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We compute the percolation concentration for identical ellipses with aspect ratio b/a in a two-
dimensional plane where both the centers and orientations are random. We have obtained a
comprehensive set of results ranging from circles to needles which can be well fit by the interpola-
tion formula p,=(1+4y)/(19+4y), where y =b/a +a/b. We also obtain results for random
centers and random orientations along the two principal directions which are virtually indistin-
guishable from the previous case. These results are used to critique the various effective-medium
theories that have been developed for the electrical conductance and elastic moduli of sheets con-
taining random elliptical inclusions. An interpolation formula is developed that appears superior to

all these effective-medium theories.
I. INTRODUCTION

The universal behavior of the critical exponents that
describe transport quantities such as electrical conduc-
tivity, thermal conductivity, the diffusion constant, and
elastic moduli of a composite system near the percolation
threshold can be understood by continuum percolation
theory.! Experimental results agree well with the
theoretical predictions of such quantities.? In designing
composite materials it is more important to know the
overall behavior of the properties of these materials which
are governed by nonuniversal quantities away from the
critical region. The location of the critical point is also
nonuniversal. When the concentration of one of the com-
ponents (for simplicity, we will consider only two-
component composite systems) is extremely low, the be-
havior of quantities like the electrical conductance can be
adequately described by the Clausius-Mossotti equation.?
In between these two extremes, an exact microscopic
theory or detailed computer modeling of the transport
properties would be very difficult and neither is currently
available. Some progress has been made recently in
studying two elliptical holes in a homogeneous medium. *
However, even here there are still unresolved problems
associated with overlapping inclusions that have prevent-
ed a useful generalization of the Clausius-Mossotti equa-
tions. Computer simulations have also not been possible
because even the largest available machines cannot store
enough information to meaningfully discretize such con-
tinuum systems. Thus a major research tool that has led
to so much of our understanding of the response of
discrete lattice systems® has not been available or exploit-
ed yet in continuum systems.

The purpose of this paper is to develop a semi-
phenomenological description of the behavior of the
transport properties of these systems. Many effective-
medium theories (EMT) have been developed®®~!! but
are of dubious validity away from the dilute limit, where
all these theories agree. In order to ascertain which of
these theories are good for all concentrations, we have lo-
cated the critical concentration of randomly positioned el-
lipses at percolation. These results are new except for the

38

special case of circles and provide a most stringent test of
effective-medium theories. We find that there are no
reasonable EMT for electrical conductance; all fail to
predict the correct critical concentration for circles. On
the other hand, we find one such existing theory to be
clearly superior and adequate for elastic inclusions. This
is the asymmetric reinforced model (also called SC 4-4,
reinforced problem in Sec. IIB of Thorpe and Sen).’
This was originally derived for circular inclusions by Hill,
Budiansky, Wu, and Berryman®~!° using different self-
consistent methods. In the circular limit symmetric and
asymmetric theories are identical. Those results were
generalized by Thorpe and Sen’ to ellipses for which sym-
metric and asymmetric theories are no longer identical.
Note, however, that this theory applies when the circular
inclusions are infinitely hard so that the elastic compli-
ance and not the elastic modulus vanishes at the critical
concentration. We would expect that this effective-
medium theory should also be superior for mixtures
where the elliptical inclusions are hard. The SCA-A4 for
holes does not give a good value for the critical concen-
good value for the critical concentration.

The interpolation formula we develop incorporates the
behavior at the two extremes (i.e., low concentrations and
near the percolation threshold) for a system containing
randomly distributed insulating elliptical laminae (i.e.,
holes) embedded in the uniform background of a con-
ducting matrix.

The layout of this paper is as follows. In Sec. II we dis-
cuss the geometric aspects of continuum percolation for a
system containing random elliptical laminae and in Sec.
IIT we present our computer simulations of the percola-
tion thresholds and compare with the results of previous
work. In Sec. IV we use our results to critique effective-
medium theories by examining their predictions for the
percolation concentration. In Sec. V an interpolation for-
mula for the electrical conductance is developed.

II. CONTINUUM PERCOLATION OF ELLIPTICAL
LAMINAE

In continuum percolation, as well as in percolation on
a lattice, an important quantity to describe the onset of
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percolation is the percolation threshold p,. 12’ There exist
extensive studies' in the literature of p. for percolation
on various lattices, where p, is the fraction of bonds or
sites remaining, depending on the type of percolation be-
ing studied. In the continuum percolation problem, p, is
defined to be the fractional area occupied by one phase
which, in our case is the area remaining after the ellipti-
cal holes are removed. Figure 1 shows an example of the
system under study and the area covered by ellipses has
fractional area 1 —p (at the percolation threshold p =p,).
Imagine that a constant voltage is applied across a con-
ducting sheet and randomly oriented elliptical holes with
random centers are punched out. As more and more ma-
terial is removed, electric current flow through the sheet
is restricted and vanishes at p,. We are interested in how
p. changes as the geometry (i.e., aspect ratio) of one
phase changes'*!'* or more precisely how p. changes as
the inclusions change from circles to needles. We use the
aspect ratio b /a to describe the asymmetry of the ellipse
where a and b (with @ > b) are the major and minor
semiaxes, respectively. Note that the eccentricity of the
ellipse is given by e =[1—(b /a)*]'/%.

In the following discussion, identical, but randomly
centered holes each with area A are removed from a
two-dimensional L X L sheet. At hole concentration n
per unit area, and remaining area fraction p, if we in-
crease the hole density, then the area that is still available
to be removed is pL%. Therefore the additional area re-
moved by changing the hole density from n to n +dn is
pL?A dn. On the other hand, the area remaining is re-
duced to pL2—(p +dp)L?, so

pL?—(p +dp)L?*=pL*A4 dn ,

i.e.,

dp/p=— Adn ,

FIG. 1. An example of randomly oriented ellipses with as-
pect ratio b/a=0.5. The periodic boundaries can clearly be
seen. Actual samples used were much larger.
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so that
p =exp(— 4n) , (1)

where we note that p =1 when n =0 and p =0 when
n =o. This formula has been used previously for cir-
cles'®!” but is true for all shapes if sufficient randomness
is present.'® This is because the repeated random place-
ment of an additional object or hole serves as a measure
of the remaining area. We are, of course, always thinking
of the thermodynamic limit when the system size is very
large. Equation (1) can be generalized to three dimen-
sions, where A is replaced by the volume of each indivi-
dual hole and n is the hole density per unit volume (this
can be visualized as Swiss cheese). In the two-
dimensional case we are studying, A =wab and at the
percolation threshold n =n_; therefore,

p.=exp(—mabn_) . (2)

Equation (2) allows an immediate determination of the
percolation threshold p. for a given a and b once n, is
known or vice versa. This equation is very convenient to
use in practice as it only involves counting; no area evalu-
ation is involved. For circles we find from our simula-
tions that

p.=exp(—ma’n,)=0.33+0.02 , (3)

where a is the circle radius and n, is the density of circles
per unit area at percolation. We have given generous er-
ror bars on (3). Our result (3) agrees well with other re-
sults for circles.!® We also notice that a careful finite-size
scaling study gives better results,!® but this would need
huge amounts of computer time if it were to be done for
all aspect ratios. Our purpose here is to look at the gen-
eral trend of how p, changes with b /a.

In 2D the background ceases to percolate when the in-
clusions percolate. This is because there is no way
around the infinite cluster. Therefore, there is a single
percolation concentration. In higher dimensions, this is
obviously not the case and there are two separate per-
colation concentrations for the inclusions and the back-
grounds.

In continuum percolation involving identical objects, it
is useful to introduce the average excluded area denoted
as (a,,).2>?! For given relative orientations of two iden-
tical objects the excluded area is defined as the area that
if the center of one is outside it, the two objects have no
overlap at all. Average means over all allowed relative
orientations. The excluded area at percolation is defined
as

(A =nay) . (4)

Although the mean-coordination number and the critical
area or volume fraction are essentially invariant?? in bond
and site lattice percolation, respectively, { 4.,) is not
quite such a quasiuniversal invariant quantity, and it has
a small range.'? Our results will be discussed in detail in
Sec. III but we see from Table I that for randomly orient-
ed ellipses,

3.4<(4,)<45. (5a)
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TABLE L. Values of p,, n., k, and ( 4., ) are listed for ran-
domly oriented ellipses for various aspect ratios b/a. The value
of k is obtained by evaluating the perimeter s of the ellipse from
an elliptic integral and using the formula in the text. The value
of n, is obtained from the simulation with the area of the ellipse
fixed at /8 and then ( 4., ) is obtained from formulas (4) and
(6). The error bar in ( 4., ) is +0.2.

b/a P ne k ( Acx )
1.0000 0.33 2.8 1.000 44
0.9000 0.33 2.8 1.002 4.4
0.8000 0.33 2.8 1.009 4.4
0.7000 0.34 2.8 1.024 4.5
0.6000 0.35 2.7 1.050 4.5
0.5000 0.37 2.5 1.094 4.3
0.4000 0.41 2.3 1.171 4.2
0.3333 0.44 2.10 1.254 4.1
0.2500 0.50 1.76 1.432 4.0
0.2000 0.54 1.57 1.618 4.0
0.1500 0.62 1.22 1.937 4.0
0.1000 0.70 0.90 2.592 3.7
0.0667 0.78 0.62 3.589 3.7
0.0500 0.83 0.49 4.592 3.5
0.0400 0.86 0.40 5.599 3.5
0.0333 0.88 0.34 6.609 3.5
0.0250 0.91 0.26 8.629 3.5
0.0125 0.949 0.133 16.74 35
0.0050 0.979 0.054 41.06 35
0.0025 0.990 0.027 81.12 3.4

For ellipses that can only lie in two directions, we see
from Table II that

2.8<( A4, )<4.4. (5b)

Taking account of the error bars noted in the table cap-
tions, both these sets of results for { 4., ) are probably
monotonic in the aspect ratio.

The excluded area of two identical ellipses can be
defined as

(a., ) =4mabk , (6)

where k is a geometric factor that is chosen as above so
that k =1 for circles. For randomly centered and orient-
ed ellipses,

k=1+s%/87%ab , (7)

where s is the perimeter of an ellipse (this involves an
elliptical integral which can be evaluated numerically).
For randomly centered ellipses that can only lie in the
two principal directions, the k factor is different from (7)
and not available in a closed form for general b /a. For
parallel ellipses k =1 but must be computed (using, for
example, the contact function described in Sec. III) for el-
lipses at right angles. These two results are then aver-
aged. The values of k for both these cases have been cal-
culated and are given in Tables I and II for various aspect
ratios.
From Egs. (2), (4), and (6), we notice that

p.=exp(—{ A4,, ) /4k) (8)
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TABLE II. Values of p., n., k, and ( 4.,) are listed for
ellipses with rwo allowed orientations. The value of k is obtained
by evaluating the excluded area (a., ) numerically and then us-
ing Eq. (6). The values of n. are from simulation with the area
of the ellipses fixed at /8 and { 4., ) are obtained by using Eq.
(4). The error bar in { 4., ) is £0.2.

b/a Pe ne k (4,
1.0000 0.33 2.8 1.000 44
0.9000 0.33 2.8 1.002 44
0.8000 0.33 2.8 1.009 44
0.7000 0.34 2.7 1.024 43
0.6000 0.36 2.6 1.049 43
0.5000 0.37 2.5 1.091 43
0.4000 0.41 2.3 1.162 42
0.3333 0.45 2.06 1237 40
0.2500 0.50 1.80 1.391 3.9
0.2000 0.54 1.59 1.548 3.9
0.1500 0.62 1.24 1.812 3.5
0.1000 0.68 0.97 2.342 3.6
0.0667 0.78 0.65 3.137 32
0.0500 0.82 0.51 3.933 32
0.0400 0.85 0.42 4.729 3.1
0.0333 0.87 0.37 5.525 3.2
0.0250 0.90 0.28 7.117 3.1
0.0125 0.947 0.145 13.48 3.1
0.0050 0.976 0.061 32.58 3.1
0.0025 0.989 0.028 64.41 2.8

which reduces to p,=exp(—( 4., ) /4) for circles when
k =1."18 In the needle limit where b/a is small and
the ellipses are randomly oriented, using (7) we have
s =4a and k =2a /m?*b, so that from Eq. (8)

p. =exp(—3.4/4k)=exp(—0.4257%b /a)
~1—4.2b/a , 9)

where we have used ( 4., ) ~3.4 from Table I. We note
that in this limit, the result (9) is independent of the pre-
cise shape of the needles. For example, they can be ellipti-
cal or rectangular. As b/a becomes very small, only a
few needles are needed to cross the sample, and these
have essentially no area so that p.—1 as given by (1). A
similar limit is obtained for needles that can only point
horizontally or vertically for which k =a /(27wb). Using
Eq. (8) with ( 4,, ) =2.8 from Table II, we find that

p.=exp(2.8/4k)=exp(—1.4w7b /a)
~1—4.4b/a (10)

which we notice is close to the result for randomly orient-
ed ellipses given in (9). Indeed because the values of
(A, ) are only known numerically, the error bars are
sufficiently large that Eqgs. (9) and (10) could be identical.

III. COMPUTER SIMULATIONS AND RESULTS

In our computer simulations, the whole system has
periodic boundary conditions in both the x and y direc-
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tions. For each fixed aspect ratio b /a about 2000 ellipti-
cal laminae are randomly distributed. The relative orien-
tations are also random. An example of the system under
study is shown in Fig. 1. As b/a becomes smaller fewer
ellipses, for a given system size, are needed at percolation.
To insure consistent statistics, we expanded the system
size, while maintaining about the same number (2000) of
ellipses. We determined n, by keeping a record of wheth-
er there are clusters formed by overlaping elliptical lam-
inae which cross the lower and upper boundaries at the
same place (because of the periodic boundary condition).
In the course of recording clusters we used a very
efficient algorithm involving a contact function®* to deter-
mine whether two ellipses with given centers and relative
orientation overlap or not. For two identical ellipses one
centered at the origin and one centered at (x,,y,) with
relative orientation 6, the contact function ¢ is defined by

v=4(g1 —3g,)g3 —3g,)—(9—g,8,)%, (1
where
g1=34(a/b —b/a)sin’0—(x,/a)*—(py/b)?, (12)
g,=3+(a/b —b/a)*sin’0
—(xoc0s0+y,sind)?/a?
—(poc0sf—x,sinf)?/b? . (13)

If ¥ is negative, the two ellipses overlap. If ¥ is positive
and both g, and g, are positive, the two ellipses also
overlap; otherwise the two ellipses do not overlap. If
=0, the two ellipses just touch. We only test those el-
lipses whose centers lie within 2a of each other. We find
the average number of ellipses required for the system to
percolate in both the x and y directions if (as invariably
happens) one direction percolates before the other. Then
we average over 25 to 30 samples for a fixed aspect ratio
b /a and use Eq. (2) to evaluate p,. The errors are due to
the statistical averaging over the p. which have a roughly
Gaussian distribution. We repeat the same procedure for
different aspect ratios b /a that range from 5 up to 1.0.

In Fig. 2 the percolation threshold p, is plotted against
the aspect ratio b/a. The results for both randomly
oriented ellipses and ellipses that are aligned along two
perpendicular directions are shown. It can be seen that
the two sets of results are indistinguishable within our
limits of accuracy.

We have also evaluated 4., ) using n, found from the
computer simulation and Eqs. (4) and (6) for both ran-
domly oriented and two-direction-oriented ellipses. The
error bar in our computer simulation in determining n, is
about 1+5%; therefore the error bar in { 4, ) is about
+0.2. Tables I and II list p,, n,, k, and { 4., ) for vari-
ous aspect ratios b/a for the two cases and they show
that in both cases 4., ) decreases very slowly as b /a de-
creases.

In the following discussion, we only consider quantities
for the randomly oriented case. The case of only two
orientations would give essentially indistinguishable re-
sults. Note that although n, and hence p, are virtually
indistinguishable for a fixed aspect ratio b /a in the two
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b/a

FIG. 2. Percolation threshold p, for various aspect ratios
b/a. O denote randomly oriented ellipses, while A denote
vertically and horizontally oriented ellipses. Every point is
averaged over 25-30 samples each containing ~ 2000 ellipses.
The solid curve is the interpolation formula (27) for p.. The
dashed curve is p;, which gives the initial slope for the conduc-
tivity from Eq. (22).

cases, the quantities k and ( 4,, ) are different as can be
seen by comparing Tables I and II.

In Fig. 3 we plot f,=mabn, and f,=1-—f
=1—exp(mabn,). The quantity f, is the total area in the
ellipses for a sample of unit area, not allowing for the
overlap effects, whereas f, is less than f, because overlap
effects are included. It can be seen that for small b/a
these two quantities are the same, as the overlap area for
needles is negligibly small. In the circle limit
f1=1.09£0.02; that is, the area in the circles at percola-
tion, before they are thrown down, is greater than unity.
Note that if f, is expanded in powers of the density n,,
the first term is f, and the corrections for » body overlap
are given by the coefficient of the n/ term.

IV. CRITIQUE OF EFFECTIVE-MEDIUM THEORIES

There are extensive discussions in the literature on
EMT for dielectric constants® and elastic moduli!! of

1.2 T T T T

A A a
A A
1.0 - A -
A
0.8 | a .
N AA + + + * * T
w—" 0.6 - + * -
a_*t
0.4t L4 4
+

0.2'—£é —

0‘ 1 1 1 1
0 0.2 0.4 0.6 0.8 1.0

b/a
FIG. 3. Quantities f,=1—exp(wabn.) and f,=mabn, are
plotted against the aspect ratio b/a for the case of randomly
oriented ellipses. + denote f, and A denote f,.
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composite materials with circular or spherical inclusions.
A strong assumption is always required in deriving these
approximations that the inclusion concentration is
sufficiently low that interference effects can be neglected.
However, these approximations are often used over the
whole concentration range where they are of dubious va-
lidity. In order to judge how good various EMT results
are when applied to completely permeable objects, we see
how close their predictions of p,. are compared to our ex-
act (numerical) results. Physical properties, like the con-
ductivity and all elastic moduli, should vanish at p, when
holes are punched in the medium. Similarly, the resis-
tance and all the elastic compliances should vanish when
infinitely hard inclusions are present in the medium.
Infinitely hard means superconducting in the electrical
case and infinitely rigid or undeformable in the elastic
case. All these p. should be the same as it is a geometri-
cal property of the material. However, different EMT
give very different estimates for p.. These various EMT
predictions for p. can be used as a figure of merit, when
compared to our exact results, to judge how good the
EMT is away from the dilute limit. In what follows we
will examine two versions of EMT for each physical
property. Depending on whether we treat the inclusion
and background symmetrically or asymmetrically, two

pi=1-2{1+[2(a +b?/(a>+b)]"?} " .
(1—pSH~'=2{14+(1—0)Xa +b)*/[2ab(1+0)]} /(3—0)
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versions (i.e., symmetric or asymmetric) of EMT can be
derived.? Thus we have eight cases to consider, electrical
or elastic, symmetric or asymmetric with inclusions that
are either holes (Swiss-cheese model) or hard inclusions
(reinforced model). Sen, Thorpe, and Milton® have sum-
marized these results for the electrical case. These results
can also be obtained from Ref. 3. The critical p, for the
dilute (Swiss-cheese) case are

s

Pc=7> (14)

[STE

pl=(a*+b?/(a +b)?, (15)

where the superscripts s and a refer to the symmetric and
asymmetric cases, respectively. The results for the rein-
forced case are identical to (14) and (15). Similar results
have been obtained by Thorpe and Sen’ for the elastic
case. For the dilute (Swiss-cheese) model, all the elastic
moduli vanish at

pi=2{1+[2(a +b)*/(a*+b)]'}} 7", (16)
pi=[1+ab/(a*+bH)]". 17

For the reinforced model, all the elastic compliances van-
ish at

(18)

=(1—-p8)~'={(a+b)*/[ab(3—0)]+1/[1—ab(1+0)/(a +b)?1}/2, (19)

where p? is found from Eq. (19) by eliminating o, the
value of Poisson’s ratio at the critical point. If these were
exact theories, all the results (14)-(19) would be identical.
Note that there is no difference between the symmetric
and asymmetric cases in the circle limit for all these re-
sults. The above results are shown in Fig. 4 as a function

b/a

FIG. 4. Percolation thresholds p. predicted from various
effective-medium theories and our computer simulations from
Fig. 2. The curves are marked 1 for Eq. (14), 2 for Eq. (15), 3 for
Eq. (16), 4 for Eq. (17), 5 for Eq. (18), and 6 for Eq. (19). O indi-
cate the exact percolation thresholds from computer simula-
tions taken from the results for randomly oriented ellipses in
Fig. 2.

f

of the aspect ratio, and we can see that only curve 6
which is the result (19) is reasonable. Indeed all results
except for the reinforced elastic model fail to get even the
circle limit correct. These two approximations for the
reinforced elastic model [Egs. (18) and (19)] give p. =1
which is the correct result for circles within numerical er-
ror as can be seen from Tables I and II. These results
show that EMT is inadequate, when strong disorder is
present, except in the one special case. In other cases we
believe a better procedure is to develop interpolation for-
mulas.

We note that Eq. (19) could be used as a useful para-
metric approximation to p. when required. It gives
P =+ (compared with 0.33 in Tables I and II) in the cir-
cle limit and

pe~1—1(b/a) (20)

in the needle limit. This should be compared with Egs.
(9) and (10)

V. INTERPOLATION FORMULAS

As we mentioned in the Introduction, the Clausius-
Mossotti equation for the conductance of a two-phase
system is exact when one phase has a very low concentra-
tion. All attempts to extend these equations beyond this
region are rather uncontrolled and many versions exist in
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the literature. As we discussed in the previous section,
all are unsatisfactory for the electrical case. We therefore
develop a simple interpolation formula that gets all the
known limits for the dilute (Swiss-cheese) model correct.
We believe that this should be of considerable utilitarian
use. Similar formulas can be written down for other
cases.

For a small number of holes in a material with conduc-
tance 2, the effective conductance 2 is given by

S=3[1-(1-p)/(1—pp], (21)
where
pr=(a*+b?)/(a +b)*. (22)

The quantity p, is where the initial slope for a small num-
ber of defects®® would eventually cross the =0 axis
when extrapolated and is a convenient way to express the

J
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initial slope. The relation = ~(p —p.) holds only in the
small critical region around p,. Our interpolation formu-
la is designed to link these two limits by assuming the
conductivity has the following form:

S=3y1.04+ac+Bc?), (23)

where ¢ =1—p and «, 3, and A are constants to be deter-
mined from the following:

2"'(17 —Pc ) as p—p. , 24)
E2=3g[1—c/(1—p;)+0(c?)] as c—0, (25

and X, is the conductivity of the sample without any in-
clusions (¢ =0). Of course one would like to include
higher-order terms in ¢ in Eq. (23), but since we have no
more information other than (24) and (25), it is not possi-
ble to do better. After some simple algebra we find

3/30={1—c/[t(1—p)]—c t(1—p;)—(1—p)]/[t(1—p)1—p)]1}" . (26)

It is rather inconvenient to use the expressions (19) for p, and so we make a simpler approximation (27) for p, that is
correct in the two limits b /a =1, when p. ~ 1 and b /a small, when p, ~1—3(b /a) from Egs. (9) and (10):

p.=(144y)/(19+4y) ,

27

where y =b /a +a /b is symmetric in a <»b. The result (27) is virtually indistinguishable from the computer simulations
in Fig. 2 and is actually superior to (19) as can be seen by comparing Figs. 2 and 4. Of course there is no rigorous basis
for (27) except that it fits the simulation data for all aspect ratios.

By taking t =1.3,' and using Eq. (22) for p,=y /(2+y) and Eq. (27) for p,, we can determine the effective conduc-

tance X,

(Z/2)V'=1—c(24)/(2t)+cX(19+4y)[9(2+y)—(19+4y)t] /(324t) , (28)

which we recommend for use in practice (with t =1.3) as
it reproduces all the presently known results (i.e., the
value of = for the pure system, with p =1; the initial
slope for small 1—p; the value of p =p. where = vanishes
with critical exponent ¢) to within numerical accuracy.
Note that the term in c? is always small and positive.
This is because p; is always larger than p, for all aspect

1.0 I T T
0.8 -
o - .
W 0.6 ;
N 1
W 0.4 Yy 200~
Vi 1 1
. 7 3 30
0.2 - 7 yZ
=z~ P
=~ /
o 1 1 1
0.2 0.4 0.6 0.8 1.0
p

FIG. 5. Electrical conductance from the interpolation formu-
la (28) for various aspect ratios as indicated. The solid curves
are for t =1.3 and the dashed curves are for t =1.0.

f

ratios (1<p,;/p.<1.5) as can be seen from Fig. 4. In
Fig. 5, 2 /%, is plotted against p =1—c for various aspect
ratios b/a and shown as the solid lines. Also in Fig. 5,
2 /2, is plotted against ¢ but with ¢t =1.0 for the same as-
pect ratios and shown as the dashed line. The two plots
are quite similar and only differ a little in the critical re-
gion. Clearly the EMT described in Sec. IV would give
very different results as the p, are so different.

Because of the equivalence of the problems, the inter-
polation formula (28) can be used for the electrical con-
dyctivity of sheets containing holes, the thermal conduc-
tivity of sheets containing holes, or the the dielectric con-
stant of a medium with holes. In all cases, p=1—c is the
fraction of material remaining after the holes have been
punched and y =b /a +a /b, where b /a is the ratio of the
minor-to-major axis of the ellipses.

If the inclusions are superconducting rather than insu-
lating (i.e., holes), then the result (28) still holds if we re-
place /2 on the left-hand side with R /R, where R is
the resistance of the sample and R is the resistance when
there are no inclusions (¢ =0). These two problems map
onto one another and are exactly equivalent.?>2°® Note
that p, and p, given in Eqs. (22) and (27) and the critical
exponents are the same. "3

Finally we note that the interpolation formula (28) has
two interesting limiting forms. Using the limiting forms
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for p; and p,, we find that for circles,
(/3 )V '=1=2c/t +3cX4—3t)/4t , (29)
and for needles,
(/3 ) '=1—nmL?/8t +n*m*L49—41) /1296t ,
(30)

where we have used Eq. (1) with A4 =mab and put
¢ =1—p =1—exp(—mabn)=nmab and the length of the
needles is L =2a. The result (30) is independent of the
width b of the needles as would be expected. Here n is
the number of inclusions per unit area.

VI. SUMMARY OF RESULTS

Our main result has been the numerical determination
of the percolation concentration of randomly centered
and oriented ellipses. This has been done by using a con-
tact function to determine if neighboring ellipses overlap
and constructing a connectivity table. It is not necessary
to measure any overlap areas to find the areas at percola-
tion; it is sufficient to merely count the number of el-
lipses. We have also determined the percolation concen-
tration of ellipses when the axes are constrained to lie in
only two Cartesian directions. The results are indistin-
guishable, within our numerical accuracy, from the previ-

W. XIA AND M. F. THORPE 38

ous case where all orientations are allowed.

We have used these results to critique various
effective-medium theories that have been developed for
the electrical and elastic responses of sheets containing el-
liptical inclusions. Only one of these approximations is
found to give a reasonable percolation threshold while all
the others fail to describe the electrical conductivity or
elastic properties near the critical point.

We have shown that the percolation concentration is de-
scribed well by the formula p, =(1+4y)/(19+4y), where
y=b/a+a/b. Here p, is the amount of material
remaining and b /a is the aspect ratio of the ellipses. We
have also developed a simple interpolation formula for
the electrical conductance that is correct both for a few
inclusions and near percolation. We believe this kind of
formula is superior to effective-medium theories and may
have useful practical applications.
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