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Understanding of phase modulation in two-level systems through inverse scattering

Andrew Hasenfeld, Sharon L. Hammes, and Warren S. Warren
Department of Chemistry, Princeton University, Princeton, New Jersey 08544-1009
(Received 25 November 1987)

Analytical and numerical calculations describe the effects of shaped radiation pulses on two-
level systems in terms of quantum-mechanical scattering. Previous results obtained in the re-
duced case of amplitude modulation are extended to the general case of simultaneous amplitude
and phase modulation. We show that an infinite family of phase- and amplitude-modulated

pulses all generate rectangular inversion profiles.

theoretical analysis.

The understanding of the effects of an arbitrarily
shaped radiation pulse on a two-level system is an old
problem in quantum mechanics, but it still has tremen-
dous practical importance in laser spectroscopy, nuclear
magnetic resonance, and magnetic resonance imaging.'
The case of constant field amplitude and no phase modu-
lation was analytically solved half a century ago,? and
provides the concept of pulse flip angle which is ubiquitous
in coherent spectroscopy. This exact solution permits ac-
curate calculation of the effects of any other pulse shape
by breaking it up into enough rectangles. However, in
practice one wishes to find pulse shapes which produce
some specific desired excitation or inversion profile, and
this inverse problem is quite complicated.

The only other complete analytic solution (all ampli-
tudes, all resonance offsets) published to date is for the
pulse envelope [sech(at)]'T# 375 The qualitative behav-
ior of the inversion profile from this unusual shape is vast-
ly different from the rectangular pulse case. Above a cer-
tain minimum pulse amplitude the inversion profile is
nearly rectangular, and remains theoretically (and experi-
mentally®’) unaffected as this amplitude is varied. The
concept of a flip angle breaks down completely; no gen-
eralization for an arbitrarily phase- and amplitude-
modulated shape has been found. Numerous other
analytical results have been reported (for a review see
Ref. 1) but all are restricted to one resonance offset or one
amplitude, which drastically curtails their utility in realis-
tic applications with inhomogeneities or multiple transi-
tions. Approximate solutions have been found by numeri-
cal methods, but they provide little of the intuition whicl}
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Experimental measurements also verify the

will be necessary to ultimately generalize results to more
complicated sequences.

In this paper we extend previous work on the inverse
scattering reformulation of the Bloch equations®’ to in-
clude phase and amplitude modulated pulses. We show
theoretically and experimentally that in this reformulation
[sech(at)]1'*% is only the first member of a multiply
infinite family of phase- and amplitude-modulated pulses,
all of which give the same inversion profile [in NMR par-
lance, I, (Aw) starting from spin equilibrium]. That shape
corresponds to a reflectionless potential'® with a single
bound state. The other waveforms involve more bound
states, and have additional internal degrees of freedom.
They take the spins along different trajectories, and can
thus be more suitable for more sophisticated spectroscopic
applications such as echo sequences. This formalism
shows the surprising generality of raising an amplitude
modulated envelope to a complex power, and provides ad-
ditional insight into pulse shape design.

The basic physical motivation is to view Bloch evolution
(in time #) as a Schrodinger scattering process (in the spa-
tial parameter X, to avoid confusing the Schrodinger 7
with the Bloch #). While the exact theory'! is on the
infinite line [ — o0, 0], practical considerations demand a
pulse shape compactly supported on an interval [0,T].
This is taken care of by ensurinﬁ that the pulse-shape tails
are sufficiently small (=< 107%). The inverse scattering
formalism for amplitude-modulated pulses has been de-
rived elsewhere.® Here we start with the Bloch equations
for amplitude and phase modulation
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and where relaxation terms are neglected. By stereographically projecting M onto the y-z plane,
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we find that 7 satisfies a Riccati equation
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Finally, replacing the Bloch evolution parameter ¢ by a spatial variable X translates this into a Schrodinger scattering

problem
d2
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where one identifies the energy E and potential V as
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and where O(a'nz) denotes “order of wi.” The inverse
problem arises from the desire to find the field modulation
yH (t) =0, (¢)[cosp ()X +sing(¢)$] that would realize a
specific M(Aw, T). In contrast to the real-valued case of
amplitude modulation®® (in which only the single func-
tion w; needs to be recovered), in this full case, we need to
find both w, and ¢, so that a complex potential is required.

The actual pulse occurs during a finite interval (extend-
ing from O to 7), and thus it vanishes as t— = o. This
translates into the spatial condition that V— 0 as
X — * oo, The initial condition

0
M(Aw,0)=| 0
—1
implies n =1. So from Eq. (4),
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In addition, we can impose boundary conditions on the
bound states (E = —A2A; > 0,i=1,...,N)
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e’ asx— —oo,

bi()e M as ¥ — oo, ©)

where b; is the ith normalization constant.
Equations (5)-(7) are perfectly general, but they do
not lead to analytic solutions for arbitrary V and E, except
in the special case of V a “reflectionless” potential.'® It
was shown explicitly in Ref. 9 that real reflectionless po-
tentials with NV bound states generate broadband 2zN
pulse shapes. N=1 is the McCall-Hahn sech(at)2x
pulse;'? the N =2 family generate broadband 4z pulses,
where the potential V has three adjustable parameters.
All of these pulses generate no net excitation. The case of

T
a complex potential is normally much more involved.
However, recall that we reconstruct @; and ¢ from the
real and imaginary parts of V. Thus, from (7), if

O1~wif, (10)
we see that
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so that the previously derived amplitude result® sits in
Re(¥V) and the Im (V) contains the desired phase modula-
tion. We therefore obtain from (10) the ansatz

o=uln(w), 12)

for the phase modulation for constant .

Moreover, by examining the large ¢ behavior of g/g, one
can show that ¥ in (11) is a reflectionless potential, and
that the only allowed final states are M, =*1.!' From
(11), we have that o;~+v —Re(¥), and combining with
(12), we obtain the ansatz

yH (1) =@, = o (140D _ (J=7)U+ad)  (13)

for V a reflectionless potential. Potentials of the form of
Eq. (13) yield simple scattering behavior. In fact, over a
wide range of pulse parameters their inversion perfor-
mance is nearly identical.

We show numerical simulations'? of the Bloch equa-
tions (1) using this ansatz. The analytic approach above
is exact in the limit as ¢ — = oo, but in our finite numeri-
cal simulations the behavior is not perfect (i.e., there is a
transition region from M, =—1 to M,=1). Neverthe-
less, as shown in Figs. 1-3, the behavior is very close to
the limiting theoretical results. In Fig. 1 we see the pulse
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FIG. 1. The N=1 reflectionless potential at the top is used in
the ansatz (13) as an inverting pulse, where the response — M,
is displayed as a function of resonance offset Aw/wf at the bot-
tom. Note that in Figs. 1-3, the eigenvalues are given by
A =N—i+1, and wf denotes the average pulse height.
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FIG. 2. The N =2 reflectionless potential at the top is used in
the ansatz (13) as an inverting pulse, where the response — M,
is displayed as a function of resonance offset Aw/wf at the bot-
tom.
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FIG. 3. The N =3 reflectionless potential at the top is used in
the ansatz (13) as an inverting pulse, where the response — M,
is displayed as a function of resonance offset Aw/w{ at the bot-
tom.

No selective pulse

N=1

f

!
f

N=3

|

U

.
-

1 kHz

FIG. 4. Experimental verification, utilizing an inhomogene-
ously broadened line from a water sample in a 270 MHz spec-
trometer, is shown for the three pulses given in Figs. 1-3 (for
—u=5).
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generated from the only reflectionless potential with N =1
(one bound state), which becomes [sech(at)]'**. Fig-
ures 2 and 3 show examples of N =2 and N =3 potentials.
In the general case, the pulse arising from an /N bound-
state potential has 2N —1 adjustable parameters (the N
eigenvalues and N normalization constants, modulo
translations), which along with the phase modulation pa-
rameter u can vary continuously over a broad range.!!
Figure 4 shows the experimental inversion profiles from
the shapes in Figs. 1-3.

One can understand the response purely in terms of
scattering, with no need to appeal to the concept of adia-
batic rapid passage.'* Loosely speaking, a wave incident
on a potential behavior of height ~w{ with energy ~Aw?
will be exponentially damped if the energy in the wave is
too small (corresponding to M, =1). Likewise, when the
energy of the wave surpasses the height of the barrier,

there is no reflection, and the wave propagates unimpeded
(corresponding to M, = —1). The transition occurs when
the energy in the wave is close to the height of the barrier.
It is clear that there is a compelling correspondence be-
tween the behavior of two-level systems and elementary
quantum-mechanical scattering.
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