. IV C.
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FIG. 7. Reduced dynamic structure factors S(k,co)t (solid curves) for a LJ fluid at T =1.71 and n =0.845 as functions of cot
for 16 values of the reduced wave number ko ~, indicated by their values (kyar LJ) in each figure part. Also shown are the S"(k,co)t
[cf. Eq. (4.5)] (dotted curves) and the S"(k,cu)t [cf Eq. (.4.11)] (dashed curves). For ko„i——5.60, 6.22, 6.84, and 7.47 the three curves
are indistinguishable.

B. Hydrodynamic model

To obtain the hydrodynamic interpretation of S(k, co),
we rewrite Eq. (4.2) for the 25 GJ, (k, t) of the LJ fiuid in
Laplace language and eliminate all correlation functions
with j or 1=4,5. A similar procedure has been used to
introduce the effective modes in a hard-sphere Quid.
The five equations (4.2} are then reduced to three equa-
tions,

3

zG i(k, z) = —g H ',"'(k,z)G,i(k, z)+5 i, (4.g)

where the G i(k, z) are the Laplace transforms of the
GJ&(k, t) [cf. Eq. (A2)], with j,1=1,2, 3, and where the
generalized k- and z-dependent 3)&3 hydrodynamic ma-
trix H '"' is given by

0

H '"'(k, z) = if„„(k)
if„„(k)
z4(k, z)

if„r(k}+ih(k, z)

0

if z'(k)+id'(k z)

zr(k, z)

(4.9)

f„(k)
z+z (k)+z (k} /[z+z (k)]

rq(k)
(4.10b)

z+z, (k)+z, (k)'/[z+z (k)]

f (k)frq(k)z (k)
b, (k,z)=

[z+z (k)][z+z (k)]+z (k)

z~(k, z)=

zr(k, z)=

where the generalized k- and z-dependent transport quan-
tities z&(k, z), zT(k, z), and b, (k,z} in H '"'(k, z}given by

respectively.
The hydrodynamic matrix H '"'(k, z) can also be ex-

pressed in terms of the generalized longitudinal viscosity
P(k, z) defined by

z4(k, z)=k P(k, z),
the generalized thermal conductivity A,(k, z) defined by

zT(k, z) =k A(k, z)/mnc„(k),

and the generalized ratio of specific heats y(k, z) defined
by
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y(k, z)=1+mS(k)[f„T(k)+h(k, z)] /(ktt Tk ) . —G"„(k,t) = —D,"(k)k G"„(k,t), (4.13a)

In the hydrodynamic model one assumes that the z
dependence of all three generalized transport coefficients
P(k, z), A(k, z), and y(k, z) is irrelevant, so that
H '"'(k, z)= H—'"'(k, z =0)=H '"'(k). Then S(k, co) is ap-
proximated by

S (k, cu) = Re[icu+H '"'(k)]»' . (4.11)

Thus S"(k,co) is given by a sum of three Lorentzians
determined by the three eigenmodes of H'"'(k), where
the corresponding eigenfunctions are linear combinations
of the density, velocity, and temperature.

We show S"(k,co), using our MD results to determine
H '"'(k) [cf. Eqs. (4.9) and (4.10)], in Fig. 7 as a function
of cor for 16 values of ko„~. We note that S"(k,to)
agrees with S(k, to) for kcrLJ& 1. This is due to the fact
that H(k) reduces for small k to the usual (Navier-
Stokes) hydrodynamics matrix. To see this, we note that
z&(k, O), zT(k, O), and 6(k, O) follow from the small-k be-
havior of the quantities on the right-hand side of
Eq. (4.10): f t(k)-z (k)-k, z (k)=z (0), and z~(k)
=zz(0}, as discussed in Sec. III A. Thus, for small k, one
has that z&(k, O)=gk [cf. Eqs. (4.10}, (2.28), (3.3), and
(3.13)],zT(k, O) =yDrk [cf. Eqs. (4. 10), (2.28), (3.3), and
(3.7)], while b(k, 0)-k can be neglected, and H'"'(k)
reduces to the usual hydrodynamic matrix.

As already mentioned in Sec. IVA, we see in Fig. 7
that S"(k,co) agrees with S(k, co) for 5.6&koL&&7. 5.
However, for 1&koLJ&6 and kotJ&7. 5, S"(k,co)

represents S(k, co) badly, which implies that momentum-
flux and heat-flux fluctuations cannot be neglected for
these values of k. Thus neither the viscoelastic nor the
hydrodynamic model can describe S (k, tu) for the LJ fluid
for all ko.LJ (15.

with

D,"(k)=[f„„(k)/k] I z~(k, O)

+ [f„T(k)+6(k, O) ]'/zT(k, O) I

0.008—
I

(3.73)
I

(6.22)

0.16

OOI6—
I

(4.36) (6.84)

We remark that Eqs. (4.13) would also result if the same
procedure were applied to Eqs. (4.2).

In Fig. 8 the corresponding

S'(k, co) =( I/n )ReS(k)/[ito+D, (k)k2],

with a = U and h, are computed with the S ( k, tu ) that is
obtained from the best fit to the MD results and was al-
ready given in Fig. 7.

We see that for ktrLJ=2m both self-diffusion equations
represent S(k, co) very well. This implies, as has been no-
ticed before for hard-sphere fluids, ' that also for LJ
fluids a self-difFusion process dominates the relaxation of
density fluctuations when kcr=6, i.e., k0. =2m, where
S (k) has a sharp maximum.

We note that Eq. (4.12} as well as Eq. (4.13) each has
one eigenmode, with eigenvalue D,"(k)k2 or D,"(k)kz, re-
spectively, and eigenfunction 1, which represents the den-
sity. These eigenmodes effectively represent the dynami-
cal processes in the fluid for k values around ko =2m.

C. Dominance of self-di8'usion for ko =2m

The reason that both viscoelastic theory and hydro-
dynamic theory represent S(k, co) well around ko =6 is
that both contain the density fluctuation, which gives for
k 0.=2~ by far the most dominant contribution to
S(k, co). To see this, we eliminate in both theories all
correlation functions in favor of the density correlation
function 6» and neglect all time derivatives except that
of G». In this way an equation is obtained for G„(k,t)
alone which is of the form of a self-diffusion equation.
For the viscoelastic model this equation reads [cf. Eq.
(4.4)]

0.008

b 0
0.02

3
00 I

(A

0
0.08—

0.04

0.2

0
0.I6'

0.08

0
1

(5.60)

0.04

I

V.'47)

—Gii(k, t)= —D,"(k)k G"„(k,t), (4.12a)
0

0 5 IO I5
0
0 5 IO l5

where D,'(k) is a k-dependent self-diffusion coefficient
given by

D,"(k)= [f„„(k)/[kf„ (k)]] z (k) . (4.12b)

In the hydrodynamic model this procedure, when ap-
plied to Eqs. (4.8) with z =0, leads to a similar equation,

FIG. 8. Reduced dynamic structure factors S(k, co)t (solid
curves) for a LJ fluid at T*=1.71 and n*=0.845 as functions
of cot for eight values of ko.LJ, as in Fig. 7. Also shown are the
self-diffusion approximation to S'(k, co)t [cf. Eq. {4.12)] (dotted
curves) and the S"(k,co)t [cf. Eq. 14.13)) (dashed curves). For
ko LJ ——5.60—7.47, the three curves are very close.



38 HYDRODYNAMIC TIME CORRELATION FUNCTIONS FOR A. . . 283

The question that arises is which of the five eigenmodes
of the original Gji, Eqs. (4.2), reduces to this self-diffusion

eigenmode for k values around ko.&J——6? As for hard
spheres, this is the extended heat mode, ' ' ' since

zi, (k) of Fig. 5(a) [or Eq. (2.29)] coincides with both

D,"(k)k and D,"(k)k for the koLi values, 4(koLi&8,
which contain ko.LJ

——2m.

D. Comparison with a hard-sphere fluid

As already mentioned in the Introduction, Alley and
Alder have shown that for a hard-sphere fluid at a densi-
ty comparable to that of our LJ fluid the hydrodynamic
theory for S(k, co), based on n, u, and T, is valid for all k,
i.e., not only for koh, &1 but for all 1&koh, &15. Thus
for a dense hard-sphere fluid the z dependence of the
3X3 matrix H '"'(k, z) [cf. Eq. (4.9)] can be neglected and
z can be replaced by z =0 for all k. The physical origin
of this is the dominance of the instantaneous collisional
transfer of momentum and energy in a hard-sphere
fluid. This would suggest that hard-sphere-like behav-
ior, and consequently the hydrodynamic model, would be
obtained for Lennard-Jones fluids at sufficiently high tem-
peratures, because the steep repulsive part of the interac-
tion potential (2.1) is similar to a hard-sphere repulsion.
In terms of the eigenmodes of the fluids, this means that
since the extended heat modes of the two fluids are very
siinilar [cf. Fig. 5(a)], the extended sound modes of the LJ
fluid, especially the sound dispersion, will become much
less prominent [cf. Fig. 5(c)].

E. Remarks and open questions

We end with a number of remarks and open questions.
(1) From the three exponentials that fit F(k, t)—or

equivalently, the three Lorentzians that describe
S(k, co)—the three lowest-lying eigenvalues of the 5X5
correlation matrix H(k) can be obtained. Therefore writ-
ing F(k, t) in the form

F(k, t) = g A;(k)exp[ z;(k)t], —
i=h, k

three sum rules are satisfied,

A;(k) =S(k),
i =h, k

A;(k)z;(k) =0,
i =h, k

A,.(k)z, (k) = —k /Pm .
i =h, +

As a consequence of these sum rules the three exponen-
tials that describe F(k, t) are determined by the three in-
dependent functions zl, (k), co, (k) =

~
Imz+(k) ~, and

z, (k)=Rezz(k), since the amplitudes A, (k) are then
functions of the z,.(k). Also, the three Lorentzians that
describe S ( k, co } have the correct frequency moments
(co ) =S(k) and (a& ) =k /Pm. Thus from the three-
exponential fit to F (k, t) [or then a three-Lorentzian fit to
S(k,co}], together with the sum rules, one obtains zi, (k),
m, (k) and z, (k), i.e., the three lowest-lying eigenvalues of

the 5 X 5 correlation matrix H(k).
(2) In the Introduction we mentioned that the general-

ized transport coeflicients P(k, co), A(k, co), and y(k, co)
can in principle be determined directly by MD simula-
tions, but that it is easier to derive them from the
F»(k, t), F,3(k, t), and F33(k, t). This is so because these
coefficients can be expressed in terms of three indepen-
dent correlation functions that involve complicated pro-
jected currents rather than the simple hydrodynamic
quantities considered here. This is discussed in more de-
tail in Appendix C.

(3} It has been conjectured in the literature9'z6 that
the coherent dynamic structure factor S (k, co } ap-
proaches its Gaussian (ideal-gas) limit for k = oo via the
incoherent dynamic structure factor S, ( k, co ), i.e.,
S(k,~)=—S,(k, co) or, equivalently, F(k, t)-=F'(k, t) for
kgLJ) 10.

It might be interesting to see whether not only F(k, t)
but all F i(k, r) behave like the corresponding self-
correlation functions F'&(k, t) for kuLi & 10. However, to
do this one needs to determine all F~'i(k, r) by independent
MD calculations, which has not been done so far.

For the present LJ fluid we see in Fig. 3 that all gen-
eralized thermodynamic quantities and, in particular,
k (k) and c,(k) have not yet reached their corresponding
ideal-gas values for the largest k values observed, i.e., for
koLi ——14.5. This is consistent with neutron scattering
results for S(k, co) of liquid argon at 120 K, where ideal-
gas-like behavior is observed only when ko LJ )25.

(4) For k ~ ao, the description of the F i(k, t) with five

Lorentzians fails in principle, since then all F, (ki, t) are
Gaussians, rather than a finite sum of exponentials. In
practice, however, five (or even three) exponentials can
mimic the Gaussian line shape very well. We expect
therefore that the failure of the present description of the
F i(k, t) at large k can only be revealed by MD simula-
tions of a higher accuracy than ours.

(5) It has been discussed in the literature that the
S(k, co) of liquid argon and the S,(k, co) of hydrogen
and sodium ' approach, for k —+0, their corresponding
hydrodynamic limits in a manner as that predicted by the
mode-coupling theory. For S(k, co) this implies that the
sound dispersion co, (k) behaves, for small k, as
co, (k)=ck+a k~, where a is a positive inode-coupling
parameter which depends on the thermodynamic and
transport properties of the fluid. ' Indeed, for the
present LJ fluid we see in Fig. 5(c) that co,(k) approaches
its hydrodynamic limit ck from above when k ~0. How-
ever, a quantitative comparison between the MD results
for co, (k) and the mode-coupling theory could not be
made since not all transport and thermodynamic proper-
ties, needed to determine the coefficient a, are known at
present.

(6) Bosse et a/. ' have made an interesting attempt to
use the mode-coupling theory not only for k =0 but also
for finite values of k. It would be worthwhile to investi-
gate whether a similar theoretical mode-coupling calcula-
tion, using the five eigenmodes of H(k) as "single
modes, "would lead to values of the generalized transport
coefficients for our LJ fluid that are consistent with the
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MD data. However, for such calculations the static
three- and four-point equilibrium correlation functions
are needed that are not available at present.
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APPENDIX A

Here we derive Eq. (2.27) for the 5X 5 correlation ma-
trix H(k) using the methods described in Refs. 2, 4, 6,
and 21-23.

We start with the 25 correlation functions G I(k, t) be-
tween the five orthonormal microscopic quantities b (k)
given by Eq. (2.19), i.e., with jor 1 = 1, . . . , 5,

5

zG,"(k,z) = —2 H I(k, z)Gi (k,z)+
1=1

(A10)

where the symmetric k, z-dependent 5)(5 correlation ma-
trix H(k, z) is given by

H; (k, z) = —L; (k) —U;.(k,z), (Al 1)

with L;J(k), the symmetric Liouville matrix, given by

where E=PiLPi .In Eqs. (A7) and (A8) we eliminate

P, i b, (k, z) ), so that

zP
i
b.(k,z) ) = PLP

i bj(k, z) )

+PLPi PjLP
i
b (k,z))+

~
bj(k)) .1

z —L

(A9)

Then, using Eq. (A6) for P, one finds the exact kinetic
equation

G I (k, t}= ( [bj(k)]'e' bi(k ) ), (Al) L, (k) = ("b;(k)
i
L

i
b (k) ) (A12)

and their Laplace transforms

G t(k, z) =f dt e "G I(k, t) . (A2)

and Ui(k, z), the symmetric matrix of k, z-dependent
transport coefficients, given by

Hence U,, (k,z)=(b, (k) LPL
1

z— PzL b (k)) . (A13)

Gli(k, z)=(b (k}
i
bi(k, z}), {A3)

We use the conservation laws [cf. Eqs. (2.3}—(2.9}]
where the bra-ket notation refers to the innerproduct
(f i g ) = (f 'g ) for any two functions f and g of micro-
scopic variables and where

J
bi(k z) ) =

I
bi(k) )

1
(A4)

so that

z
i b&(k, z) ) =L

i bi(k, z) ) +
i
bi(k) ) . (A5)

(A6)

We introduce the projection operators P and Pi =1—P
by

La i (k) = —ika2(k),

La2(k) = —ika&(k),

La3(k) = —ika5(k),

so that, with Eqs. (2.19}and (2.23),

Lb, (k) = —if„„(k)b2(k),

Lb2(k) = —if„„(k)b,(k) —if„T(k)b3(k)

—if„(k)bq(k),

Lb3(k) = —if„r(k)b2(k) —ifTq(k)bs(k),

(A14)

(A15)

zPi
i
b (k,z))=PiLP

i
b (k,z))+E

i bj(k, z)), (A8)

so that, by applying P and Pi to Eq. (A5),

zP
i bj(k, z)) = PLP

i bj(k, z))+PLPi
i bj(k, z))

+ ib, (k)) (A7)

and

PJLbi(k)=0, (A16)

so that Ui(k, z}=0 when i or j=1,2, 3 [cf. Eq. (A13)].
Finally, we note that Lq4(k)=L»(k)=0 since L is odd,
b4(k) is even, and b5(k) is odd in the microscopic veloci-
ties v;, respectively. Collecting the results yields

where the fJI(k) are given by Eq. (2.28). Thus, for

j =1,2, 3,

H(k, z)=
if„„(k)

0

if„„(k)
0

if„T(k)

if„ (k)

0

0 0

if„T(k) if„(k)
0 0 ifr (k)

0 z (k z) izq (k, z)

ifT (k) izq (k,z) zq(k, z)

(A17)
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where

z (k,z)= f dt e "J (k, t},
0

z (k,z)= f dte "J (k, t),

zq (k z)=i(b5(k)
~

L
~

b4(k))+ f dt e J (k t)
0

(A18)

k, T
H4((k)= [a(k)h(k) —c (k)]z (k),

k(( T a( k }h (k)
H42 ———ik V~( k)—

k~T m S(k)c„(k)

U55(k)
ih—(k) z (k),

where

J (k, t)= —(b4(k)
~

LPje' P(L
~
b4(k)),

J (k, t) = —( b5(k)
~
LPL e' P(L

~

b5(k) ),
J (k, t) =i (b5(k)

~
LP,e' Pj L

~
b4(k) ) .

(A19)

z (k)= f dt J (k, t),
0

zq(k)= f dt J (k, t),

z (k)=i(b5(k)
~

L
~
b4(k))+ f dt J (k, t),

0

(A20)

When the time scale on which the time-correlation func-
tions J (k, t), J (k, t), and J (k, t) decay to zero is short-
er than the time scale on which the functions GJ((k, t) de-

cay to zero, the z dependence of the transport coefficients
z (k,z},zq(k, z), and zq~(k, z) in Eq. (A17) can be neglect-
ed. Then Eq. (2.34) for the 5X5 correlation matrix
H(k)=H(k, O) follows from Eq. (A17) for H(k, z), with

H43(k) =— k(( Ta(k }

mS(k)c„(k)

k((Ta(k) U55(k)

mS(k)c„(k) U~(k)

k((T a(k) —S(k}h (k)
Hs(«) = (k

k((T S(k)c„(k)U55(k)

k((T[a(k)h (k) —c~(k)]U44(k)

mS(k)c„(k) U55(k)

H53(k) = —h (k)zq(k),

H53(k) = ik 1

k((T c,(k) U55(k)

k(( Ta(k) U44(k)

mS(k)c„(k) U55(k)

U44(k}
H54(k) =ikh (k)+i z (k) .

55

(A24)

which are real for all k.
By inverse Laplace transformation of Eq. (A10), with

H, ,(k, z) replaced by H;((k), one obtains the coupled set
of kinetic equations

Thus the HJ((k) are expressed in terms of the three trans-
port coefficients z (k), z (k), and z ~(k); the four in-
dependent generalized thermodynamic parameters S(k),
h (k), a(k), and c~(k); and the two quantities U44(k) [or
V44(k)] and U55(k).

a—GJ((k, t)= —g HJ.;(k)G(((k, t),Jl (A21)
APPENDIX B

H(k)=U '(k}H(k)U(k) . (A22)

Thus

for the 25 G ((k, t).
From this result and Eq. (2.19) one finds Eq. (1.1) for

the 25 F(((k, t) with the 5X5 correlation matrix H(k)
given by [cf. Eq. (2.26)]

Here we express the transport coefficients z (0) and
z (0), which are the nonvanishing elements of the 5 X 5

correlation matrix H(k) when k~O, in terms of the
more familiar longitudinal viscosity P [cf. Eq. (3.13)] and
thermal conductivity A, [cf. Eq. (3.7)] of the fiuid, respec-
tively. This involves a transition from the projection
operator P, introduced in Eq. (A6), to projection operator
P', which will be introduced below. We proceed in two
steps.

First we consider the 2)&2 matrices of k and z depen-
dent transport coefficients,

H(k)=

0 ik 0
0 0 0
0 0 0

H4, (k) H43(k} H43(k)

H5, (k) H52(k} H53(k)

0
ik
0

z (k)

H54(k}

0
0
ik

H45(k)

zq(k)

z (k, z) izq (k,z)
Z'"kz = .

izq (k, z) zq(k, z) (B1)

which occurs in the 5X5 correlation matrix H(k, z} [cf.
Eq. (A17)] and

with

(A23) z&(k, z) ib, (k, z}
'h(k, z) zT(k, z)

(3) (B2)
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which occurs in the 3)(3 generalized hydrodynamic ma-

trix H '"'(k, z) [cf. Eq. (4.19)]. We first relate Z' '(k, z) to
Z' '(k, z) for all k and z.

Expressions for the matrix elements Z
1

'(k, z) of
Z' '(k, z) in terms of current-current time-correlation
functions have been derived in Appendix A and the re-
sults are given in Eqs. (A18) and (A19). Expressions for
the matrix elements ZJ '(k, z) of Z' '(k, z) can be derived
in a similar fashion as for Z,.'. '(k, z). The result for i or

j =1,2 is

Xe' bi+, (k)) . (84)

Here f, (k)=f„(k),fz(k)=frq(k), and Pi=1 P' with—

3

P = g ~
b, (k) )(b, (k)

i
(85)

E '=PiLPi, and where we used the conservation laws for

j = 1,2 [cf. Eqs. (A15) and (85)],

Z '(k, )= —([b;,(k)] LP' P'Lb, (k)),z—
(83)

or, in terms of current-current time-correlation functions,

Z ~i(k, z)=f;(k)f (k)f dt e "([b;+3(k)]

We remark on these results in the foilowing.
(i) For k ~0, the time-evolution operator exp(tL ') in

Eq. (84) may be replaced by exp(tL) [cf. Eqs. (810) and
(811}]. This is because b4(k) and b5(k) are (noncon-
served) quantities orthogonal to the (conserved) quanti-
ties b i(k), b2(k), and b&(k), which are exact (zero) eigen-
functions of L and L ', so that exp(tL ') =exp(tL). From
this result and Eqs. (2.19) and (2.23), one shows straight-
forwardly that the expression (810) for P and (811) for A,

are the same as the usual expressions for the longitudinal
viscosity P and heat conductivity A, , respectively, given in
the literature. '

(2) While in Eq. (82) for Z' '(k, z), z&(k, O), and zr(k, O)

vanish proportionally to k when k~0; b(k, O) vanishes
proportionally to k, since

lim f dt([bs(k)]'e' b4(k))=0,
k~0 0

due to the different tensorial character of the momentum
and heat cruxes, respectively. As a consequence of this
and Eqs. (3.3) and (4.10), the transport coefficient
z~ (k)=z~~(k, O) in Z' '(k, O} vanishes proportionally to
k, while z (k)=z (k, O) and z (k)=z (k, O) approach
z (0) and z (0), respectively, when k~O. This then
leads directly, with Eqs. (3.3) and (4.10), to Eqs. (3.13),
z (0)=v„ /P, and (3.7), z~(0)= mnc„vT /A, , which is the
desired result.

PiLb +, (k) = —if1(k)bi+3(k) . (86)
APPENDIX C

and

=—+—L'
z L' z —z z L'—(87)

z —L' +
z —"I. z

one obtains straightforwardly the relation (i orj = 1,2):

zZ '(k, z) =f, (k)5;

Z;i (k,z)Zij (k, z) . (89)

Using this equation one can express the matrix elements
Z '(k, z) in terms of those of ZJ '(k, z) and in terms of
the f;(k). The results are given by Eqs. (4.10), when
z (k), z (k), and z (k) on the right-hand side of this
equation are replaced by z (k, z), z~(k, z), and z ~(k,z),
respectively.

Next, we consider the hydrodynamic regime where
k ~0 and where the Z;.(k,z) may effectively be replaced
by Z;J.(k, O). It follows then from Eqs. (84}and (3.3) that
Z'„'(k, 0)=z&(k, O) =Pk, with

P=v„ lim f dt([b4(k)]'e' b4(k)), (810)
k~O 0

Using Eq. (86) in Eq. (83) and applying to Eq. (83)
operator identities of the form The three generalized transport coefficients P(k, co),

A(k, co), and y(k, co) or, equivalently, z&(k, z), zr(k, z), and
h(k, z), that occur in Eq. (4.9) for H'"'(k, z) can be ex-
pressed directly in terms of the current-current correla-
tion functions Y; (k, t) as

z~(k, z)= f dt e "Yii(k, t),
0

zr(k, z) = f dt e "Y22(k, t), (Cl)
0

ih(k, z)= f dt e "Y,2(k, t),
0

where (i,j =1,2}

Y, (k, t) = ([J,("k)]'e' JJ(k) )

and J, (k) is the projected current (i =1,2),

J;(k)=PiLb;+, (k),

(C2)

(C3)

where

Y; (k, t)=([J;(k)]'e' JJ(k)) (C5)

as follows from Eqs. (82) and (83) in Appendix B. The
Y;.(k, t) satisfy the equation (i,j =1,2}

2

Y,"(k,t)=Y,, (k, t)+ Q f dt'X;((k, t')Y(, (kt t'), —
1=1 0

(C4)

and that Zzz'(k, O}=zr(k,O}=Ak /mnc„, with

=mnc„vr lim. f dt([b5(k)]~e' b5(k)) . (811)
and

X, (k, t)=([J,(k)]'e' bj+, (k)), (C6)
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which can be derived using methods similar to those used
in Appendix B. In principle, the Y;.(k, t) can then be ob-
tained from MD results for Y; (k., t) and X;~(k, t) using
Eq. (C4). Thus such a MD calculation of z&(k, z),

zT(k, z), and h(k, z) involves the six functions Y; (k, t)
and X;.(k, t), and is therefore more complicated (albeit
more accurate) than the method used in this paper, based
on F„„(k,t), F,„(k,t), and F„(k,t) alone
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