PHYSICAL REVIEW A

VOLUME 38, NUMBER 1

JULY 1, 1988

High-accuracy calculation of muonic molecules using random-tempered basis sets

S. A. Alexander and H. J. Monkhorst
Quantum Theory Project, Departments of Physics and Chemistry, University of Florida, Gainesville, Florida 32611
(Received 14 December 1987)

We use random-tempering formulas and explicitly correlated Slater-type geminals to calculate the
S and P bound-state energies of the muonic molecules xyu, where x,y =p,d,t. The final binding en-
ergies are accurate to about 1 ueV or better except for the weakly bound tdu(11) state. For this
state we get a binding energy of 0.660 1721 eV, which is better than any previous calculation.

I. INTRODUCTION

The binding energy of muonic molecules has been the
subject of several recent papers because of the impor-
tance of this quantity to muon-catalyzed fusion (see, for
example, Refs. 1-10). For simplicity, we shall refer to
each bound state simply as xyu(mn ), where the label m
denotes the angular momentum (0=S,1=P) and n
specifies whether the molecule is in the ground state
(n =0) or the first excited state (n =1). Of all the sys-
tems, the tdu molecule has perhaps been the most exten-
sively examined. Using large generalized Hylleraas basis
sets, Szalewicz et al.! calculated the binding energies of
this system to an accuracy of about 1 ueV except for the
weakly bound rdu(11) state. For the other muonic mole-
cules, Puzynin and Vinitsky have recently reviewed the
various computational studies.’ For many systems, how-
ever, the accuracy obtained by these studies was relative-
ly poor. For this reason we have computed the binding
energies of all these molecules using large basis sets of ex-
plicitly correlated Slater-type geminals. The parameters
of this basis are chosen using random tempering formu-
las. This method allows us to easily increase the size of
our basis until the desired convergence is reached. As a
result, we have been able to calculate the binding energies
of all the muonic molecules to an accuracy of about 1
ueV except for the weakly bound tdu(11) state. This
state converges much more slowly than the others and is
only accurate to about 10~* eV. Like most of the other
calculations, our work assumes that only the Coulomb in-
teraction is present although the importance of relativis-
tic and other effects has been recognized.!'='* For the
tdpu(11) state these terms can shift the binding energy by
1072 to 1073 eV. Since the accurate calculation of these
changes requires a very accurate wave function, this
study also shows how an accurate basis set for this func-
tion can be constructed.

II. METHOD

If the muonic molecules xyu are assumed to interact in
a purely Coulombic manner, the complete three-body
Hamiltonian for these systems can be defined as
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where r; and r, are the vectors from the muon to parti-
cles x and y, respectively, r;, is the distance between x
and y, and u; =mM;(m + M;) are the reduced mass of the
muon-x (i =1) and muon-y (i =2) systems, respectively.
Our units are chosen such that i=e =p;=1 and it is as-
sumed that nucleus x is the heavier one.

Earlier studies by Smith!®'S and by Frolov?~* have
shown that explicitly correlated Slater-type geminals
form an excellent basis for this problem. Since the
present work is concerned with only S and P bound
states, the appropriate wave functions can be written as

K —a;ri—B;ry—v.r
\y=(1+P12) 2 C,'e @;ry Bl 27 Y2 (2)

i=1

for homonuclear S states,

Y= § Cie—alrl _Birz_yirll (3)

i=1

for heteronuclear S states,

K —Qa.r, —p.ro—vy.r
W=(1—P,) 3 c;ri(coshy)e 1AM (g

i=1

for homonuclear P states,

K’
—a.r,—B.r,—y.r
q’: 2 C[rl(cosel)e i i2 i
i=1
R’ ~ a -
—a.ri—B.ry—79.r
+ 3 ¢ry(cosfye 1 TR 5)
Jj=1

for heteronuclear P states, where P, is the operator that
interchanges r, and r,. For simplicity, we set K ‘=K,
@=a, B=PB, and =7 in our calculations and defined the
label K =K'+ K '. In the sections below we use the value
of K to characterize our calculations since this quantity is
both the total number of basis functions and the size of
the overlap and Hamiltonian matrices. Because the size
of these matrices is intimately related to the amount of
computer time needed in any approach, this label allows
us to easily compare the quality of different kinds of basis
sets, e.g., generalized Hylleraas or Gaussian.

Before we can begin calculating the desired roots of the
generalized eigenvalue equation some method of selecting
the nonlinear parameters in the basis set needs to be
chosen. The most accurate method would be to non-
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linearly optimize all 3K parameters. This approach gives
the most compact wave function but it also requires a
great deal of computer time since such optimizations
need at least N2 function evaluations where N is the num-
ber of nonlinear parameters. Several studies have shown
that random tempering is a much more efficient way of
selecting these parameters.'>~!'7 Using this method Fro-
lov>=* has calculated the binding energies of several
muonic molecules xyu although his results for the weakly
bound tdu(11) and ddu(11) states have never converged
to more than three or four significant figures. In a more
recent paper Petelenz and Smith!® have also used random
tempering of exponents to study a number of these sys-
tems. Below, we propose a new random-tempering for-
mula with which to perform these calculations. By sys-
tematically increasing the number of basis functions, we
show that the binding energies can be calculated to a
high degree of accuracy and we investigate in detail how
such calculations are best performed.

III. RANDOM TEMPERING

Our algorithm for producing a basis set of random
tempered geminals is a simple one.

Step 1. Select a tempering formula for each type of
nonlinear parameter.

Step 2. Optimize the tempering parameters using a rel-
atively small number of geminals (K =50 or 100).

Step 3. Take these optimized parameters and calculate
the energy using an increasingly larger number of gemi-
nals until convergence is reached, the number of geminals
becomes intractable or linear dependence occurs.

For our tempering formulas we choose

’
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where 4;, B;, and C; are the tempering parameters,
(k,j) is the fractional part of {[k(k +1)/2][P(;)]'/?},
and where P(j) is the jth prime number in the sequence
2,3,5,7,... . One feature of this equation is that it al-
lows us to increase the number of tempering parameters
in a systematic fashion. We felt this flexibility would be
important in achieving fast convergence and in avoiding
linear dependence. Equation (6) is not the only possible
method of tempering the nonlinear parameters q;, 8;, and
Y:,» however. Both Smith and Frolov have used slightly
different formulas. The advantages and disadvantages of
these methods will be discussed in more detail in Sec. IV.
In order to find the optimum number of tempering pa-
rameters, we calculated the binding energies of the tdu
states using a total of three, six, and nine parameters.
These parameters were optimized using 50 basis func-
tions (K=50) except for the ones associated with the
tdu(11) state. When this relatively small optimization
basis was used, none of our expansions (step 3 in our al-

gorithm) had a positive binding energy and so we in-
creased the optimization size to K =100. For the masses
of the various particles we choose set 1 from Table I.
The results of these numerical experiments are given in
Table II. The first number in each column is the binding
energy obtained by the optimization and the others are
the binding energies given by the various expansions. To
gauge the effectiveness of these calculations, we com-
pared our results with those computed using a large gen-
eralized Hylleraas basis set.! Table II shows that the
quality of our wave function noticeably increases when
we go from three to six tempering parameters. In con-
trast, we find little difference between calculations with
six and nine parameters. For this reason we performed
the rest of our calculations with six parameters.

Now that the number of tempering parameters has
been selected, we must choose the optimum size with
which to optimize each calculation. We begin by reop-
timizing the systems in Table II with double the number
of basis functions used before. When compared with the
energies in Table II, the expansions in Table III show no
real improvement except for the tdu(01) state. This state
now converges much faster to the saturated result of Ref.
1. Unless poor convergence occurs or linear dependence
appears before we have reached our goal of calculating
the binding energies to about 10~! eV, we shall perform
all future optimizations with 50 basis functions. In cases
like the tdu(01) and tdu(11) states, a K =100 optimiza-
tion will be used.

Tables II and III also illustrate the random nature of
our algorithm. As expected, the optimized total energy
decreases both as the number of tempering parameters in-
crease and as the number of basis functions in the optimi-
zation increase. When the tempering parameters are ex-
panded, however, there is no reason for either trend to
continue. As a result, comparisons between different ex-
pansions can sometimes seem almost nonphysical, e.g.,
many of the tdu(11) calculations with six parameters are
much better than the same nine-parameter calculations.
These differences occur when the tempering parameters
fortuitously place a number of basis functions in an im-
portant region of the wave function. For this reason such
differences always become smaller as the number of basis
functions increases.

TABLE 1. Masses (in m,) and conversion constants (in eV).
The conversion constant is defined such that the binding energy
of xyu is (—0.5—E)C(xp), where E is energy in C(x ) units.

Mass set 1
m,=5496.899 C(tp)=5422.5347
m,;=23670.481 C(dp)=5326.4520
m,=1836.1515 C(pu)=5057.0346
m,, =206.7686

Mass set 2
m,=5496.918 E(tpn)=5422.5354

Rest same as set 1
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TABLE II. Selected binding energies (in eV) as a function of the number of tempering parameters.
An optimization size of K =100 is used for the tdu(11) state and K =50 for the others. The masses in

set 1 from Table I are used.

K td 1(00) tdu(01) tdp(10) tdp(11)
Three parameters

50 317.626 164 22.396 905 229.077 508
100 319.031755 32.188 508 231.507 356 —8.276530
200 319.135774 34.680471 232.402 839 —0.467962
300 319.139534 34.790281 232.453974 0.409 753
400 319.139268 34.827467 232.467 807 0.564 978
500 319.139747 34.831500 232.470284 0.591478

Six parameters

50 318.384 116 26.520021 229.377947
100 319.066 398 32.455404 231.233280 —2.618614
200 319.137714 34.646 858 232.380234 —0.003939
300 319.139455 34.792 507 232.458 847 0.562 870
400 319.139720 34.823 764 232.469212 0.635954
500 319.139746 34.832 000 232.470712 0.647 551

Nine parameters

50 318.807 441 28.736 492 230.293 695
100 319.073763 33.049 394 231.329488 —1.740 285
200 319.138 661 34.667 302 232.369410 —0.605 089
300 319.139 590 34.795 877 232.456752 0.385429
400 319.139734 34.826 407 232.467758 0.624 622
500 319.139743 34.831 661 232.469 795 0.645 585

Ref. 1 319.139752 161 34.834 465 232.471537 0.66001

IV. COMPUTATIONAL CONSIDERATIONS

We performed a number of calculations in order to
benchmark our program with respect to the literature.
One series of tests attempted to reproduce the calcula-
tions of Thakkar and Smith.'® Since our wave function is
identical to the one they used to calculate the energies of
the helium atom, our results should agree to a large num-
ber of digits. Using the same random-tempering method
they described, we were able to obtain the same energies
to all figures given.

A second set of calculations was done to compare our
converged binding energies with those obtained by
Szalewicz et al.! This work uses a large generalized Hyl-
leraas basis set and, with the exception of the tdu(11)
state, has converged to 1 ueV or better. We obtain quite
good agreement with these values and see in Table IV
that our expansions are slightly longer for the zdu(00)

and tdu(10) states, slightly shorter for the tdu(01) state
and much shorter for the tdu(11) state. Although com-
putational limitations prevented us from expanding this
last state even further, our K =2000 value is better than
any previous calculation. We see also that this result
agrees quite well with the predicted limit of
0.6601£0.0001 eV in Ref. 1.

The last series of tests was designed to reproduce the
work of Frolov.?~* In a number of papers, he reports the
energies and binding energies of muonic ions using ran-
dom tempered Slater-type geminals. We attempted to re-
calculate several of these values with less than satisfact-
ory results. One example is his K =250 energy for
the tdu(10) state? Frolov obtained a value of
—0.542838011 for this system; our value is
—0.542834992. Although an error in his program, a
series of misprints in his papers, numerical precision
problems in his calculations or some unknown combina-

TABLE III. Selected binding energies (in V) using an optimization size of K =200 for the tdpu(11)
state and K =100 for the others. Six tempering parameters and the masses in set 1 from Table I are

used.

K td u(00) tdu(01) tdu(10) tdu(11)
100 319.073 315 34.240373 231.915650
200 319.138 788 34.773 046 232.379 594 0.304 859
300 319.139 608 34.826499 232.455201 0.550044
400 319.139730 34.833321 232.467 884 0.636934
500 319.139743 34.834 111 232.470 300 0.643036
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tion of the above cannot be ruled out, we believe this
difference is due to his method of diagonalization. Dur-
ing the testing phase of this project we noticed that a ran-
dom tempered Slater-type geminal basis is almost linearly
dependent and a similar observation has been made by
Petelenz and Smith.!° To avoid the numerical problems
associated with such basis sets, we performed all calcula-
tions in 128-bit precision (double precision on the ETA-
10 and CYBER 205 and extended precision on the IBM
3090). The generalized eigenvalue problem was solved
using the inverse moment method'® or the QL method.'*
Other than stating that he also used the inverse iteration
method, Frolov does not mention any problems with
linear dependence. One reason may be that he has used a
regularization scheme similar to the one described by
Korobov, Puzynin, and Vinitsky.® This procedure shifts
the diagonal of the overlap by some small amount and
thus eliminates any possibility of linear dependence. The
disadvantage of this method is that the resulting eigenval-
ues are not as accurate. If we shift the diagonal of the
overlap matrix by 10~ !! in the example above, our energy
becomes —0.542827017. The difference in the energy
between this result and our previous value is of the same
order of magnitude as the difference between our result
and Frolov’s. Until more details are known about these
calculations, we believe that Frolov’s results should not
be regarded as more reliable than this amount even if
they appear to have converged.

V. CALCULATIONS

Using the algorithm outlined in Secs. II and III we
computed the binding energies of the muonic molecules
xyp. For this set of calculations we chose the masses in
set 2 of Table I because these values are more recent esti-
mates”® than those used in the tests. The results of our
calculations are given in Table V and the final optimiza-
tion parameters for these systems are listed in Table VI.

In general, all the binding energies have converged to an
accuracy of about 107° The one exception is the
tdu(11) state. Like their counterparts in Table IV, these
calculations converge slowly.

The tdpu calculations in Tables IV and V show that
even a relatively small change in the masses can influence
the binding energies to about 10~*eV. Our calculations
also show, however, that the differences in the energies
produced by these two sets of masses converge to a con-
stant value much faster than the binding energies. This is
because the Hamiltonian for one tritium mass can be
written as a similar Hamiltonian for another tritium mass
plus an additional term. Since a large random-tempered
basis set is nearly complete regardless of which masses
are chosen, diagonalizing these two Hamiltonians with
the same basis and then subtracting the result is the same
as evaluating a small perturbation to first order. Because
of the amount of computer time needed by the larger cal-
culations, we elected not to repeat all the tdu(11) expan-
sions and have used this computed constant to estimate
three of the entries in Table V.

A comparison of Table V with the literature also shows
the advantages and disadvantages of our tempering
method. In Ref. 2 Frolov reports calculations using a
method similar to the one used by Thakkar and Smith for
helium. For the bulk of the systems examined this form
converges slightly faster than ours. In addition, the
tempering formula used by Petelenz and Smith'® also
seems to be somewhat better. This is probably because
our method selects exponents from the range [0,X] where
X is the maximum of 4, and 4, in Eq. (5), for example.
In particular, the interval from zero to the minimum of
A, and A4, is extensively sampled. These very small ex-
ponents do not appear to contribute substantially to the
energy and thus slow the convergence. Frolov eliminates
these choices in this calculations by sampling [Y,Z]
(0<Y <Z) and Petelenz and Smith use an exponential
factor. For the weakly bound tdu(11) and ddu(11)

TABLE IV. Converged binding energies (in eV) for tdu. The optimization size is K =100 for the
tdu(01) and tdu(11) states and K =50 for the other. Six tempering parameters and the masses in set 1

from Table I are used.

K td11(00) tdu(01) tdu(10) tdu(11)
50 318.384116914 8 229.3779470

100 319.066 3980920 34.2403734 231.2332801 —2.6186142
200 319.137714 8175 34.7730463 232.3802347 —0.0039374
300 319.1394557006 34.826499 6 232.458 8470 0.562 8703
400 319.1397201744 34.8333217 232.4692128 0.6359540
500 319.139746258 1 34.8341110 232.4707127 0.6475512
600 319.1397499302 34.8343397 232.4712303 0.6557090
800 319.139752005 2 34.8344482 232.4714597 0.6589299
1000 319.139752 1319 34.8344620 232.4715205 0.6596736
1200 319.1397521554 34.834464 4 232.4715305 0.6599516
1400 319.139752 161 8 34.8344647 232.4715349 0.660 065 3
1600 232.4715364 0.660 105 7
1800 232.4715369 0.6601365
2000 0.660 1469

Ref. 1 319.139752 161 34.834 465 232.471537 0.66001

(K=1158) (K=1995) (K=1072) (K=3063)
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TABLE V. Converged binding energies (in eV) for the muonic ion xyu where x,y =p,d,t. The op-
timization size is K =100 for the tdu(01), tdu(11), ddu(11), tzu(01), and tzu(11) states. All others

were optimized with K =50. Six tempering parameters and the masses in set 2 from Table I are used.

K td p(00) tdu(01) tdu(10) tdu(11)
50 318.384 0856 83 229.3780013
100 319.066 3679 37 34.2403980 231.2334921 —2.6186028
200 319.137 6849 04 347730724 232.3802911 —0.0039164
300 319.139425800 34.8265259 232.458903 8 0.5628976
400 319.139 6902 76 34.8333481 232.469269 6 0.6359792
500 319.1397163 60 34.8341374 232.470769 5 0.6475765
600 319.1397200 32 34.834 3662 232.4712871 0.6557342
800 319.139722107 34.8344746 232.4715165 0.658955 1
1000 319.139722233 34.8344884 232.4715773 0.659 6989
1200 319.139722256 34.8344909 232.4715873 0.659976 8
1400 319.139 722259 34.8344912 232.4715917 0.660090 5
1600 232.4715932 0.660 1309
1800 232.4715935 0.660161 7%
2000 0.660172 1*
ddp(00) ddu(01) ddu(10) ddu(11)
50 325.0513549 35.643998 8 226.497 8623
100 325.0729113 35.8122499 226.654 2583 1.746 0570
200 325.0735330 35.8432027 226.6813543 1.9543769
300 325.0735396 35.844 3308 226.681 6408 1.9713146
400 325.0735401 35.8443586 226.6816717 1.9740404
500 325.0735402 35.844 3605 226.681 6765 1.974 6659
600 226.681 6780 1.974786 8
800 226.681678 6 1.974 866 6
1000 1.9748712
1200 1.9748717
ttu(00) ttp(01) ttu(10) teu(ll)
50 362.8510555 288.614 6230
100 362.9072977 83.758 3206 289.1062653 44.922 698 1
200 362.909 758 1 83.7709899 289.1412319 45.183706 5
300 362.909 768 8 83.771207 1 289.1417359 45.2039822
400 362.909 769 6 83.7712157 289.1417773 45.2054639
500 362.909 769 6 83.7712165 289.1417823 45.205748 5
600 289.1417829 45.205 8202
800 45.205 8524
1000 45.205 8560
1200 45.205 8563
ppu(00) ppu(10) dpu(00) dpu(10)
50 253.144 8817 107.0851135 221.1622751 96.290978 9
100 253.1521000 107.246 8339 221.5141138 97.2127893
200 253.1523243 107.265 669 2 221.548 5699 97.4809459
300 253.1523308 107.2659453 221.5493010 97.495459 8
400 253.1523319 107.265966 6 221.549 3867 97.4977917
500 253.1523322 107.265969 6 221.549404 3 97.498 047 6
600 107.2659707 221.5494076 97.498 1172
800 107.265971 4 221.5494096 97.498 1524
1000 97.498 157 8
1200 97.498 1597
1400 97.498 160 2
tpu(00) tpu(10)
50 213.3882942 97.783 746 5
100 213.794 5547 98.788 460 8
200 213.8391249 99.106517 4
300 213.840004 9 99.1234583
400 213.840 1463 99.126053 6
500 213.84017138 99.126373 8
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TABLE V. (Continued).

K tpu(00) tpu(10)
600 213.8401763 99.1264502
800 213.8401789 99.1264923
1000 213.8401794 99.126498 8
1200 99.126 5009
1400 99.126 501 4

2Computed using the corresponding value in Table IV and a constant shift.

states, however, small exponents seem to be essential.
Our values converge faster than any other published re-
sults and for the first time these important states have
been calculated to an accuracy of about 10~* eV or
better.

VI. CONCLUSIONS

We have computed the binding energies for all the
muonic molecules xyu where x,y =p,d,t. The accuracy
of these values is about 1 ueV except for the very weakly
bound tdu(11) state. Because of computational limita-

tions we were only able to converge this last state to
about 10~* eV. For the tdu molecule our calculations
confirm the accuracy of Ref. 1 and for the tdu(11) state
is better than any previous calculation. In contrast, our
calculations bring into question the work of Frolov?~*
but this disagreement must remain unresolved until fur-
ther information is available about how his calculations
were performed. Finally we have shown that random-
tempering methods can be used to efficiently produce a
converged set of Slater-type geminals and our binding-
energy calculations with these basis sets has produced a

TABLE VI. Optimized tempering parameters for each muonic system.

tdpu(00) tdu(01) tdu(10) tdu(11)
A, 1.271 12065 1.586 390 00 1.13156323 1.304 509 43
B, 1.368 897 28 1.289 63700 0.947 054 64 1.209 778 09
C, 3.093 18289 2.25594273 2.32980543 2.588 81022
A, —0.135864 89 —0.35180642 0.136 899 07 0.148 78077
B, —0.23016524 —0.181098 35 —0.006 499 85 —0.119062 10
c, —0.016219 88 0.08524290 0.03045509 —1.381567 32
dd;1(00) ddp(01) ddp(10) ddu(11)
A, 1.287947 58 1.101 207 30 1.15511191 1.303 806 08
B, 1.096 259 16 1.087 82977 1.105 351 64 1.420947 33
C, 2.441 11635 2.035 80898 1.66302261 3.030 866 04
A, 0.059 45090 0.002 43870 —0.064 201 31 —0.002 042 25
B, 0.13489217 —0.113 66007 —0.044 063 25 —1.379548 39
c, 0.854 443 69 0.820064 51 1.316 742 68 —1.801 680 69
ttu(00) ttp(01) ttu(10) tep(ll)
A, 1.21271953 1.173 88707 0.619 905 22 1.048 428 99
B, 1.107 333 14 1.026973 33 1.383 15582 1.110496 84
C, 2.68068308 0.933089 96 2.807 695 34 1.73151507
A, 0.136 556 81 0.15026093 0.980 444 47 0.142 798 90
B, 0.127 818 37 —0.04501048 —0.263287 34 0.062 730 65
C, 1.078 803 09 2.529 656 81 0.949 684 08 0.89053590
ppu(00) ppu(10) dpp(00) dpu(10)
A, 1.22107996 1.219 698 01 1.197 698 08 1.226 85017
B, 1.034 146 80 1.020543 46 1.029 42045 0.916019 81
C, 1.870 594 59 1.678 151 04 1.81621829 1.586 084 39
A, 0.037 008 32 —0.057 854 25 —0.054 842 60 —0.082766 21
B, 0.091 005 81 —0.075 53587 —0.075 504 52 0.121 14530
C, 0.753954 10 0.61665326 0.621 630 14 0.648 621 67
tpu(00) tpu(10)
A, 1.167 523 64 1.217263 80
B, 1.01251270 0.90371075
C, 1.83375797 1.64043392
A, —0.03827423 —0.074 33400
B, —0.070 144 39 0.116 69352
C, 0.592054 56 0.662 649 64
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library of coefficients with which a number of additional
calculations, e.g., sticking fractions and expectation
values, can be performed. A tape of these values will be
made available upon request.
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