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High-accuracy calculation of muonic molecules using random-tempered basis sets
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We use random-tempering formulas and explicitly correlated Slater-type geminals to calculate the
5 and P bound-state energies of the muonic molecules xyp, where x,y =p, d, t. The Anal binding en-

ergies are accurate to about 1 peV or better except for the weakly bound tdp(11) state. For this
state we get a binding energy of 0.660 1721 eV, which is better than any previous calculation.

I. INTRODUCTION

The binding energy of muonic molecules has been the
subject of several recent papers because of the impor-
tance of this quantity to muon-catalyzed fusion (see, for
example, Refs. 1 —10). For simplicity, we shall refer to
each bound state simply as xy p(mn ), where the label m
denotes the angular momentum (0=S, I =P) and n

specifies whether the molecule is in the ground state
(n =0) or the first excited state (n =1). Of all the sys-
tems, the td p molecule has perhaps been the most exten-
sively examined. Using large generalized Hylleraas basis
sets, Szalewicz et al. ' calculated the binding energies of
this system to an accuracy of about 1 peV except for the
weakly bound tdp(11) state. For the other muonic mole-
cules, Puzynin and Vinitsky have recently reviewed the
various computational studies. For many systems, how-
ever, the accuracy obtained by these studies was relative-
ly poor. For this reason we have computed the binding
energies of all these molecules using large basis sets of ex-
plicitly correlated Slater-type geminals. The parameters
of this basis are chosen using random tempering formu-
las. This method allows us to easily increase the size of
our basis until the desired convergence is reached. As a
result, we have been able to calculate the binding energies
of all the muonic molecules to an accuracy of about 1

peV except for the weakly bound tdls(11) state. This
state converges much more slowly than the others and is
only accurate to about 10 eV. Like most of the other
calculations, our work assumes that only the Coulomb in-
teraction is present although the importance of relativis-
tic and other e6ects has been recognized. " ' For the
tdp(11) state these terms can shift the binding energy by
10 to 10 eV. Since the accurate calculation of these
changes requires a very accurate wave function, this
study also shows how an accurate basis set for this func-
tion can be constructed.
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II. METHOD

If the muonic molecules xyp are assumed to interact in
a purely Coulombic manner, the complete three-body
Hamiltonian for these systems can be defined as

where r, and r2 are the vectors from the muon to parti-
cles x and y, respectively, r12 is the distance between x
and y, and p, =mM, (m +M, ) are the reduced mass of the
muon-x (i =1) and muon-y (i =2) systems, respectively.
Our units are chosen such that A =e =p1 ——1 and it is as-
sumed that nucleus x is the heavier one.

Earlier studies by Smith' ' and by Frolov have
shown that explicitly correlated Slater-type geminals
form an excellent basis for this problem. Since the
present work is concerned with only S and P bound
states, the appropriate wave functions can be written as

K
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(2)

for homonuclear S states,
K
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for heteronuclear S states,
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for homonuclear P states,
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for heteronuclear P states, where P, &
is the operator that

interchanges r, and r&. For simplicity, we set K '=-K',
a=a, f3=P, and f~=y in our calculations and defined the
label K =K'+k '. In the sections below we use the value
of K to characterize our ca1culations since this quantity is
both the total number of basis functions and the size of
the overlap and Hamiltonian matrices. Because the size
of these matrices is intimately related to the ansou»t of
computer time needed in any approach, this label allows
us to easily compare the quality of different kinds of basis
sets, e.g. , generalized Hylleraas or Gaussia».

Before we can begin calculating the desired roots of' the
generalized eigenvalue equation some method of selecting
the nonlinear parameters in the basis set needs to be
chosen. The most accurate niethod would be to no»-
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linearly optimize all 3E parameters. This approach gives
the most compact wave function but it also requires a
great deal of computer time since such optimizations
need at least N function evaluations where ¹is the num-
ber of nonlinear parameters. Several studies have shown
that random tempering is a much more efficient way of
selecting these parameters. ' ' Using this method Fro-
lov has calculated the binding energies of several
muonic molecules xyp although his results for the weakly
bound tdp(11) and ddt(11) states have never converged
to inore than three or four significant figures. In a more
recent paper Petelenz and Smith' have also used random
tempering of exponents to study a number of these sys-
tems. Below, we propose a new random-tempering for-
mula with which to perform these calculations. By sys-
tematically increasing the number of basis functions, we
show that the binding energies can be calculated to a
high degree of accuracy and we investigate in detail how
such calculations are best performed.

III. RANDOM TEMPERING

Our algorithm for producing a basis set of random
tempered geminals is a simple one.

Step 1. Select a tempering formula for each type of
nonlinear parameter.

Step 2. Optimize the tempering parameters using a rel-
atively small number of geminals (K= 50 or 100).

Step 3. Take these optimized parameters and calculate
the energy using an increasingly larger number of gemi-
nals until convergence is reached, the number of geminals
becomes intractable or linear dependence occurs.

For our tempering formulas we choose

(6)

I
y, = g Cl(i, 3j ) —min(a;, P;),

where AJ, 8, and C. are the tempering parameters,
(k,j) is the fractional part of ([k(k+1)l2][P(j)]' j,
and where P(j ) is the jth prime number in the sequence
2,3,5,7, . . . . One feature of this equation is that it al-
lows us to increase the number of tempering parameters
in a systematic fashion. We felt this flexibility would be
important in achieving fast convergence and in avoiding
linear dependence. Equation (6) is not the only possible
method of tempering the nonlinear parameters a, , p, , and
y';, however. Both Smith and Frolov have used slightly
different formulas. The advantages and disadvantages of
these methods will be discussed in more detail in Sec. IV.

In order to find the optimum number of tempering pa-
rameters, we calculated the binding energies of the tdp
states using a total of three, six, and nine parameters.
These parameters were optimized using 50 basis func-
tions (X=50) except for the ones associated with the
tdp(11) state. When this relatively small optimization
basis was used, none of our expansions (step 3 in our al-

TABLE I. Masses (in m, ) and conversion constants (in eV).
The conversion constant is defined such that the binding energy
of xyp is ( —0.5 —E)C(xp), where E is energy in C(xp) units.

Mass set 1

m, =5496.899
mg ——3670.481
m~ = 1836.1515
m „=206.7686

Mass set 2

m, =5496.918
Rest same as set 1

C(tp) =5422. 5347
C(dp) =5326.4520
C(pp) =5057.0346

E(tp) =5422. 5354

gorithm) had a positive binding energy and so we in-
creased the optimization size to E =100. For the masses
of the various particles we choose set 1 from Table I.
The results of these numerical experiments are given in
Table II. The first number in each column is the binding
energy obtained by the optimization and the others are
the binding energies given by the various expansions. To
gauge the effectiveness of these calculations, we com-
pared our results with those computed using a large gen-
eralized Hylleraas basis set. ' Table II shows that the
quality of our wave function noticeably increases when
we go from three to six tempering parameters. In con-
trast, we find little difference between calculations with
six and nine parameters. For this reason we performed
the rest of our calculations with six parameters.

Now that the number of tempering parameters has
been selected, we must choose the optimum size with
which to optimize each calculation. We begin by reop-
timizing the systems in Table II with double the number
of basis functions used before. When compared with the
energies in Table II, the expansions in Table III show no
real improvement except for the tdp(01) state. This state
now converges much faster to the saturated result of Ref.
1. Unless poor convergence occurs or linear dependence
appears before we have reached our goal of calculating
the binding energies to about 10 ' eV, we shall perform
all future optimizations with 50 basis functions. In cases
like the tdp(01) and tdp(11) states, a K =100 optimiza-
tion will be used.

Tables II and III also illustrate the random nature of
our algorithm. As expected, the optimized total energy
decreases both as the number of tempering parameters in-
crease and as the number of basis functions in the optimi-
zation increase. When the tempering parameters are ex-
panded, however, there is no reason for either trend to
continue. As a result, comparisons between different ex-
pansions can sometimes seem almost nonphysical, e.g.,
many of the tdp(11) calculations with six parameters are
much better than the same nine-parameter calculations.
These differences occur when the tempering parameters
fortuitously place a number of basis functions in an im-
portant region of the wave function. For this reason such
differences always become smaller as the number of basis
functions increases.



28 S. A. ALEXANDER AND H. J. MONKHORST 38

TABLE II. Selected binding energies (in eV) as a function of the number of tempering parameters.
An optimization size of K =100 is used for the tdp(11) state and K =50 for the others. The masses in
set 1 from Table I are used.

50
100
200
300
400
500

50
100
200
300
400
500

50
100
200
300
400
500

td p(00)

317.626 164
319.031 755
319.135 774
319.139534
319.139268
319.139747

318.384 116
319.066 398
319.137714
319.139455
319.139720
319.139746

318.807 441
319.073 763
319.138 661
319.139590
319.139734
319.139743

td p(01)

Three parameters

22.396905
32.188 508
34.680 471
34.790 281
34.827 467
34.831 500

Six parameters

26.520 021
32.455 404
34.646 858
34.792 507
34.823 764
34.832 000

Nine parameters

28.736 492
33.049 394
34.667 302
34.795 877
34.826 407
34.831 661

tdp(10)

229.077 508
231.507 356
232.402 839
232.453 974
232.467 807
232.470 284

229.377 947
231.233 280
232.380 234
232.458 847
232.469 212
232.470 712

230.293 695
231.329 488
232.369410
232.456 752
232.467 758
232.469 795

tdp(11)

—8.276 530
—0.467 962

0.409 753
0.564 978
0.591 478

—2.618 614
—0.003 939

0.562 870
0.635 954
0.647 551

—1.740 285
—0.605 089

0.385 429
0.624 622
0.645 585

Ref. 1 319.139752 161 34.834 465 232.471 537 0.66001

IV. COMPUTATIONAL CONSIDERATIONS

We performed a number of calculations in order to
benchmark our program with respect to the literature.
One series of tests attempted to reproduce the calcula-
tions of Thakkar and Smith. ' Since our wave function is
identical to the one they used to calculate the energies of
the helium atom, our results should agree to a large num-
ber of digits. Using the same random-tempering method
they described, we were able to obtain the same energies
to all figures given.

A second set of calculations was done to compare our
converged binding energies with those obtained by
Szalewicz et al. ' This work uses a large generalized Hyl-
leraas basis set and, with the exception of the tdp(11)
state, has converged to 1 peV or better. We obtain quite
good agreement with these values and see in Table IV
that our expansions are slightly longer for the tdp(00)

and tdp, (10) states, slightly shorter for the tdp(01) state
and much shorter for the tdp(11) state. Although com-
putational limitations prevented us from expanding this
last state even further, our K =2000 value is better than
any previous calculation. We see also that this result
agrees quite well with the predicted limit of
0.6601+0.0001 eV in Ref. 1.

The last series of tests was designed to reproduce the
work of Frolov. In a number of papers, he reports the
energies and binding energies of muonic ions using ran-
dom tempered Slater-type gerninals. We attempted to re-
calculate several of these values with less than satisfact-
ory results. One example is his K =250 energy for
the tdp(10) state. Frolov obtained a value of
—0.542 838 011 for this system; our value is
—0.542834992. Although an error in his program, a
series of misprints in his papers, numerical precision
problems in his calculations or some unknown combina-

TABLE III. Selected binding energies (in eV) using an optimization size of K =200 for the tdp(11)
state and K =100 for the others. Six tempering parameters and the masses in set 1 from Table I are
used.

100
200
300
400
500

td p(00)

319.073 315
319.138 788
319.139608
319.139730
319.139743

td p(01)

34.240 373
34.773 046
34.826 499
34.833 321
34.834 111

td p(10)

231.915 650
232.379 594
232.455 201
232.467 884
232.470 300

tdp(11)

0.304 859
0.550044
0.636 934
0.643 036
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tion of the above cannot be ruled out, we believe this
difference is due to his method of diagonalization. Dur-
ing the testing phase of this project we noticed that a ran-
dom tempered Slater-type geminal basis is almost linearly
dependent and a similar observation has been made by
Petelenz and Smith. ' To avoid the numerical problems
associated with such basis sets, we performed all calcula-
tions in 128-bit precision (double precision on the ETA-
10 and CYBER 205 and extended precision on the IBM
3090). The generalized eigenvalue problem was solved
using the inverse moment method' or the QL method. '9

Other than stating that he also used the inverse iteration
method, Frolov does not mention any problems with
linear dependence. One reason may be that he has used a
regularization scheme similar to the one described by
Korobov, Puzynin, and Vinitsky. This procedure shifts
the diagonal of the overlap by some small amount and
thus eliminates any possibility of linear dependence. The
disadvantage of this method is that the resulting eigenval-
ues are not as accurate. If we shift the diagonal of the
overlap matrix by 10 " in the example above, our energy
becomes —0.542827017. The difference in the energy
between this result and our previous value is of the same
order of magnitude as the difference between our result
and Frolov's. Until more details are known about these
calculations, we believe that Frolov's results should not
be regarded as more reliable than this amount even if
they appear to have converged.

V. CALCULATIONS

Using the algorithm outlined in Secs. II and III we
computed the binding energies of the muonic molecules
xyp. For this set of calculations we chose the masses in
set 2 of Table I because these values are more recent esti-
mates than those used in the tests. The results of our
calculations are given in Table V and the final optimiza-
tion parameters for these systems are listed in Table VI.

In general, all the binding energies have converged to an
accuracy of about 10 . The one exception is the
tdp(11) state. Like their counterparts in Table IV, these
calculations converge slowly.

The tdp calculations in Tables IV and V show that
even a relatively small change in the masses can influence
the binding energies to about 10 eV. Our calculations
also show, however, that the differences in the energies
produced by these two sets of masses converge to a con-
stant value much faster than the binding energies. This js
because the Hamiltonian for one tritium mass can be
written as a similar Hamiltonian for another tritium mass
plus an additional term. Since a large random-tempered
basis set is nearly complete regardless of which masses
are chosen, diagonalizing these two Hamiltonians with
the same basis and then subtracting the result is the same
as evaluating a small perturbation to first order. Because
of the amount of computer time needed by the larger cal-
culations, we elected not to repeat all the tdp(11) expan-
sions and have used this computed constant to estimate
three of the entries in Table V.

A comparison of Table V with the literature also shows
the advantages and disadvantages of our tempering
method. In Ref. 2 Frolov reports calculations using a
method similar to the one used by Thakkar and Smith for
helium. For the bulk of the systems examined this form
converges slightly faster than ours. In addition, the
tempering formula used by Petelenz and Smith' also
seems to be somewhat better. This is probably because
our method selects exponents from the range [0+ where
X is the maximum of A, and A2 in Eq. (5), for example.
In particular, the interval from zero to the minimum of
A

&
and A2 is extensively sampled. These very small ex-

ponents do not appear to contribute substantially to the
energy and thus slow the convergence. Frolov eliminates
these choices in this calculations by sampling [Y,Z]
(0( Y(Z) and Petelenz and Smith use an exponential
factor. For the weakly bound tdp(11) and ddt(11)

TABLE IV. Converged binding energies (in eV) for tdp. The optimization size is K =100 for the
tdp(01) and tdp(11) states and K =50 for the other. Six tempering parameters and the masses in set 1

from Table I are used.

50
100
200
300
400
500
600
800

1000
1200
1400
1600
1800
2000

tdp(00)

318.384 116914 8
319.066 398092 0
319.137714 817 5
319.139455 700 6
319.139720 1744
319.139746 258 1

319.139749 9302
319.139752 005 2
319.139752 131 9
319.139752 155 4
319.139752 161 8

tdp(01)

34.240 373 4
34.773 046 3
34.826 499 6
34.833 321 7
34.834 1110
34.834 339 7
34.834 448 2
34.834 462 0
34.834 464 4
34.834 464 7

td p(10)

229.377 947 0
231.233 280 1

232.380 234 7
232.458 847 0
232.469 212 8
232.470 712 7
232.471 230 3
232.471 459 7
232.471 520 5
232.471 530 5
232.471 534 9
232.471 536 4
232.471 536 9

tdp(11)

—2.618 614 2
—0.003 937 4

0.562 870 3
0.635 954 0
0.647 551 2
0.655 709 0
0.658 929 9
0.659 673 6
0.659 951 6
0.660 065 3
0.660 105 7
0.660 136 5

0.660 146 9

Ref. 1 319.139752 161
(K= 1158)

34.834 465
(K= 1995)

232.471 537
(K= 1072)

0.66001
(K= 3063)
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TABLE V. Converged binding energies (in eV) for the muonic ion xyp where x,y =p, d, t. The op-
timization size is K =100 for the tdp(01), tdp(11), ddp(11), ttp(01), and ttp(11) states. All others
were optimized with K =50. Six tempering parameters and the masses in set 2 from Table I are used.

50
100
200
300
400
500
600
800

1000
1200
1400
1600
1800
2000

td p(00)
318.384 0856 83
319.066 3679 37
319.137 6849 04
319.1394258 00
319.1396902 76
319.1397163 60
319.1397200 32
319.1397221 07
319.1397222 33
319.1397222 56
319.1397222 59

tdp(01)

34.240 398 0
34.773 072 4
34.826 525 9
34.833 348 1

34.834 1374
34.834 366 2
34.834 474 6
34.834 488 4
34.834 490 9
34.834 491 2

tdp(10)
229.378 001 3
231.233 492 1

232.380 291 1

232.458 903 8

232.469 269 6
232.470 769 5

232.471 287 1

232.471 516 5

232.471 577 3
232.471 587 3
232.471 591 7
232.471 593 2
232.471 593 5

tdp(11)

—2.618 602 8
—0.003 9164

0.562 897 6
0.635 979 2
0.647 576 5
0.655 734 2
0.658 955 1

0.659 698 9
0.659 976 8
0.660 090 5

0.660 1309'
0.660 161 7'
0.660 172 1'

50
100
200
300
400
500
600
800

1000
1200

50
100
200
300
400
500
600
800

1000
1200

50
100
200
300
400
500
600
800

1000
1200
1400

50
100
200
300
400
500

dd p(00)
325.051 354 9
325.072 911 3

325.073 533 0
325.073 539 6
325.073 540 1

325.073 540 2

tt p(00)
362.851 055 5

362.907 297 7
362.909 758 1

362.909 768 8

362.909 769 6
362.909 769 6

ppp(00)
253.144 881 7
253.152 1000
253.152 324 3
253.152 330 8
253.152 331 9
253.152 332 2

tpp(00)
213.388 294 2
213.794 554 7
213.839 124 9
213.840 004 9
213.840 146 3
213.840 171 8

ddp(01)
35.643 998 8

35.812 249 9
35.843 202 7
35.844 330 8

35.844 358 6
35.844 360 5

ttp(01)

83.758 320 6
83.770 989 9
83.771 207 1

83.771 215 7
83.771 216 5

pp p(10)
107.085 1135

107.246 833 9
107.265 669 2
107.265 945 3
107.265 966 6
107.265 969 6
107.265 970 7
107.265 971 4

tpp( 10)
97.783 746 5

98.788 460 8
99.106 517 4
99.123 458 3
99.126 053 6
99.126 373 8

ddp(10)
226.497 862 3
226.654 258 3
226.681 354 3
226.681 640 8
226.681 671 7
226.681 676 5

226.681 678 0
226.681 678 6

ttp(10)
288.614 623 0
289.106 265 3
289.1412319
289.141 735 9
289.141 777 3
289.141 782 3
289.141 782 9

dpp(00)
221.162 275 1

221.514 1138
221.548 569 9
221.549 301 0
221.549 386 7
221.549 404 3
221.549 407 6
221.549 409 6

ddp(11)

1.746 057 0
1.954 376 9
1.971 3146
1.974 040 4
1.974 665 9
1.974 786 8

1.974 866 6
1.974 871 2
1.974 871 7

ttp(11)

44.922 698 1

45.183 706 5

45.203 982 2
45.205 463 9
45.205 748 5

45.205 820 2
45.205 852 4
45.205 856 0
45.205 856 3

dpp( 10)

96.290 978 9
97.212 789 3
97.480 945 9
97.495 459 8

97.497 791 7
97.498 047 6
97.498 1172
97.498 152 4
97.498 157 8
97.498 159 7
97.498 1602
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600
800

1000
1200
1400

tpp(00)

213.840 176 3
213.840 178 9
213.840 1794

TABLE V (Continued)

tpR( 10)

99.126 450 2
99.126492 3
99.126 498 8
99.126 500 9
99.126 501 4

'Computed using the corresponding value in Table IV and a constant shift.

states, however, small exponents seem to be essential.
Our values converge faster than any other published re-
sults and for the first time these important states have
been calculated to an accuracy of about 10 eV or
better.

VI. CONCLUSIONS

We have computed the binding energies for all the
muonic molecules xyp where x,y =p, d, t. The accuracy
of these values is about 1 peV except for the very weakly
bound tdp(11) state. Because of computational limita-

tions we were only able to converge this last state to
about 10 eV. For the tdp molecule our calculations
confirm the accuracy of Ref. 1 and for the tdp(11) state
is better than any previous calculation. In contrast, our
calculations bring into question the work of Frolov
but this disagreement must remain unresolved until fur-
ther information is available about how his calculations
were performed. Finally we have shown that random-
tempering methods can be used to eSciently produce a
converged set of Slater-type geminals and our binding-
energy calculations with these basis sets has produced a

TABLE VI. Optimized tempering parameters for each muonic system.

A)
B)
Ci
A2

Bp
C2

Ai
Bl
Cl
A2

B2
C2

Al
Bl
C)
A2

B2
C2

Bl
C,
A2

B2
C2

A,
Bl
Cl
A2

B2
C2

td p(00)
1.271 120 65
1.368 897 28
3.093 182 89

—0.135 864 89
—0.230 165 24
—0.016219 88

dd p(00)
1.287 947 58
1.096 259 16
2.441 11635
0.059 450 90
0.134 892 17
0.854 443 69

tt p(00)
1.212 719 53
1.107 333 14
2.680 683 08
0.136 556 81
0.127 818 37
1.078 803 09

ppp(00)
1.221 079 96
1.034 146 80
1.870 594 59
0.037 008 32
0.091 005 81
0.753 954 10

tpp(00)
1 ~ 167 523 64
1.012 512 70
1.833 757 97

—0.038 274 23
—0.070 144 39

0.592 054 56

td p(01)
1.586 39000
1.289 637 00
2.255 942 73

—0.351 806 42
—0.181 098 35

0.085 242 90

ddR(01)
1.101 207 30
1.087 829 77
2.035 808 98
0.002 438 70

—0.11366007
0.820 064 51

ttp(01)
1.173 887 07
1.026 973 33
0.933 089 96
0.150 260 93

—0.045 01048
2.529 656 81

ppp(10)
1.219 698 01
1.020 543 46
1.678 151 04

—0.057 854 25
—0.075 535 87

0.616653 26

tpp(10)
1.217 263 80
0.903 71075
1.640 433 92

—0.074 334 00
0.116693 52
0.662 649 64

tdp(10)
1.131 563 23
0.947 054 64
2.329 805 43
0.13689907

—0.006 499 85
0.030455 09

dd p(10)
1.155 11191
1.105 351 64
1.663 022 61

—0.064 201 31
—0.044 063 25

1.316742 68

ttp(10)
0.619905 22
1.383 155 82
2.807 695 34
Q 98Q AHA 47

—0.263 287 34
0.949 684 08

dpp(00)
1.197 698 08
1.029 420 45
1.816218 29

—0.054 842 60
—0.075 504 52

0.621 630 14

tdp(11)
1.304 509 43
1.209 778 09
2.588 81022
0.148 780 77

—0.119062 10
—1.381 567 32

ddt(11)
1.303 806 08
1.420 947 33
3.030 866 04

—0.002 042 25
—1.379 548 39
—1.801 680 69

ttp(ll)
1.048 428 99
1.110496 84
1.731 515 07
0.142 798 90
0.062 730 65
0.890 535 90

dpi'(10)
1.226 850 17
0.916019 81
1.586 084 39

—0.082 766 21
0.121 145 30
0.648 621 67
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library of coefficients with which a number of additional
calculations, e.g., sticking fractions and expectation
values, can be performed. A tape of these values will be
made available upon request.
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