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Shortcomings of the Keldysh approximation
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A simple derivation of the Keldysh amplitude for the ionization of an atom by a strong field is

presented using a perturbation expansion in the binding potential. It is shown that the "Keldysh
approximation" is questionable under conditions of strong ionization, when there is substantial

probability of removing the electron from its initial bound state. This is consistent with published

numerical studies based on model binding potentials. It is argued that the Keldysh amplitude is

not gauge invariant in the usual sense, and that it is effectively canceled in a conventional gauge-
invariant formulation of strong-field perturbation theory.

H(t) -Hp(t)+ V(r)

-p /2m+ Ht (t )+ V(r)

Hw +Hi (t),

(la)

(lc)

The Keldysh theory of ionization by a strong oscillating
field is characterized by the treatment of the detached
electron as an otherwise free particle in the field. ' The
photoelectron is therefore described by a Volkov wave
function, i.e., a solution of the Schrodinger equation for a
charged particle in an external field. 2 Apart from its
neglect of the Coulomb interaction of the electron with
the residual ion, the Keldysh approximation is often re-
garded as a "nonperturbative" approach to strong-field
atomic ionization.

In this paper the well-known form of the Keldysh tran-
sition amplitude involving an initial bound state and a
final Volkov state is derived very simply using a perturba-
tion expansion of the time evolution operator in the atomic
binding potential V(r). (As in much of the recent litera-
ture, the "Keldysh approximation" here refers to the
lowest-order approximation to the formulation originally
outlined by Keldysh. ) In order to arrive at the Keldysh
amplitude it is necessary to assume that the probability of
the electron being removed from its initial state is small.
The Keldysh approximation is therefore of questionable
validity under conditions of strong ionization, when this
probability is not small. This observation is consistent
with ab initio numerical studies in which the Keldysh ap-
proximation has been found to be in serious disagreement,
sometimes even qualitatively, with exact results.

Another difficulty with the Keldysh approximation is
that it produces gauge-dependent results. This problem is
discussed below in connection with a more conventional,
gauge-invariant perturbation theory advocated by An-
tunes Neto and Davidovich. This gauge-invariant ap-
proach is formally equivalent to that employed by Kroll
and Watson for the scattering of an electron in the pres-
ence of a strong field.

The Hamiltonian of interest has the form

t'8Up/8t HpUp,

tau/at -U(VUpu-UJVU,

(4a)

(4b)

and Up(0) u(0) 1. Thus

t 7

Af;(t) &f [ Up(t) (i& i„dt—'&f I Up(t)UII(t') VU(t') ( t

(5)

U(t')
~ i & is the state to which

~
i & evolves after a time t'

If we assume that

U(t') (i&=-e"" ~i&= ( tie;(t')—&,

where Ip is the ionization potential associated with state
)t&, then

fO 7

Af;(t) =&f
~
Up(t)

~
t&

—i„,dt'&f
) Uo(t)U)(t')V I tlr;(t')&.

(7)

The approximation (6) assumes that the probability of the
electron leaving its initial bound state is negligible, and
also that the level shift due to the applied field may be ig-
nored.

No~ since

tron to the field [e.g. , Ht (t ) er E—(t ) . or Ht (t)—(e/mc)A(t) p+(e /2mc )A (t)1, and HA p /2m
+ V is the unperturbed Hamiltonian for the bound elec-
tron in the absence of the applied field.

The transition amplitude of interest is

Af;(t) -&f
~
U(t) (i&, (2)

where )i& is the initial (bound) state and
~ f& is a plane-

wave state associated with a free electron of momentum p.
The time evolution operator U(t), satisfying i&U/Bt

HU, is given by

U(t) -Up(t)tt(t),

where

where Hp(t) is the Hamiltonian for an electron in the ap-
plied field alone, V is the atomic binding potential, Ht(t)
is the interaction Hamiltonian for the coupling of the elec- me have

, ( 1t;(t')&-[p'/2m+v] I y;(t')&,
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Pf
Af;(r) =-&f

) Up(r) ( i& — dt'&f [ Up(r)UJ(r') li8/8r' —p'/2m j I y (r')&

&f ( y (r)&+i dt'&f [Up(r)[i8UJ(r')/8r'+Uf(r')p /2m] [ y;(t')&,

after an integration by parts. But from (4a) and (1) it follows that

i8UJ/8t'+Up(t')p /2m —Uf(t')Hg(t'), (io)

and therefore that

Af;(r)~&f
~
ti;(t)& i„—dt'&f [Up(r)UJ(r') HI(r')

~
y;(r')&.

The first term obviously remains bounded for all t and so
does not contribute to a transition rate (defined as

~ Af;(t) ~
/t for t oo). Thus the transition rate is deter-

mined by the amplitude

Ap(r) dt'&f ( U((r')Hr(r') ( y (i'&

, dr'&yf (r') i Hr(r') i y;(t')&, (i2)

where we have dropped the factor Up(t) since in the end it
only contributes to a physically irrelevant phase of the
amplitude. The state

i yf (r') & -Up(r')
i f&,

is the state to which an initial free-electron state evolves
under the action of the applied geld alone. That is,

~ py (t')& is a Volkov state, and (12) is in fact just the Kel-
dysh approximation to the transition amplitude.

The crucial assumption in our derivation of the Keldysh
amplitude is that the probability amplitude for the elec-
tron to remain in its initial state is close to unity. The ap-
proximation is therefore suspect under conditions of
strong ionization, for instance. Indeed, several numerical
experiments on simplified models have uncovered substan-
tial differences between the predictions of the Keldysh ap-
proximation and the "exact" ionization probabilities

I

I

determined numerically. For instance, Geltman5 found
that the standard "Oppenheimer" tunneling ionization
formula, which can be obtained from the Keldysh approx-
imation in the limit in which the adiabatic tunneling pa-
rameter y is small, gave poor estimates of the ionization
probability in a one-dimensional b-function model for the
atomic potential. More recently, Antunes Neto, Davido-
vich and Marchesin, s Javaneinen and Eberly, 7 and Collins
and Merts have found poor agreement between the Kel-
dysh approximation and one-dimensional models under
conditions where multiphoton absorption can be expected
to be the dominant ionization mechanism.

It is interesting now to return to the exact expression
(5) and employ a different expression for the (exact) time
evolution operator U:

U(t) Up(t)u(r),

i8Ug8r -H, Up,

i8u/8t UJHIUpu UJHIU,

(i4a)

(i4b)

(i4c)

and Up(0) u(0) 1. This form, of course, is the basis
for a perturbation expansion in the electron-field interac-
tion HI. Using it in (5) allows us to obtain the Keldysh
amplitude plus a correction represented by the third term
in the expression

Af (t) -&f [ Up(r) )'i & i, dt'&—f ~
Up(r)UJ(r') V

~
y;(t')&

dr "&f
~
Up(r)U)(r') VUp(r')UJ(r ")Hr(r ")U(r ")~i&, (is)

where in the second term we have used the fact that Up(t')
~
i&

~
y;(t')&. Since the first two terms in (15) are identical

to the right side of (7), we see from (11) that the exact amplitude (15) may be rewritten as

Af;(r) -&f ~ y;(r)& i dr'&f
~
Up(r)U—J(t')Hl(r')

~
y;(r')&

dt' dt "&f
~
Up(r)UJ(r')VUp(r')Uf(r")Hl(r")U(r") (i&.

The corrections to the Keldysh amplitude contained in the third term of (16) might appear at first glance to be smaB
for strong fields because of the appearance of the small perturbation V to HI. However, this is not the case. N«e that

UfH, U-U$(H H, )U-U-J(i8U/8t)+(i8UJ/8r)U-i8(UJU)/8i, (i7)

and therefore
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t l

&f I UO(t) I I& l dt'&f
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which is Eq. (5). This form, of course, suggests the conventional sort of perturbation expansion in which the form (4) of
the time evolution operator is used exclusively:

Af (t) '&f [ Up(t) [i& i„dt'&f [ Up(t)U)(t')VUp(t') [i&

~g ~g'

dt'„dt "&f ~
Up(t) U) (t ') VUo(t') Uj (t ")VUo(t ")

~
i&+ (i9)

In this perturbation expansion of the evolution operator
the Keldysh amplitude does not appear. It has been can-
celed by the third term in (16). Such a cancelation occurs
also in the Green-function analysis of Antunes Neto and
Davidovich. i These authors, and more recently Mittle-
man, showed that the Keldysh amplitude is not invariant
under a contact transformation in which the A2 term is
removed from the Hamiltonian, and they remarked that
there are similar difficulties with gauge transformations.
Let us take up briefly the question of gauge invariance in

the present formulation.

Consider a gauge function Z(r, t) that vanishes at the
initial and final times, t 0 and t T, of interest. This
could represent, for instance, the transformation from the

I

I

A p to the r E form of the Hamiltonian, with the vanish-
ing of X at initial and final times corresponding to the adi-
abatic switching on and off of the vector potential. 'o

Without the gauge transformation the transition ampli-
tude is A;(T) &f ~

U(T) ~i& Und. er the gauge transfor-
mation y& ~

y'& e '
~ y& the evolution operator

U U' e "U, and the transition amplitude becomes

AI;(T) &f [ U'(T) [ i& &f [e ' ' U(T)
~

i& AI;(T),
(20)

because of the assumption X(r,0) X(r, T) 0. This
gauge invariance of the exact transition amplitude also
holds order by order in perturbation expansion (19) since,
for instance,

&f ( Up(T)U](t') VUp(t') )i& &f ) Up(T)Up (t') VUp(t') [i&

&f I e iz(r, Up(T)UJ(t )ea(r, t')Ve ' "&Uo(t ) I t

-&f
~
Uo(T)UJ(t') VUp(t')

~
i&. (2i)

However, the Keldysh amplitude does not have this gauge invariance. Consider the effect of a gauge transformation
on the second term in (7):

t T-i„dt'&f
( U (pT)UJ(t')V ( i&e ' i„dt'&f )

—Uo(T)Upt(t') V [i&e' '
t T—i dt'&f

~
Uo(T)UJ(t')e "Vj i&e' '40

t T
i dt'&f—( Uo(T)UJ(t') V~ i&e"' (22)

This lack of gauge invariance explains why different re-
sults have been obtained when the Keldysh approximation
has been used with the different interaction Hamiltonians
Ht —er E and Ht —(e/mc)A p+(e~/2mc2)A2,
which are connected by a gauge transformation with
X er A/h. For weak fields the Keldysh approximation
essentially reproduces the results of conventional, first-
order gauge-invariant perturbation theory in which Ht is
treated as a small perturbation. This is evident from Eq.
(i2).

Thus the Keldysh amplitude in its most frequently
quoted form is not gauge invariant. The more convention-

I

al perturbation theory based on (19), by contrast, is
gauge invariant. Formally, this is precisely the kind of ex-
pansion implicit in the Kroll-Watson theory of electron
scattering in a strong 6eld. Antunes Neto and co-
workers have found in their model calculations using a
b-function potential that for strong fields the first term in
(19) provides a much better approximation to the exact
amplitude than the Keldysh approximation, which failed
dramatically for the cases they presented. Based on the
formal but simple approach used in this paper, it seems
clear that the Keldysh approximation is likely to fail for
strong fields. It does not, as sometimes claimed, provide a
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"nonperturbative" description of strong-field ionization.
This does not contradict the fact that the Keldysh ap-

proximation accounts for things like the multiphoton
peaks in the photoelectmn energy distributions measured
in above-threshold ionization. Virtually any approach
that includes inultiphoton absorption can be expected to
predict, at least qualitatively, such structure. At the same
time it must be recognized that the Keldysh theory ap-
pears to be in reasonably good quantitative accord with at
least some above-threshold ionization experiments, " and

remains a valuable benchmark in the theory of strong-
field interactions.
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