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A numerical integration of the equations of motion of a 17-particle chain with nearest-neighbor

linear and cubic forces has been carried out in quadruple-precision FORTRAN over a period of 600
model time units. The chain has clamped ends and is excited initially in the 11th mode. The data
obtained from the integration constitute a reversible time ensemble. Equilibrium mode energy dis-

tributions in this ensemble prove to have a Maxwell-Boltzmann form, and in addition the calculated

mode temperatures agree with those obtained from the double-precision statistical ensemble previ-

ously reported for the same system and same model parameters [B.I. Henry and J. Grindlay, Physi-

ca D 28, 49 (1987)]. It follows that statistical-ensemble averages and time-ensemble averages are

equal, and hence the ergodic hypothesis holds for these two data banks.

I. INTRODUCTION

In an earlier paper' we introduced a constant energy
ensemble for an isolated chain of 17 (15+ 2 in the usual
nomenclature) particles with nearest-neighbor linear and
cubic forces. The ensemble was constructed by storing
the data obtained from a numerical integration of the
equations of motion of the particles over a fixed time
period for a set of 101 different starting conditions. For
each of these system histories the chain was excited at
t=0 via the 11th mode. Different histories were ob-
tained by choosing different proportions of initial kinetic
and potential energies subject to the constraint of a com-
mon net starting energy for all the histories. The system
was strongly nonlinear in the sense that on average about
18%%uo of the system energy was anharmonic. The numeri-
cal integration was carried out in double-precision
FORTRAN to give reversible histories accurate to better
than 0.02%%uo in the total energy over a time period of 250
sec. To analyze the ensemble data we calculated the
time-dependent coarse-grained energy distribution for
each mode. The resulting mode Boltzmann H functions
in the period of 250 sec exhibited a common behavior.
Each H function dropped to a minimum in the first 200
sec, and aside from small Auctuations, maintained this
value for the remaining 50 sec. We interpreted this as
evidence that each mode, and hence the total system, had
reached statistical equilibrium reversibly (because the his-
tories are all reversible) in the last 50 sec. Given an equi-
librium state in which the mode H functions are at mini-
ma and the total energy of the system is a constant, one
can then show algebraically that the corresponding
coarse-grained equilibrium energy distribution should ex-
hibit a Maxwell-Boltzmann form, with, in general,
different temperatures for different modes. An analysis of
our ensemble data verified that this is indeed a property
of the system; the calculated mode temperatures ranged
over two orders of magnitude.

In this paper we report the results of recalculating one
of these earlier histories in quadrupole precision rather

than double precision. This procedure gives reversible
data over the larger time interval (0,600). Treating the
single history as a "time ensemble, " we have calculated
the coarse-grained mode energy distributions in the sta-
tistical equilibrium interval (200,600). These distribu-
tions also prove to be Maxwell-Boltzmann in form and
moreover the corresponding mode temperatures agree
very well with the mode temperatures obtained from the
statistical ensemble reported before. ' Thus we have for
the first time to our knowledge numerical evidence for a
form of ergodic hypothesis, namely, the equality of sta-
tistical ensemble averages and time ensemble averages.
We say "form" because first of all we are dealing with
averages over finite-time and finite-sized statistical en-
sembles and not the infinite ranges used in the usual dis-
cussion. ' Secondly, limitations are imposed by trunca-
tion and roundoff errors and as a result the ergodic prop-
erty seen in the two data banks can only be indirectly as-
cribed to the equations of motion. The ergodic hy-
pothesis plays a central role in the foundations of statisti-
cal mechanics. '" The question of its validity for physical
systems is a classic, unsolved problem in this field and has
been discussed over the years by many authors (see Ref. 4
for a list of references). However, these discussions have
always been based on algebraic arguments and, to our
knowledge, no one has previously attempted a numerical
test of the equality of statistical-ensemble and time-
ensemble averages.

Our 15 + 2 chain is an example of an isolated system of
coupled oscillators with nonintegrable potential-energy
terms in the Hamiltonian. A large number of numerical
experiments have been performed by previous authors on
similar nonintegrable models, and on the basis of these
experiments the following properties are believed to be
generic. (i) Ordered (quasiperiodic) motions occur close
to the invariant Kolmogorov-Arnold-Moser (KAM) tori
of the unperturbed system if the energy associated with
the perturbation is small relative to the total energy of
the system. (ii) Regions corresponding to ordered
motions and regions corresponding to irregular motions
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coexist on the constant-energy surface if the energy asso-
ciated with the perturbation is more than a few percent of
the total energy of the system. These regions, which
are accessed by different initial conditions but the same
energy, are sometimes referred to as "islands" and
"seas," respectively. The seas are characterized by an
exponential divergence of initially nearby trajectories in
the system phase space. (iii} As the energy associated
with the perturbation is further increased, relative to the
total system energy, the islands break up and the irregu-
lar regions cover an increasing portion of the constant-
energy surface. ' Several disjoint seas may exist that are
accessed by different sets of initial conditions.

The seas referred to above are believed to be ergodic,
although no direct evidence has been given previously.
The numerical results reported in this paper provide evi-
dence for an ergodic region or sea on the constant-energy
surface Eo ——10 for the Fermi-Pasta-Ulam chain with
nearest-neighbor linear and cubic forces. It seems likely
that this property too is a generic feature of perturbed os-
cillator systems.

In Sec. II we describe the model and the numerical
time-ensemble data. Total-energy errors and even-rnode-

energy errors are discussed and evidence is presented for
the Maxwell-Boltzmann form. Section III contains a
description of the errors in the position and velocity
coordinates of the particles and a discussion of the limita-
tions these errors place on the conclusions we draw from
our data.

II. MODEL

the displacement of the nth particle by x„, then the
boundary conditions and equations of motion can be
written in the form'

~o:—~16 =0

X„=(x„+l
—2x„+x„ l )

+@[(x„+l—x„) —(x„—x„,} ] (2)

N

q, =[2/(N+1)]' g x„sin[snn/(N+. 1)],
n=1

s=1,2, 3, . . . , N, N=15 (3)

with normal-mode frequencies

co, =2 sin[st»(N+ 1)] . (4)

The total energy of the system Eo, say, can be partitioned
among the modes to give mode energies'

N N N

s, =9,'i'2+~,'9,'»+P j4 g g g ~s,;, k, V, V;Qj&
i =1 j=1 k=1

for n=1, 2, . . . , 15. It is convenient to introduce the
normal-mode transformation

Consider a (15+ 2)-particle chain with particle labels
n =0, 1,2, . . . , 16. We assume clamped ends and
nearest-neighbor linear and cubic forces. If we denote where

(5)

1
ijkl 2 N i j k I ij, k, l+ i j,k—I+ i , j, —k, l+ ijk, l+, —i ,j, —k, —l+ i —j, —k, l+ i —j,k, —l+ i, —j) —k, —l

with

1 if i+j+k+l =0
8, k i

—— —1 if i+j+k+1=+2(N+1)
0 otherwise .

The vanishing of some A,. kI provides selection rules for
the transfer of energy among the modes. The mode ener-
gies defined in (5) are not necessarily positive; their sum,
Eo, is a constant of the motion.

Using quadruple-precision FORTRAN we have car-
ried out a numerical integration of the equations of
motion (2) for the case iM=0. 8, total energy Eo 10,and-—
initial condition q» ——q, where q is a solution of

[0~ii, &i, ii, »(Q } +2~ii(0 } ]=4EO

and q» and all other q„q, zero. This is the initial condi-
tion labeled j=0 in Ref. 1. We used a predictor-
corrector multistep method' ' with a time step of 10
sec. The total energy is conserved to better than 0.02%
over the length of our computing run, see Fig. 1. In-
tegration errors in the x„ lead, in time, to the appearance
of forbidden even modes —forbidden by the A-selection
rules for this type of excitation. ' The time dependence of
this total-even-mode-energy error as a fraction of Eo is
also shown in Fig. 1. An earlier analysis of this system'
has shown that at times beyond the crossover point of
these two error curves the numerical data are no longer
accurately time reversible, i.e., if at some instant in this
later regime we reverse all the particle velocities and con-
tinue the numerical integration, then the system does not
accurately retrace its motion back to the initial t =0 con-
ditions as it should. Since reversibility is a basic property
of the equations of motion (2), we have not used the non-
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show some evidence that all modes, both odd and even,
tend towards states with a common average energy (see
comments below). There is no suggestion of equipartition
of energy among the odd modes in the reversible equilibri-
um regime.

We stored the particle position and velocity coordi-
nates at 10 '-sec intervals for 1000 sec. The set of 6001
reversible data points in the time interval (0,600) consti-
tutes our time ensemble. We have no direct algebraic ar-
gument to suggest that the 4001 data points in the equi-
librium time interval (200,600) would reveal a Maxwell-
Boltzmann distribution in the time histories of the ener-
gies of the modes. However, given the evidence of this
type of distribution in the statistical ensemble, the er-
godic hypothesis ' suggests that a test for such a distri-
bution in the time series might prove positive. The
analysis was carried out as follows. For the sth mode we
partitioned the energy interval (O, Eo) into N, equal seg-
ments' (each mode history shows a small incidence of
negative mode-energy occurrences, similar in frequency
to the same phenomenon in the statistical-ensemble data, '

see Table I). The incidence is so small that we have
neglected these data points in our partitioning process
(see discussion in Ref. 1). At each of the 4001 sample
points the sth mode has a certain energy. These 4001
points are distributed among the N, partitions according
to this energy, thus giving a coarse-grained energy distri-
bution described by n, „the number of samples of the sth
mode in the i th partition. To the i th partition we ascribe
an energy

FIG. 1. Graph of energy errors vs time. Solid curve, 1n (frac-
tional error in total energy system). Dotted curve, ln (energy in
even modes per total energy of system). The data are plotted
starting at t =

]p to avoid the logarithmic singularities at t =0.
Data are from a quadruple-precision integration.

E;, =(i —1/2)EO/N„ i =1,2, 3, . . . , N, . (9)

n, , =C, exp( —s;, /8, ), (10)

If the distribution is Maxwell-Boltzmann in form, then

time-reversible data (beyond the crossover point of 600
sec) in the time ensemble described below. Graphs of
mode energies c., for all the odd modes in the time inter-
val (0,1000) are shown in Fig. 2. As before, ' the single-
history mode-energy data fluctuates to too great an ex-
tent (Fig. 2) to permit us to identity an equilibrium re-
gime. The double-precision statistical-ensemble data of
101 histories' showed evidence of a statistical equilibrium
regime starting at 200 sec and continuing to the end of
the run at 250 sec (where on average the 101 even-mode-
energy curves in that case cut the total energy error
curve). Based on this result we have assumed that in the
quadrupole-precision single-history case the statistical
equilibrium region extends from 200 sec to the crossover
point at 600 sec in Fig. 1. The vertical dotted lines in
Fig. 2 indicate these two times. We interpret the data in
the three time intervals as describing (i) an initial ap-
proach to equilibrium, (ii) a statistical equilibrium state
400 sec long, and (iii) a final nonphysical state determined
by the dynamics of the particles, Eq. (2), the choice of al-
gorithm, and the How of round-oC'error into the numeri-
cal integration procedure. The data in this latter state

with C, a normalization constant and 8, the mode tem-
perature. Thus inn;, should be a straight-line function of
i with slope —Eo/N, S, . The corresponding inn;, versus
i histograms calculated from our numerical data are
shown in Fig. 3 for each of the odd modes. The analysis
leading to the Maxwell-Boltzmann form' (10), suggests
that n, , values less than 20 should be neglected. The
remaining points are marked with a cross and fitted to
the dashed straight line. These graphs, Fig. 3, provide us
with the evidence that the equilibrium mode-energy dis-
tribution in the time ensemble is indeed Maxwell-
Boltzmann in form. The slopes of the fitted lines give the
temperatures 8, shown in Table II. (We use the bar to
indicate time-ensemble quantities and the brackets for
statistical-ensemble quantities. ) The statistical-ensemble
mode temperatures' are shown in the same table for com-
parison. ' Aside from the s= 1 case (where the mode en-
ergies are on average very small), the agreement between
the two ensemble mode temperatures is good. Thus we
conclude that the equilibrium sampling of the constant-
energy surface by the 101 copies' and the equilibrium
sampling of the same surface by the Iong single history
yield the same mode-energy distribution functions. It fol-
lows then that time averages over the long single-history
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FIG. 2. Graph of c., vs time for each of the odd modes s =1,3, . . . , 15. The dotted vertical lines at t =200 and 600 partition the
curves into (i) induction regime (0,200), (ii) equilibrium regime (200,600), and (iii) numerically contaminated regime (600,1000). Note
that the energy scales are di6'erent for each of the modes.

(a)

1

3
5
7
9

11
13
15

2.4
1.5
0.8
0.3
0.02
0.2
0.07
0.1

5 ' 3
1.8
0.5
0.4
0.1

0.06
0.06
0.06

TABLE I. Fractional number of occurrences of negative en-

ergy values (—0.002 for each of the odd modes in the
statistical-equilibrium-regime (a) time ensemble in the range
[200,600] with 4001 data points, (b) statistical ensemble in the
range [200,250] with 5151 data points.

and statistical-ensemble averages over the 101 histories
for functions of mode energies should be the same, i.e., a
form of the ergodic hypothesis holds for these functions
(see remarks in the Introduction). To confirm this con-
clusion we have calculated the average mode energies
Z„(e, ), Table II. The numbers agree to the degree that
we mould expect from the mode temperature comparison.
We have not investigated the distribution function for
any other physical quantity of this system. ' However,
we have calculated the average value of (a) the mode ki-
netic energies, written as kinetic temperatures 0,=q,
and (8,")= (j, ) and (b) particle kinetic energies also

written as kinetic temperatures T „=x„and
(T „")=(x „), see Tables III and IV. The numerical
agreement between these averages is consistent with the
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TABLE II. Maxwell-Boltzmann mode temperatures, from
the time-ensemble mode energy distributions 0, and from the
statistical-ensemble mode energy distributions (0, ). Time-
ensemble average mode energy E, and statistical-ensemble aver-

age mode energy ( e, ).
k
S (0~ k)

TABLE III ~ Time-ensemble average kinetic mode tempera-
ture 0," and statistical-ensemble average kinetic mode tempera-
ture (0,"&.

1

3
5
7
9

11
13
15

0.04
0.15
0.22
0.36
1.00
2.83
3.03
4.90

(0&
0.01
0.08
0.21
0.36
1.26
2.21
3.22
3.54

0.04
0.12
0.22
0.37
1.22
2.17
2.72
3.14

0.01
0.08
0.24
0.33
1.44
2.10
2.90
2.89

5

7

9

11

13

15

0.04

0.13

0.25

0.43

1.38

2.45

3.05

3.52

0.01

0.08

0.26

0.44

1.61

2.42

3.29

3.21
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1

2
3
4
5
6
7
8

0.52
0.78
0.61
0.77
0.79
0.68
0.73
1.48

0.50
0.85
0.79
0.71
0.82
0.67
0.63
1.39

TABLE IV. Time-ensemble average kinetic particle tempera-
ture T „and statistical-ensemble average kinetic particle tem-

perature (T„").

picture changes; the even mode energies appear at the ex-
pense of the odd mode energies; the fluctuations are
smaller and the average energy plots suggest a tendency
for most of the mode-energy averages to fluctuate about
the equipartition value of Eo/15=0. 67, the horizontal
dashed line in Fig. 4. We conclude from this evidence
that for the starting condition used in generating the
time-ensemble data the chain does not exhibit energy
equipartition in the reversible statistical equilibrium re-
girne; energy equipartition only occurs as a result of con-
tamination of the data by round-off errors. '

III. ACCURACY

ergodic hypothesis and suggests that the statistical- and
time-ensemble distribution functions for j, (and for x „)
are the same. We hope to report on an investigation of
these distributions at a later date.

We remarked above that the time dependence of the
mode energies in the irreversible region above 600 sec
showed some sign of energy equipartition. To put this
comment on a more quantitative footing, consider the
time average of the mode energies E, (t ) in the ten time
ranges [100n &t & 100(n+1)] with n =0, 1,2, . . . , 9.
These data are plotted as a function of rnid-interval time
100(n+1/2) for all 15 modes in Fig. 4. Below 600 sec
there are large fluctuations in the averages for the odd
mode energies and the even mode energies do not show
on this scale. There is no indication of energy equiparti-
tion even among the odd modes alone. Above 600 sec the

Our discussion of the accuracy of our data has so far
been confined to the error in the total energy (less than
0.02%) and the presence of round-off error as shown by
the appearance of the forbidden even modes. In this sec-
tion we extend the discussion to the errors in the position
and velocity coordinates of the particles of the chain. Be-
fore we do this a few remarks on the I space of the sys-
tem and the phenomenon of exponentially diverging tra-
jectories (EDT) are appropriate.

The dynamical behavior of the chain can be fully de-
scribed in terms of the motion of the phase point

(+1&+2& ' '&XN&+1&X2& ' ' ' &+N)=(+n~Xn )

in the 2N-dimensional I space of the system. For a given
excitation of the chain, the phase point follows a path in
I space. This path lies on the appropriate constant-
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energy surface Eo and is described by the set of 2X func-
tions (x„(t),x„(t ) ). For two different histories starting at
two different points in I space, there result two noninter-
secting paths (x„(t),x„(t)) and (x„'(t ),x '„(t )), say. At a
time t the distance between the two corresponding points
on the two orbits is given by L ( t ), where

n=1

It is known that the equations of motion (2} exhibit the
property of EDT, ' that is to say, if two closely spaced
starting points are chosen, then L(t) increases, on aver-
age, exponentially with increasing time. This behavior
cannot continue indefinitely because both the kinetic en-
ergy and the physical size of the system are bounded.
Typically we might expect L & 2+Eo. -

To carry out the numerical integration of equations of
motion such as (2), one chooses an algorithm and a step
size h (or iteration frequency I/h ). The algorithm con-
verges to the exact solution as h ~0 and so one expects
that the smaller the h the smaller the truncation error
and hence the more accurate the numerical solution.
However, with increasing iteration frequency significant
round-off error occurs earlier and earlier in the calcula-
tion. Thus the choice of h in practice involves a trade-off
between small truncation error and length of record free
of appreciable round-off error. As discussed previously,
Sec. II above (see also Ref. 1), the energy in the forbidden
even modes provides us with a quantitative measure of
the presence of round-off error. To estimate the numeri-
cal accuracy (i.e., truncation error) of our histories in a
time regime in which the round-off error is negligible we
use the smaller-the-h —the-more-accurate-the-solution

property of the algorithm. However, complications and
limitations arise because of the occurrence of EDT.
These come about as follows. Suppose we choose a start-
ing condition and calculate the numerical record
(x„(t},x„(t)) for a step size h, we repeat this process for
the same starting condition and a smaller step size h' to
get the record (x„'(t},x '„(t)). Now, while the starting
point is the same for these two records, the difference in
truncation error (since h&h'} leads to a divergence of the
histories —a divergence which can be measured by the
corresponding distance L(t). The truncation divergence
is in turn amplified by the exponential divergence intrin
sic to the equations of motion (2). The exponential diver-
gence of trajectories is a global property of the equations
of motion. In a local region of phase space, trajectories
through nearby points do not diverge exponentially—
this result is proved in the Appendix. It follows that the
global divergence property cannot be avoided simply by
choice of algorithm that has high local accuracy. In Fig.
5 we have drawn the separation function L(t) in the time
interval (0,600) for two numerical histories of the 15+ 2
particle chain. Each history has the starting excitation
discussed in earlier sections (i.e., the q„mode displaced
from rest); they differ only in the time steps h =0.01 and
h '=0.005. On the semilog plot we see the initial average
exponential rise in L followed by fluctuations about the
saturation value 2+ED. The curve reaches 1% of the
saturation value at t =164 sec and then rises rapidly to its
long-term behavior. We interpret this graph as indicat-
ing that the h =0.01 history is accurate to better than
1% only over the range (0,164) and that at later times
there is a rapid deterioration in its accuracy. In light of
these remarks, it is clear that the h =0.01 history is not a
good representation of the exact history over the whole

o 0.0
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]00.0 2(X.0
t ime
300.0 400.0 500.0 600.0

ld o
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FIG. 5. Graph of the separation function L(t ), Eq. |,'1 1), for the same starting state but different step sizes h =0.01, h'=0. 005.
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range (0,600)—merely the first 164 sec. Further calcula-
tions show that the h =0.005 history is no better; while it
cuts the 1% line relative to the h =0.0025 history at a
later time of 175 sec, the corresponding even-mode-
energy curve cuts the total-energy error curve as expect-
ed at an earlier time of 500 sec, i.e., an improvement in

h f thetruncation error at the expense of the length o t e
round-off error-free time interval. By considering smaller
and smaller h values we then conclude that we cannot get
a representation of the q» excitation to better than 1%
ou si e atside a range of about 300 sec for the case of the

12, 13fourth-order predictor-corrector algorithm ' plus qua-
druple precision. We have also briefly looked at other al-

19
gorithms and found very similar results. In summary,
then, there is a practical barrier to accurate long-time nu-
merical integrations of the equations of motion (2). This
barrier of 300 sec in quadruple precision is too short to
provi erovide enough data in a single history to test for a
Maxwell-Boltzmann distribution and hence test for the
ergodic property in the exact solution. Returning to the
discussion of the reversible h =0.01, 600-sec data of Sec.
II, we now consider the question of just how one should
regard the agreement between the statistical- and time-
ensemble data reported above. Our results can be inter-
preted in the following two quite different ways.

First of all, consider Fig. 6. Here we have calculated
L(t ) for h =0.01 and h

' =0.005 as above, Fig. 5, but only
for the time interval (0,50). At t =50 the h =0.01 in-

tegration continues but the h'=0. 005 integration is re-
started with the t=50, h =0.01 data as initial values.
This process is continued at 50-sec intervals until the end
of 600 sec. The resulting sawtooth L(t) is shown in Fig.

6. The dashed line represents the 1% value. We inter-
pret this graph as follows. In the interval (0,50) the in-
tegration data lie close (better than 1%) to the exact path
I„say, in I space; beyond this time, while the data devi-
ates to a larger and larger extent from I„Fig. 5, the
graph in Fig. 6 indicates that it gives a good representa-
tion of another path I2 for the next 50 sec. Continuing in
th fashion we see that the data closely represent a seriesis a

one ofof segments of different paths I&, I2, . . . , I&2. None o
these exact paths can have the same starting point or
indeed a common point. It is clear from Fig. 5 that I„

Iprrovides a poorer representation of the path of interest
with increasing n. On the basis of these remarks, we may
think of our h =0.01 data as a series of 50-sec samplings

20from various exact paths on the energy surface E0 =10.
Since these are samplings from diferent paths at diferent
times, the agreement between the mode-energy distribu-
tions described above and those for the statistical ensem-
ble, ' cannot be regarded as proof that the ergodic hy-
pothesis holds for some exact solution. The agreement
merely indicates that two different sampling techniques
on the energy surface give the same Maxwell-Boltzmann
distributions for the exact solutions to Eqs. (2). In this
interpretation it is nevertheless interesting that the distri-
butions from a large number of samples (101) in the sta-
tistical ensemble agree with distributions from a small
number of samples (8) in the time ensemble.

The second way of looking at our h =0.01 data starts
with the observation that, in choosing an nth-order
predictor-corrector algorithm and step size h, one re-
places the differential equations of motion with a set of
nonlinear, coupled difference equations. In the absence
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sizes h =0.01 and h'=0. 005. The integration is restarted for theFIG. 6. Graph of the separation function L(t), Eq. (11),for step sizes = . an
smaller step size at 50-sec intervals using the h =0.01 data.
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of round-off error the computed numerical data represent
precisely the exact solution to the difference equations-
for a given choice of step h and algorithm, order n, the
computer calculates the resulting difference equation
solution (x„(mh), x„(mh)) at the M time points
mh, m =1,2, . . . , M. Thus, in the case of the fourth-
order predictor-corrector algorithm with step 6 =0.01,
we have obtained exact difference equation data for (a)
101 different histories, the statistical ensemble of Ref. 1,
and (b) a single history over a much longer interval, the
time ensemble of the present paper. In the equilibrium

regime the mode-energy distribution functions for the
two ensembles are found to be of Maxwell-Boltzmann
form with the same set of mode temperatures, Sec. II
above. This means, in particular, that an average over
copies is equal to an average over the time variable mh,
i.e., the ergodic hypothesis holds for the nonlinear, coupled

difference equations As . remarked previously, we have
obtained similar results for other algorithms [i.e., other
nonlinear coupled difference equations representing Eqs.
(2)] and so we believe that the ergodic property found in

the difference equation data is a result of the ergodic na-

ture of the differential equations (2). In view of the bar-
riers to accurate long-time numerical integrations of the
equations of motion (2) discussed above, it appears that a
direct proof of the ergodic behavior of Eqs. (2) can come
only from an algebraic analysis and not a numerical treat-
ment.

Note that the property of Maxwell-Boltzmann distri-
butions, in contrast to the ergodic property, can be attri-
buted directly to the differential equations of motion be-
cause of the first interpretation of the data as being a set
of accurate samplings of exact paths on the energy sur-
face Eo.

IV. COMMENTS

Our numerical data for the statistical ensemble' and
for the time ensemble suggest that there is an ergodic re-
gion or "sea" (described by Maxwell-Boltzmann func-
tions for at least some physical properties) on the
constant-energy surface ED=10 for the quartic Fermi-
Pasta-Ulam (FPU) chain. We have no evidence to show
whether the statistical- and time-ensemble data cover
partially or completely overlapping regions in this sea.
We have no evidence for the extent of the sea. We think
it is extremely unlikely that access to this sea is confined
to the small set of paths passing through our 101 initial
states. We expect to find ergodic and Maxwell-
Boltzmann properties in the system for a wide range of
starting conditions on this energy surface and indeed we
expect other nonlinear particle systems to exhibit the
same type of behavior.

=F(X(r )),
dt

(Al)

where X(t ) and F(X(t )) are 2N-dimensional column vec-
tors:

~—gX] sX2$ 7 XNpX] pX2$ y XN / (A2)

0 ~ KTF=(x),x~, . . . , x)v, x),x2, . . . , x)v) (A3)

Consider two nearby points in phase space Xo(0) and

X)(0) such that X)(0)=Xo(0}+b X(0), where

~

EX(0)
~

&&2+Eo. Trajectories Xo(t),X)(t } passing
through these nearby points separate in time. To first or-
der the separation distance dX(t ) satisfies the variational
equation

= A(Xo(r )))AX, (A4)

where the stability matrix A has components

BF;
A;J(t)=

Xo() )

(A5)

To examine the short-time divergence of trajectories
around a particular point Xo Xo(t'), sa——y we make
the further simplifying short-time approximation
A(X&(t)) = A(Xo ) (Ref. 21) in Eq. (A5). If A(Xo ) has
2N distinct nonvanishing eigenvalues A, ), k,z, . . . , A, z)v

with eigenvectors E, , E2, . . . , E2N, then the solution to
the variational equation can be written in the form

2N

)AX(t)= g b,X(0)e ' E, (X() ) . (A6)

Thus two trajectories through nearby points in phase
spzce diverge exponentially for short times if and only if
at least one of the eigenvalues of the matrix A (Xo ) has a
real and positive component. In the following we show
that in the case of the quartic FPU chain the 2% eigen-
values of the matrix A(XO ) are all purely imaginary at
every point in phase space. Thus the average exponential
divergence of trajectories reported in Sec. III is a global
divergence and is not an average of local exponential
divergences.

The stability matrix A consists of four X XN blocks:

APPENDIX

We write the particle equations of motion (2) as the au-
tonomous first-order system
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where SN xN is an N X N matrix with all elements identi-
cally zero, IN ~N is the N XX identity matrix, and BN ~N
is the N XN symmetric tridiagonal matrix:
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Bxxw =

—(ho+bi}
b)

0

—(b)+bq)
(b—,+b, }

0 bN z (b—~ z+-bw i)

bN —1

bN —1

—(bN (+b iv)

(A8}

with

b„=1+3p(x, + &

—x„) (A9)

genvalues of 8 lie in the range

—2(b +bi )) &co&+2(bj+b~ t), (A14)

It is an easy matter to show that the 2N eigenvalues of
the stability matrix g are related to the N eigenvalues
m„co&, . . . , coN of the symmetric tridiagonal matrix 8 by
A. =+v'co. Furthermore, since the eigenvalues of a real
symmetric matrix are all real and distinct it remains to
show that the eigenvalues of B are a11 negative. We
define a Sturm series fIv(co),fit, (co), . . . , fo(co) for b as
follows: fp(0) =1, (A15)

where the index j is that index for which bj+bj &
is a

maximum. Sturm's theorem now tells us that the number
of distinct real roots in the interval —2(b +b, ) & co &0
is equal to the number of changes of sign in the sequence
f~(0),ftc t(0), . . . , f, (0),fp(0). Substituting co=0 into
Eqs. (A10)—(A13) we have

ftc(co)= 8 —coI
i
=0, —

fp(co) =1,
f, (co)= (bp+b—t ) —co,

f (0)=—(bp+b, ),
fz(0)= + (b] bp +b

~ bp+ b2bo }

(A16)

(A17)

(A12) f3(0)= —(b]bzb3+b3bzbp+bzb]bp+bpb]b3) (A18)

f„(co= (b„,+b—„+co)f„,(co)

b„,f„z—(co) . (A13)

It follows from Gerschgorin's theorem that all the ei-

fx(0)= (btcbtc &

—' ' ' bo} (A19)

Since b„gp for all r there are N changes of sign and
hence B has N distinct negative real eigenvalues.
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