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Energies of 3s and 3p states of sodiumlike ions are calculated from Z = 11 to Z =92 starting from
a Dirac-Fock potential and including second- and third-order Coulomb correlation corrections, the
lowest-order Breit interaction with retardation treated exactly, second- and third-order correlation
corrections to the Breit interaction, and corrections for reduced mass and mass polarization. The
calculated energies are compared to measured energies to determine the size of the omitted quan-
tum electrodynamics corrections.

INTRODUCTION

We report calculations of energies of 3s»2, 3p&&2, and

3p3/2 states of Na-like ions with nuclear charges ranging
from Z =11 to 92, The calculations employ relativistic
many-body perturbation theory, based on Dirac-Fock
(DF) wave functions; they include second- and third-
order Coulomb correlation corrections, first-order correc-
tions for transverse photon exchange, and correlation
corrections of second- and third-order to one transverse
photon exchange. Finite nuclear size, reduced mass, and
mass-polarization corrections are also included in the cal-
culations, but QED corrections such as the electron self-
energy and vacuum polarization are omitted.

Recent measurements of wavelengths for Na-like ions'
have provided a set of reference values for the 3s-3p tran-
sitions of interest here in the range Z =18 to 54. These
measurements extend and improve a previous analysis of
Edlen, who made a systematic semiempirical study of
Na-like ions in the range Z =16 to 42. A theoretical
analysis of the Na isoelectronic sequence in the range
Z =25 to 80 based on a model potential with several ad-
justable parameters has also been made by Ivanov and
Ivanova. In previous analyses of the sodium sequence,
QED effects have been approximated by scaling the
Lamb shift for hydrogenlike ions to an efFective charge
appropriate to Na-like ions. %'hile this approximation
may describe the dominant QED contributions, it can
be misleading, since correlation efFects omitted in a
semiempirical analysis or in model potential studies could
be misinterpreted as screening corrections to the Lamb
shift. In the present study we compare ab initio calcula-
tions of the 3s and 3p energy levels in which QED correc-
tions are omitted with the measurements, with the aim of
extracting information on the omitted QED effects. The

resulting differences, which are found to be systematically
smaller than the one-electron Lamb shift for hydrogen-
like ions, provide a basis for future studies of QED
corrections in many-electron atoms.

FORMULAS

( VHF )ij g (giaja giaaj ) (2)

where g; kI is a two-electron Coulomb matrix element,

g;.ki
——I d xd y u; (x)uk(x)uj (y)ui(y) .

x—y

In Eq. (2) the index a extends over occupied core states.

The present calculation follows the pattern of a previ-
ous study of Li-like ions. In lowest order we solve the
DF equations,

(h + VHF)u, (r)=s, u, (r),
for each orbital u, (r) of the neonlike core self-
consistently. The single-electron Hamiltonian h in Eq. (1)
is a one-electron Dirac Hamiltonian which includes the
electron-nucleus Coulomb interaction. Finite nuclear
size effects are introduced into h by taking the nuclear
charge distribution to be a Fermi distribution with pa-
rameters determined from electron-nucleus scattering
data and from muonic x-ray studies. ' The 10%-90%
thickness paraineter a of the nuclear charge distribution
was taken to be 0.523 fm for all of the ions considered.
The 50% fallofF radius R„„,was obtained from a least-
squares analysis of the data in Refs. 5 and 6. The values
of R„„,obtained from this fit, which are accurate to
about 0.05 fm, are listed in Table I. The Hartree-Fock
potential VH„in Eq. (1) is defined by
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TABLE I. Parameters used in the calculation of the 3s and

3p levels of sodiumlike ions. R is the radius of the nuclear

charge distribution in fm and M is the nuclear mass in amu.

The dimensionless Lamb-shift functions F(nl, ) for the 3s and 3p

states are taken from Ref. 16.

z F(3sl/2 j F(3pl/2 ~ F(3p3/2 ~

11
14
17
20
26
34
42
54
74
92

2.885
3.127
3.497
3.719
4.118
4.763
5.117
5.702
6.446
6.987

22.984
27.969
34.960
39.952
55.921
79.898
97.882

131.87
183.91
238.00

4.4409
3.9431
3.5645
3.2650
2.8183
2.4158
2.1440
1.8821
1.6738
1.6436

—0.1128
—0.1068
—0.1004
—0.0934
—0.0781
—0.0554
—0.0303

0.0126
0.1041
0.2240

0.1311
0.1348
0.1388
0.1431
0.1528
0.1669
0.1823
0.2068
0.2506
0.2916

gvmab(gabum gabmv }

a b m ~u+~m ~a ~b
(4)

In Eq. (4) the indices a and b designate core orbitals, n

and m orbitals outside the core, while U designates a
valence orbital. Including contributions from negative
energy orbitals in the first term of Eq. (4) would give rise
to two kinds of additional terms, one in which one orbital
has positive energy and the other negative energy, and
one in which both orbitals have negative energy. The
first kind of term is not allowed by QED: including it
would lead to vanishing energy denominators, a feature
associated with the continuum dissolution problem.
The second type of term is allowed by QED but contrib-
utes at the level of screening of the Lamb shift, as dis-
cussed in Ref. 4. As we are not directly evaluating QED
corrections in this paper (although we will later compare
the difference between experiment and our theoretical re-
sults with the unscreened Lamb shift), we omit such
negative-energy contributions throughout the calcula-
tion. To carry out sums such as those occurring in Eq.
(4} we replace the actual spectrum of DF states by a finite
pseudospectrum constructed from B splines:" the re-
striction to positive-energy states is straightforward.

The most time consuming part of the present calcula-
tion was the evaluation of the third-order Coulomb corre-
lation energy E,' '. The expression for E„'', which con-
tains 12 multiple sums, is written out in Refs. 4 and 7 and
will not be repeated here. One term in the third-order en-
ergy contains sums over four virtual orbitals; this term
accounted for about 90%%uo of the computer time used in
the entire calculation. Fourth- and higher-order

The orbitals u;(r) for states outside the core are deter-
mined by solving the DF equation in the self-consistent
field of the core electrons. The lowest-order ionization
energy for the valence state is just the eigenvalue of the
valence DF equation E„''=c„.

The dominant correction to the valence energy is the
second-order Coulomb correlation correction given by

gvanm gnmua Snmav(g —g

a n m ~n+~m ~v ~a

Coulomb correlation corrections were not included in the
present calculation, but some idea of their size may be
gained by iterating the second-order contribution from
Eq. (4). For the 3s removal energies in Na and Fe' + we
find contributions of 4.5% and 0.17%%uo of E' ', respective-
ly.

The first-order correction due to the exchange of trans-
verse photons between the valence electron and the core
electrons is given by

(1)
u

= g bvaau

X~ u„(y)], (6)

where ko =
~
e, —e, /Pic. If we make the approximation

that k0=0, Eq. (6) reduces to an exchange matrix ele-
ment of the Breit interaction'

1
~12 (+1 +2+(+1 r12)(+2 r12)1

2r, 2

We retain k0 only in our first-order calculations and use
the approximate form of the interaction given in Eq. (7)
to calculate the second- and third-order correlation
corrections to transverse photon exchange.

The second-order correction from one Coulomb in-
teraction and one transverse interaction B„'' is

B(2) 2
vanm & nmua gnmau

.+.—.—.

where

vmab gabvm gabmvb ( — )

+ + RPA ~

abm u+ m a b

(8a}

B(2) (g —g )an gnuva 6nvau
RPA +c.C.

a, n ~n —&a

with

(Sb)

ban g babbn
b

(8c)

As mentioned above, we approximate the two-electron
matrix element of the transverse photon interaction b, -ki

in Eqs. (Sa)—(8c) by a matrix element of the Breit interac-
tion given in Eq. (7). The first two terms in Eq. (Sa) are
evaluated in exactly the same way as the two correspond-
ing terms in Eq. (4). The third term in Eq. (8a), the
random-phase approximation contribution BRP'A, is
found to be an order of magnitude larger than the first
two terms; indeed, this term is nearly equal, but opposite
in sign, to the first-order correction for neutral sodium.
Because the third term is so large, it was separated off
from the first two and evaluated together with terms hav-

The transverse-photon exchange matrix element bv„u in

Eq. (5) is

b„„,= — f fd xdyfd k e'"'"
2772 0

x(5,, —k, k, )

X [u„(x)a;u,(x)u, (y)
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ing similar denominator structure from third- and
higher-order perturbation theory using the techniques de-
scribed below.

The Breit interaction is nominally a two-body interac-
tion, but when expressed in second quantization and nor-
mally ordered with respect to the core, it contains zero-,
one-, and two-body parts. The zero-body part never con-
tributes in higher-order perturbation theory. The RPA
contribution to 8„'' arises from the one-body part of the

I

Breit interaction, while the small remaining contribution
to 8„'' is from the two-body part. Thus we evaluate only
the contributions to 8„'' that arise from the one-body
part of the Breit interaction, assuming these to be the
dominant ones. Furthermore, we restrict the set of one-
body contributions in 8,' ' to the "Brueckner-orbital"
terms 8Bo and the "RPA" terms 8R pA which are known
to give the largest effects for other one-body operators
such as the hyperfine interaction or the dipole operator, '

Bu BBO+8RPA(3) (3) (3)

B(3)
l U
—E

l@u

buigianm gnmva gnmau( — )

a n m ~n + m u a i i ~u

I+U

gimab gabum gabmv( — )

~u+~m ~a

(9a)

(9b)

8RPA
{3)

a, b, n, m

(gunua gunau ) bm (gamnb gambn )
+c.c. +(e„—e, )(e eb )—

(gmnab gmnba ) bm (gauun gaunu )
+c.c.(e„—e. )(e —eb )

(9c)

gimab gabjm gabmj( — )
+ .b e+e —e, eb— (10)

and then solve the inhomogeneous one-electron Dirac
equation,

(h + V„„—E, )5u, (r) = [5e, —X( )(e, )]u, (r),
to obtain approximate Brueckner-orbital corrections
5u„(r)to the valence orbital u, (r). The energy shift 5e,
due to X( )(e„)is precisely E„''. From Eqs. (9b) and (8c)
it follows that

BBO 2 X 5(su)bbu (12)
b

The RPA corrections 8 RPA and 8RPA are the first two
terms in the iterative solution to the equations

an e nuua +nuau(g
RPA

a, n &n —&a

where ij; is defined in Eq. (8c). The sum over i in Eq. (9b)
includes both core and excited states.

To evaluate the term 8Bo, we first construct the nonlo-
cal second-order correlation potential X( '(e),

gianm gnmja gnmaj( — )
E c„+e—c.—c,

TABLE II. Iteration of RPA equations for the Breit interac-
tion in the 3s state of neutral Na.

S =10 QBRpA
2

(g(n) g(n —I )
) yg(n)

If we approximate t „aadnt„ain Eqs. (13b) and (13c) by
the inhomogeneous terms b,„andbn„respectively, then
B paAin Eq. (13a) reduces to BRp„. If we iterate Eqs.
(13b) and (13c) once to obtain a second approximation to
t,n and tn„and use this second approximation in Eq.
(13a), we pick up the term B'„p„from Eq. (13a). In the
present work we continued the iteration solution until
convergence at the level of 1/10 was achieved, and
thereby included RPA terms to essentially all orders in
perturbation theory. This was deemed to be necessary
because of the relatively large size of the RPA correction,
and because of the relatively slow convergence of the
RPA series in perturbation theory. An illustration of the
iterative solution of Eqs. (13a)—(13c) is given in Table II,
where we show the partial sums of the RPA series, BRPA,
8RPA+BRPA ', for the 3s&/2 state in neutral sodium.
The iterative solution was cross-checked by reformulat-
ing Eqs. (13a)—(13c) as a set of differential equations that

a, n

gauun gavnu ) na

E —E.n a

bm gnmba gnmab )(
na na

b, m m b

b, m

(gnbma gnbam ) mb

&m —~b

bm

(gabmn gabnm ) mb

m —&b

bm gambn gamnbt ( — )

an an +
b, m m —~b

(13a)

(13b)

(13c)

2
3

4
5

6
7
8

9
10
11
12
13
14
15

—2.4892
—1.2585
—1.7273
—1.5416
—1.6137
—1.5854
—1.5964
—1.5921
—1.5938
—1.5932
—1.5934
—1.5933
—1.5934
—1.5933

0.98000
0.27000
0.12000
0.045 00
0.01800
0.006 90
0.002 70
0.001 10
0.000 41
0.000 16
0.00006
0.00003
0.00001
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are solved using standard numerical techniques.
It is worth noting that essentially equivalent results

could be obtained by incorporating the Breit interaction,
Eq. 7, in the self-consistent potential as done by Quiney
et al. ' In a perturbation series based on this new poten-
tial, all terms involving the one-body part of the Breit in-
teraction vanish identically; our relatively large RPA
corrections would appear in the zeroth-order energy,
while our corrections Bzo would be part of E' '.

Corrections for the reduced mass were included in the
calculation by multiplying the total theoretical energy by
the factor —m /M, where I is the electron mass and M is
the mass of the nucleus. The associated mass-
polarization corrections were calculated in perturbation
theory, assuming that the mass polarization could be ade-
quately described using the nonrelatiUistic interaction
Hamiltonian

120

U

80-

N 40

lX)

UJ 0
0 20 40 60 80 l00

FIG. 2. Breit interaction energy (including correlation) divid-
ed by Z for n = 3 states of sodiumlike ions from Z = 11 to 92 in
units of 10 ' a.u.

1
HMP M XPi Pj

l~J
&)J

(14)

where p; is the momentum of the ith electron. The
values of I used in the present calculation are listed in
the third column of Table I.

In lowest order the interaction HMp leads to the energy
shift for the valence state,

p."'=—
M X I

&U
I p lb& I'.

b

(15)

This mass-polarization correction was found to be just as
sensitive to correlation effects as the Breit interaction.
The correlation corrections to Eq. (15) were determined
following the procedure described previously for the
Breit interaction, simply replacing the two-particle ma-
trix elements of the Breit interaction in Eq. (7) by two-
particle matrix elements of ( I/M)p& pz. Indeed, we
found that the second-order correction with one action of
HMp and one Coulomb interaction was larger than the
first-order contribution given in Eq. (15) for the 3s

& &z

state in neutral sodium. Again, as in the case of the Breit
interaction, the second-order corrections were dominated

by the RPA terms, so that these terms were iterated to all
orders. Third-order Brueckner-orbital corrections were
also included, and were found to be relatively unimpor-
tant.

Among the corrections omitted in the present calcula-
tions, the most important for highly ionized systems are
the electron self-energy and vacuum-polarization correc-
tions. To estimate the size of these omitted Lamb-shift
corrections we compare energies calculated from the for-
mulas given above with experiment. For neutral sodium
the treatment of correlation given here is not sufficiently
complete to make such a comparison meaningful, but for
the remaining ions, we expect the higher-order correla-
tion corrections to be smaller than the omitted QED
corrections. For hydrogenlike ions the self-energy and
vacuum-polarization corrections can be written in the
form

a'Z4
b,E =

3
F(Za) a. u. ,

m.n

where n is the principal quantum number of a level and
F(Za) is a slowly varying function of nuclear charge,
which is expected to be insensitive to n. ' The values of
F(Za) used in the present study are listed in Table I.'
Hydrogenic values of bE are used as a reference with

60
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60
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80 IOO

FIG. 1. Second-order correlation energy E' ' for the n =3
states of sodiumlike ions from Z = 11 to 92 in units of 10 a.u.

FIG. 3. Mass polarization energy (including correlation) di-
vided by Z for n =3 states of sodiumlike ions from Z = 11 to
92 in units of 10 a.u.
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which the Lamb-shift corrections inferred from experi-
ment are compared. Deviations from the hydrogenic
values are referred to as screening corrections to the
Lamb shift.

DISCUSSION OF CALCULATIONS

A summary of our calculations is given in Table III,
where we list the theoretical energies of the 3s and 3p
states of Na, Si +, Cl +, Ca + Fe' +, Se +, Mo '+,
Xe +, W +, and U '+. The dominant contributions to
these energies are the Dirac-Fock eigenvalues listed un-

der the heading E' ' in the table. The column labeled
E„„containsthe sum of the contributions from the
second- and third-order Coulomb correlation corrections
E' ' and E' '. In the fourth column we list the total Breit
interaction, which includes the lowest-order Breit in-
teraction (with ko&0), together with the second- and
third-order correlation corrections. The fifth column
contains the reduced-mass and mass-polarization contri-
butions, and the final column contains the resulting
theoretical energies of the 3s and 3p states. It is clear
from the table that the Coulomb correlation corrections

TABLE III. Theoretical energies for n =3 states of sodiumlike ions. Units of energy are in a.u. Numbers in parentheses denote
errors.

State

3$

3p
3p

3$

3p
3p

3$

3p
3p

3$

3p
3p

3$

3p
3p

3$

3p
3p

3$

3p
3p

3$

3p
3p

3$

3p
3p

3$

3p
3p

E(0)

—0.182033
—0.109490
—0.109417

—1.643077
—1.321673
—1.319542

—4.177647
—3.617688
—3.608 865

—7.743915
—6.948437
—6.924760

—17.963 529
—16.695 869
—16.598 386

—38.079023
—36.166027
—35.798 591

—65.834514
—63.244907
—62.246 321

—122.59725
—118.90453
—115.70295

—262.453 08
—256.553 58
—242.678 38

—448.01082
—439.555 20
—399.56203

Ecorr

—0.006395(50)
—0.001972(20)
—0.001964(20)

—0.016021(24)
—0.012490(24)
—0.012407(24)

—0.020252(6)
—0.019486(7)
—0.019314(7)

—0.022 680(12)
—0.024035(10)
—0.023 756(9)

—0.025 681(17)
—0.029731(18)
—0.029 155(20)

—0.027992(19)
—0.034089(21)
—0.032980(21)

—0.029 596(18)
—0.036983(22)
—0.035 151(22)

—0.03177
—0.04059
—0.03725

—0.03539
—0.04628
—0.038 79

—0.04024
—0.05375
—0.03942

Breit

Z =11
0.000012
0.000009
0.000003

Z =14
0.000164
0.000227
0.000 106(1)

Z =17
0.000568(1)
0.000854(1)
0.000456(1)

Z =20
0.001 328(2)
0.002069(2)
0.001 177(2)

Z =26
0.004353(4)
0.007027(4)
0.004208(4)

Z =34
0.012844(2)
0.021 120(6)
0.012926(7)

Z =42
0.028 525(1)
0.047 384(4)
0.028942{6)

Z =54
0.071 32
0.11946
0.07109

Z =74
0.22311(1)
0.37602
0.20421(1)

Z =92
0.507 95(2)
0.85809(1)
0.40424(1)

Reduced mass and
mass polarization

0.000004
0.000002
0.000002

0.000031
0.000018
0.000018

0.000062(1)
0.000033(1)
0.000033(1)

0.000100(2)
0.000051(1)
0.000051(1)

0.000 164(6)
0.000082(3)
0.000081(3)

0.000241(15)
0.000119(7)
0.000118(7)

0.000337(32)
0.000169(16)
0.000166(16)

0.00046(7)
0.00024(4)
0.00023(4)

0.00069(20)
0.00039(11)
O.QN 37(11)

0.00087(39)
0.00056(25)
0.00051(23)

Sum

—0.188411(51)
—0.111451(19)
—0.111376(19)

—1.658904(24)
—1.333919(24)
—1.331825(24)

—4.197269(6)
—3.636287(7)
—3.627 691(7)

—7.765 167(12)
—6.970352(10)
—6.947288(9)

—17.984693(19)
—16.718492(19)
—16.623 252(21)

—38.093930(24)
—36.178877(23)
—35.818527(23)

—65.835 249(37)
—63.234338(27)

62.252 365(28)

—122.557 24(7)
—118.82543(4)
—115.66889(4)

—262.26467(20)
—256.223 45(11)
—242.51259(11)

—447.542 24(39)
—438.750 31(25)
—399.19670(23)
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TABLE IV. Contributions to the Coulomb correlation energy for Na and Fe' +. Units of energy are

in a.u. Numbers in parentheses denote errors.

Z

11
11
11

26
26
26

State

3$

3p
3p

3$

3p
3p

g (2)~ single

0.001358
0.000753
0.000754

0.007955
0.008266
0.008164

~(2)~ double

—0.007244
—0.002539
—0.002531

—0.033807
—0.038 177(1)
—0.037499(2)

E(2)

—0.005 886
—0.001 786
—0.001777

—0.025 852
—0.029911(1)
—0.029335{2)

E(3)

—0.000508(50)
—0.000 186(20)
—0.000 187(20)

0.000171(17)
0.000180(18)
0.000180(20)

are the dominant corrections for low values of nuclear
charge and that the Breit interaction dominates for high
Z.

The corrections given in Table III are plotted as func-
tions of the nuclear charge Z in Figs. 1—3. The Coulomb
correlation correction E„„is dominated by E' ', shown

in Fig. 1 for the three valence states. This correction
would be independent of Z in a nonrelativistic 1/Z ex-

pansion. The energies vary rapidly at low Z because we

use a Dirac-Fock basis rather than the Coulomb basis ap-
propriate to the 1/Z expansion. The deviations from
constancy at high Z are relativistic effects. In Fig. 2 we

plot the total Breit correction for the three valence states
scaled by Z as functions of Z. The coefficient of 1/M in

the mass-polarization correction is plotted in Fig. 3. The
entries listed under the heading reduced mass and mass
polarization in Table III are the sums of the reduced-
mass corrections and the mass-polarization corrections.

Contributions to the Coulomb correlation corrections
for Na and Fe' + are shown in Table IV. The individual
contributions to E' ' in Eq. (4) from single and double ex-
citations are given together with the resulting sum E' '

and the sum of the 12 terms contributing to E' '. The
second-order energy was evaluated with high accuracy,
the dominant source of error being the truncation of the
partial-wave expansion. Nine partial waves were includ-

ed, and the remainder was estimated by rational extrapo-
lation. The third-order calculation was too computation-
ally intensive to permit similar accuracy, primarily be-
cause of the tenn involving sums over four excited states.
In this case, only four partial waves were summed, and
the innermost ( ls, iz) core state was excluded from the
core sums. For this reason, a large error estimate of 10%
is quoted in Table III. Because of 1imitations in comput-
er time, E' ' was not evaluated above Z =42. Although

the third-order energy is relatively small, the associated
error is the largest theoretical uncertainty in the calcula-
tion for low-Z ions. We are presently investigating
methods to allow more accurate evaluation of E' '.

In Table V we list the various contributions to the
Breit interaction for Na and Fe' +. The dominant con-
tribution B"' is calculated using the frequency-dependent
interaction given in Eq. (6). While a rapid pattern of con-
vergence was found for the Coulomb correlation correc-
tions, the corresponding corrections to the Breit interac-
tion are seen to be much more significant, primarily due
to the RPA terms discussed above. Of particular note is
the large cancellation of 8"' by this term for neutral Na.

The individual contributions to the mass-polarization
energy correction for Na and Fe' + are given in Table
VI. The situation is similar to that just discussed for the
Breit interaction with large cancellations of the lowest-
order correction by the RPA terms. The computational
error in the mass-polarization correction is small but
there is an error associated with the use of the nonrela-
tivistic mass-polarization Hamiltonian. We used the non-
relativistic Hamiltonian because we do not know of a sys-
tematic relativistic treatment of nuclear recoil that would
fit into the scheme of our calculations, and yet feel it is
important to make some estimate of this effect. We ex-
pect the error to be on the order of (Za) times the
reduced-mass energy correction. For high Z this uncer-
tainty dominates the theoretical error in the level ener-
gies.

In Table VII we compare our values of the 3s»2 ener-

gy with measured energies. Most of the —0.00045 a.u.
difference seen for neutral Na is the result of our incom-
plete treatment of the Coulomb correlation corrections.
If one ignores the Lamb shift entirely, the additional
correlation corrections that must arise in fourth and

TABLE V. Contributions to the Breit interaction for Na and Fe"+. Units of energy are in a.u.

Numbers in parentheses denote errors.

Z

11
11
11

26
26
26

State

3$

3p
3p

3$

3p
3p

B(l)

0.000026
0.000013
0.000009

0.005480
0.008355
0.005648

B(2)

—0.000003(1)
—0.000001
—0.000001

—0.000 195(4)
—0.000260(4)
—0.000271(4)

BRPA

—0.000016
—0.000005
—0.000006

—0.000967
—0.001 127
—0.001208

BBo(3)

0.000004
0.000002
0.000001

0.000036
0.000058
0.000038
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TABLE VI. Contributions to the mass-polarization energy for Na and Fe"+. Terms in table must
be multiplied by m/M to obtain energy shift. Units of energy are in a.u. Numbers in parentheses
denote errors.

Z

11
11
11

26
26
26

State

3$

3p
3p

3$

3p
3p

p(1)

—0.061 50
—0.03201
—0.03199

—2.51638
—9.82545
—9.73257

p(2)

0.02633
0.00780
0.00779

0.36398
0.66803
0.65392

PRPA

0.04653
0.01340
0.01338

0.90140
0.86680
0.84802

PBQ
(3)

—0.00701
—0.00477
—0.00475

—0.01028
—0.06642
—0.06573

ptot

0.00434
—0.01558
—0.01557

—1.26128
—8.35704
—8.29635

TABLE VII. Comparison of theoretical values of the 3$&i2 energies for sodiumlike ions with experi-
ment. Units of energy are in a.u. Numbers in parentheses denote errors.

Z

11
14
17
20
26
34
42
54
74
92

Theo r.

—0.188411(50)
—1.658904(24)
—4.197269(6)
—7.765 167(12)

—17.984693(19)
—38.093930(24)
—65.835 249(37)

—122.55724(7)
—262.26467(20)
—447.54224(39)

Expt.

—0.188858 5
—1.658 9302(10)
—4.2004946(90)
—7 764210(15)

—17.979983(15)

Expt. -Theor.

—0.000447(50)
—0.000026(24)
—0.003226(11)

0.000958(19)
0.004711(24)

Unscreened
Lamb-shift

0.0002979
0.0006940
0.001 364
0.002393
0.005900
0.01501
0.03056
0.073 32
0.2299
0.5394

TABLE VIII. Comparison of theoretical values for the 3p&i2-3$&&2 interval in sodiumlike ions with
experiment. Units of energy are in a.u. Numbers in parentheses denote errors.

Z

11
14
17
20
26
34
42
54
74
92

Theor.

0.076960(54)
0.324985(34)
0.560982(9)
0.794 815(16)
1.266201(26)
1.915053(33)
2.600911(38)
3.731 805(8)
6.041 224(23)
8.791938(47)

Expt.

0.077258 1

0.3248193(5)
0.560434(9)
0.793773(14)
1.262979(14)
1.90544(8)
2.57907(15)
3.677 52(21)

Expt. -Theor.

0.000298(54)
—0.000166(34)
—0.000548(13)
—0.001042(21)
—0.003222{30)
—0.00961(9)
—0.021 84(15)
—0.05429(22)

Unscreened
Lamb-shift

—0.0003054
—0.000712 8
—0.001402
—0.002462
—0.006064
—0.01535
—0.03100
—0.07283
—0.2156
—0.4659

TABLE IX. Comparison of theoretical values for the 3p&&2-3p&&2 fine-structure interval in sodium-
like ions with experiment. Unitsofenergy are in a.u. Numbers in parenthesesdenote errors.

Z

11
14
17
20
26
34
42
54
74
92

Theor.

0.000076(28)
0.002094(34)
0.008 596(10)
0.023065{14)
0.095240(28)
0.36035(3)
0.98197(4)
3.15655(1)

13.71086(2)
39.553 60(3)

Expt.

0.000078
0.002097(1)
0.008 612(9)
0.023 122(19)
0.095459(19)
0.36129(14)
0.984 11(32)
3.16146(39)

Expt. -Theor.

0.000003(28)
0.000004(34)
0.000016(14)
0.000057(24)
0.000219(34)
0.00094(14)
0.002 13(32)
0.00491(39)

Unscreened
Lamb-shift

0.000016
0.000043
0.000092
0.000173
0.000483
0.001 36
0.00303
0.00757
0.0201
0.0222
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FIG. 4. Inferred QED correction for 3p, i, -3s, i2 splitting di-

vided by Z for sodiumlike ions from Z =14 to 54 compared
with unscreened hydrogenic values in units of 10 ' a.u.

FIG. 5. Inferred QED correction for 3p3/p 3p, iz splitting di-
vided by Z for sodiumlike ions from Z =17 to 54 compared
with unscreened hydrogenic values in units of 10 a.u.

higher order are seen to be of the same order as E' '.
There is a complicated interplay between these uncalcu-
lated correlation corrections, which should become less
important for higher Z, and the uncalculated QED
corrections, which although presumably highly screened,
should also grow rapidly in importance further along the
isoelectronic sequence. For Z larger than 17 it appears
that a screened Lamb shift accounts for the difference be-
tween theory and experiment. In Table VIII the
3s&/2-3p&/2 energy interval is compared with experiment
and the differences between theory and experiment are
seen to be systematically smaller than the hydrogenic
3s&/2-3p&/z Lamb shift, reaching 80/o of the hydrogenic
value for Xe +. In Table IX we compare values of the
3p, /z-3p3/2 fine-structure interval with experiment and
again find that the differences are significantly smaller
than the hydrogenic Lamb-shift (LS) values. A compar-
ison with these values is presented in Figs. 4 and 5 for the
case of the 3pl/2 3sl/2 and 3p3/2 3p1/2 'ntervals resp
tively.

In summary, the present calculations of the Coulomb,
Breit, and reduced-mass corrections to the energies of the
3s and 3p states of Na-like ions when compared to experi-
ment lead to differences that are systematically smaller
than the differences expected from hydrogenic values of
the Lamb shift. Accounting for these residual screening
corrections to the Lamb shift for Na-like ions remains as
a significant unsolved problem in atomic physics. As dis-
cussed in Ref. 4, it is possible to identify Feynman graphs
that are associated with these screening corrections, and
work is presently in progress to evaluate these graphs.
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