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Selection in the Saffman-Taylor bubble and asymmetrical finger problem
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A systematic study of the zero-surface-tension solutions for a bubble in a Hele-Shaw cell is made.

Then the technique used for the Saffman-Taylor finger is applied to find how the actual solution for

nonzero surface tension is selected out of this family. We find that only symmetrical bubbles are al-

lowed. In particular, in the limit of zero surface tension we find that the velocity of the bubble is

twice the velocity of the fluid at infinity. We also find in the case of Saffman-Taylor fingers that the

symmetrical finger is selected against the asymmetrical ones.

I. INTRODUCTION

The Saffman-Taylor finger problem' is one of the sim-

plest examples of pattern selection. These fingers are
produced when a low-viscosity fluid is pushed into a
high-viscosity one, inside a Hele-Shaw cell, that is, a very
flat and a very long channel. Saffman and Taylor found
that the relative width of the finger, as compared to the
channel width, could take any value whereas experiment
showed that a definite width was selected.

Twenty years later McLean and Saffman showed that
a definite width selection is obtained when the surface
tension between the two fluids is taken into account.
They found good agreement between experiment and the
numerical solutions of their equations. However they
were unable to point out the mathematical mechanism in
their equations which produces selection. In particular, a
perturbation expansion in the limit of low surface tension
T gave no hint of selection.

This puzzle has been solved recently by various
groups. The basic principle of the answer is the fol-
lowing. McLean-Saffrnan's equations are somewhat simi-
lar to a Schrodinger equation. Here the role of A is
played by the surface tension T, that is, T is a factor in
the second derivative coming into a second-order
differential equation. This kind of equation generates
solutions with transcendental terms in T, analogous to
the semiclassical solutions of the Schrodinger equation
which do not admit an expansion in powers of A. Now a
physically acceptable solution must have a vanishingly
small contribution from these terms when one goes to
infinity on either side of the finger. This is analogous to
requiring that for a bound state the solution of the
Schrodinger equation decreases exponentially. Hence a
selection for the finger width is obtained which is analo-
gous to the energy quantification for bound states.

McLean-Saffman's equations are, however, markedly
different from a Schrodinger equation. They are a set of
nonlinear integro-differential equations. Nevertheless it
has been shown that the singularities of the T=O solu-
tion play a role analogous to the turning points for the
Schrodinger equation. These singularities are actually
out of the physical region and McLean-Saffman's equa-
tions must be extended in the complex plane. In the

T~O limit the selection is obtained by matching the ac-
tual solution to the T=O solution around these points.
In this process McLean-Saffman's equations reduce to a
single ordinary nonlinear differential equation with

specific boundary conditions. In particular, an analytic
solution can be obtained in the regime corresponding to
the quasiclassical limit for the Schrodinger problem (high
quantum number).

The net result is that for a fixed velocity for the finger,
an infinite (denumerable) set of widths is selected. Since
experiment gives a single width corresponding to the nar-
rowest finger, it remains to explain why this width is
selected. This could very well be a dynamical selection,
a11 the fingers being unstab1e against the narrowest one.
This can be physically easily understood when one real-
izes that at fixed driving pressure the narrowest finger is
also the fastest one, so in the growing process it over-
comes' all the other ones.

The purpose of the present paper is to apply our tech-
niques to the more general problem of shape selection
for a bubble (rather than a finger) of less viscous fluid
moving in a more viscous one in a Hele-Shaw cell. This
problem has been initiated by Saffman and Taylor" who
found a two-parameter solution for zero surface tension.
Th&s has been recently generalized by Tanveer' into a
three-parameter family. Kadanoff' found a four-
parameter one, but as pointed out by Tanveer, ' there is a
relation between these four parameters. Here we present
first a systematic method to obtain all the possible solu-
tions for T=0. We find the four parameter solution ob-
tained by Kadanoff with a somewhat more heuristic
analysis, together with the relation pointed out by
Tanveer. Our method allows us to introduce a new and
simple representation for the bubble problem.

Then we study the selection problem which turns out
to be very similar to the finger problem. We find that in
the limit T~O, the bubble has a velocity which is twice
the velocity of the surrounding fluid far away from the
bubble. This is in agreement with recent numerical cal-
culations by Tanveer. ' We also find another selection
rule in the case of asymmetrical bubbles. Taking into ac-
count Tanveer's relation, this means that only symmetri-
cal bubbles are allowed. The asymmetrical finger is a
particular case of the asymmetrical bubble, and in this
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case we obtain that the symmetric finger is selected, again
in agreement with Tanveer. '

Finally, we try to find an explanation for the loss of
solution found numerically by Tanveer' beyond some
surface tension. We show that there is a jump in the
selection rule for a given value of the surface tension.
This could provide an explanation. Another likely possi-
bility is linked to the difficulty of satisfying the conver-
gence condition at the back of the bubble and is discussed
at the end of Sec. III.

II. ZERO-SU+FACE- TENSION SOLUTIONS

We consider a bubble of zero-viscosity fluid moving
with velocity U in a viscous fluid whose velocity V at
infinity is taken as unity. We also take the half-width a of
the Hele-Shaw cell to be unity. The two-dimensional ve-

locity field u:—( u„,u~ ) of the viscous fluid satisfies
Darcy's law

b2
Vp,

where b is the spacing between the plates of the Hele-
Shaw cell, p the viscosity, and p the pressure. The
viscous fluid is considered as incompressible

V.u=o (2)

and the velocity field derives from a complex potential
w=P+ig (with P= bp/12—p) which is an analytic
function of the complex position z =x+iy. The complex
velocity field u =u„iu~ i—s given by u =Bw/Bz. At
infinity we must have w=z and on the channel sides
u =0 implies /=+1. The boundary condition on the
bubble is

p
T
R

(3)

if the constant pressure inside the bubble is taken con-
veniently. R is the radius of curvature of the interface.
For zero surface tension this gives /=0 on the bubble.
In this case the condition that the bubble moves as
whole with velocity U translates into lit=U(y —yo) on
the bubble where yo is a constant.

Our method follows the original idea of Saffman and
Taylor: z is an analytic function of w since u&0 every-
where, and it is more convenient to look for this function
because the boundary conditions are well defined. This
function is analytic inside the strip 1(E[—1, 1] with

y =+1 on the border, z = w at infinity, and corresponding
to the bubble, there is a cut on the /=0 axis on which

y = Imz =A, P+yo with A. = U
In order to solve this problem we map the boundaries

on the real axis through the conformal mapping

W=i sinh —w
2

For ward channel

Upper -1 8ubble 0

channel side bg 12

Lower

channel side

Backward channel

FIG. 1. The Hele-Shaw cell and the bubble in the %plane.

~
b, ~, ~

b2 i
&1. The upper complex plane corresponds

to the forward part of the channel, the lower one to the
backward part.

On the cuts ]—co, —1] and [1,00[, the analytic func-
tion Z( W) =z —w satisfies ImZ =0, it goes to a constant
when W goes to infinity in the upper half plane and to
another constant when W goes to infinity in the lower
half plane. These two constants can be chosen with a
zero sum (this corresponds physically to translate the
bubble). On the cut [b„b2],

ImZ =—(1 —A, )arcsin W+yo .
2
7r

(5)

Actually, as pointed out by Kadanoff, ' it is more con-
venient to deal with the velocity field u itself. Here we
consider instead of Z( W)

BZ 2(u ' —1)
BW im 1 W' »2 (6)

Z'(W )= . f dW

Z+ W —Z' W
dW

2i 7r W —Wo

The contour C encircles the cuts [it should also contain
the circle at infinity but this one does not contribute since
from Eq. (6) WZ'~0 for W~ ~]. The second integral is
over the intervals ]—~, —1], [b&,b2], [1,~ [ and Z+ are
the Z' values on the upper and lower rim of the cuts. If
we let Wo go on the real axis, we obtain

Z'+ ( W) —Z' ( W)
Z+(Wo)+Z' (Wo)= — PJ dW—

W —8'0

which satisfies the same boundary conditions as Z(w) ex-
cept that

ImZ'( W) =—2 1 —A.

( 1 W2)1/2

on the cut [b bl],2and Z'( W) goes to zero when
W~ oo.

We know the imaginary part of Z' on the cuts. From
the apalyticity of Z we have dispersionlike relations.
Cauchy's formula gives

This sends (see Fig. 1) the upper side of the channel on a
cut ]—~, —1], the P) 0 part corresponding to the upper
rim of the cut, the P & 0 part to the lower rim. Similarly,
the lower side of the channel is sent on [1,~[. Finally,
the bubble cut is sent on a cut [b „b2] with Z'++2' =i Im(Z'++Z' )=2i ImZ+, (10)

Since Im(Z'+ —Z' )=0 on the cuts, this tells us that
Re(Z'+ +Z' ) =0 on the real axis. Therefore on the cuts
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and we know Z'++Z' on the cuts: it is zero on ]—~,
—1], and [1,~[, and on [b&,bz] it is 4i(l —A, )/
~(i —w')'"

Now finding Z' when Z'++Z' is known on the cuts is

a Riemann-Hilbert problem which we solve by the stan-
dard Carleman's technique. ' We find a function L(W)
which satisfies L+/L = —1 on the cuts. A convenient
solution is'

L( W) = [(1—W')( W b,—)( W —b, )]

Then Z'( W)/L ( W) has a jump equal to

4(A, —1)[(W b—, )(bz —W)]' '/~

across the cut [b„bz]. In the general case an integral
representation is easily written for the solution. But here
the answer is clearly

determined by requiring a finite Z(W) for W=b„bz
However, for our purpose, the most convenient represen-
tation of the solution is Eq. (13) together with condition
Eq. (14). We will come back to this condition after hav-
ing studied the selection due to surface tension.

III. SELECTION

We know that selection is produced by the nonzero
surface tension. We must use now Eq. (3) as a boundary
condition instead ofp =0. It can be rewritten as

a Tba—
R '

12p
(15)

We introduce the velocity field by taking the derivative of
this equation with respect to the arclength s along the
bubble interface

Z'( W) 2i(1 —A. )

L(W) Q( W b, )( W— bz )+—p( W), (12) 8 1 BPa
Bs R Bs

(16)
where p( W} is a polynomial (it must be an analytic func-
tion over the whole complex plane and can only grow
algebraically for W~ 00 since Z'~0). From Eq. (6)
since u ~1 for w ~~, p( W) must be of the form

Then we rewrite this equation in a form convenient for
analytic continuation out of the interface. If the x axis is
along the channel pointing in the direction of the bubble
motion and 8 is the angle between the x axis and the nor-
mal to the interface, the angle between the x axis and the
tangent to the interface is 0+n /2, and we have
dz=ie' ds, where dz is taken along the interface. Since
1/R =BO/Bs this leads to

p( W) =—(A, —1)( W+C),2l

where C is a constant. This leads finally to

u '=A. +(1—A, )

Q(W bi )(W—bz)— (13}
ie ~ ie=ie' (e' } .

Bs R Bz2
(17)

On the other hand, we have with respect to any reference
frame (X, Y):

ay . ay ="x (18)

If X is taken along the normal n and Y along the tangent,
this leads to

ay . ay—i =u iu =(u— iu )e'—=ue'
Bn Bs

(19)

Since the bubble moves with velocity U we have
BPIBn = U cos8. Finally Eq. (16) becomes=0.

df 1 2u
2 f2

where f=e' and e=2a/U=Tb /6pU
Equation (20) is the generalization for our purpose of

the differential equation of McLean and Saffman. Their
second equation is an integral equation which expresses
the analyticity of u, but we will not need for our analysis
to write this equation explicitly.

For low surface tension, c is small, and it seems possi-
ble to solve Eq. (20) by an e expansion. But this fails near
the singularities of f where f and therefore 8 f/r}z
diverge. To zeroth order in c, these singular points are
obtained by setting in Eq. (20) v=0 and u =uo, where uo
is the T=O solution found in the preceding paragraph.
Hence the points where f diverge satisfy

(20)

in agreement with Kadanoff' [our parameters are related
to his parameters by b, = —sing, bz ———sinai+, and
C =sin/2, and his w which we write as wx is related to W
by W=i(wx —I/wx)/2]. We note that Saffman and
Taylor's symmetric bubble" corresponds to b

&

———bz,
C=O, their asymmetric finger" to C&0, bz —— b, =l-
(and their symmetric finger to bz —— b& ——1 and C =0).—

Now, as pointed out by Tanveer, ' Eq. (13) will not
lead in general to a single valued function Z( W) when we
integrate Z'(W), unless we require that the integral of
Z'(W) around a contour encircling the cut [b&,bz] is
zero. This leads to the additional requirement

b~f dW (14)
Q(1 —W )(bz —W)(W b,)—

Another way to see that an additional condition is
necessary is to solve directly for Z( W) by the Carleman
technique. If we use L( W) given by Eq. (11),we obtain a
solution depending on seven parameters, namely, A, , b&,

bz, yo, and the three (purely imaginary) coefficients of an
arbitrary second-degree polynomial which can be intro-
duced in the equation analogous to Eq. (12). But we must
require that Z( W) be finite for W=+1, b&, bz, otherwise,
the result does not correspond physically to a bubble.
This gives four relations and therefore three free parame-
ters. Alternatively, we can use (1—W )L(W) instead of
L ( W) in our solution. This insures automatically
Z(+1)=0. The solution depends on A., b&, bz, yo, and an
imaginary constant, these last two parameters being



2576 R. COMBESCOT AND T. DOMBRE 3&

U —2le,
ua= —(1+e '),

2
where 80 is the function corresponding to the T=O solu-
tion. This results directly from the fact that for T=0 the
velocity on the interface is along the normal, and its
modulus

f u0 f
is Ucos80 which gi~es

(21b)

l'Hp U 2l'Op

u0 —
f u0 f

e '= —(1+e ') .
2

But the complex conjugate of the velocity field is given on
the interface by

iep U 2iep
ua ——

f u0
f

e '= —(1+e '),
2

(22)

U
u (2 la)

2

Since f=e' these points are clearly not on the interface,
and this is why 8 and Eq. (20) must be extended analyti-
cally out of the interface.

We note that at these points nothing special happens to
the velocity field uo itself. On the other hand, from Eq.
(20) with s =0 we have

and its analytic continuation is singular when e
diverges (note that the analytic continuations of u0 and
u0 are not complex conjugate in general since the con-
tinuation of 80 is not necessarily real).

Now our analysis closely follows Ref. 6. In the limit
e~O we want a solution f which matches the T=0 solu-
tion f0 far away from the singular point. This will not be
possible in general because of transcendental divergent
terms generated by the singularity. To lowest order in F.

we can replace u in Eq. (20}by its T =0 value u0 given by
Eq. (13). In the same way we can use the T=O relation
between z and W obtained implicitly in the preceding
paragraph.

Equation (20) is basically identical to the equation
studied in Ref. 6. In the same way complete matching
will not be possible for a~0 except if the singular points
go to z = ~ which corresponds to a singular point of the
differential equation (20) itself. For small e we have
therefore only to consider large values of z which corre-
sponds also to large W. A convenient variable is then
g= [i sinh(nz/2)] '. For large &we have from Eq. (13)

2 +, =2~—1 —2P(1 —&)b, —g'&(1 —&)[-,'(b, b, )'+—(b, +b2)b, —4(1—A, )b2],
J

(24)

where b, =C+(b, +b2 )/2 and we have used

=g —(1 A, )b,g— (25)

(valid to second order in g} which results from

(1—A, )b,=u=1-
Bz W

(26)

We note that to lowest order we merely have (=1/8'.
The correct expression Eq. (25) is only needed to get the
proper coefficient of g in Eq. (24), but this turns out to be
irrelevant. The higher-order terms in g which we have
neglected in Eq. (24} turn out to be irrelevant after rescal-
ing.

As in Ref. 6 we study the matching problem by a prop-
er rescaling. As for the finger problem f scales as s
and g as e'~ . Therefore as for Saffman-Taylor fingers,
2A, —1 behaves as s ~ for low surface tension. Moreover
b, is proportional to c.' . This can be used to simplify
Eq. (24) into

QD ——[sgn(2A. —1) iPx+x ]— (29)

with a =4
f

2A, —1
f

~ /enand.
P=2b, /fb, -b,

f
fu, —1 f'".

As in Ref. 6 the surface tension has disappeared after re-
scaling and the solution of the matching problem will
give pure numbers for the parameters a and p.

The situation is now the following. We start from one
side of the bubble, and we require that when we follow
the interface, no transcendental divergent term arises
when we reach the other side of the bubble. This must be
true whether we follow the forward or the backward part
of the bubble. In the complex plane of the x variable the
bubble is far away on the imaginary axis, one side to-
wards i 00, the other towards —i ~. In the x plane, going
from one side to the other corresponds to going from
—i 00 to i ao by a semicircle at infinity, x &0 correspond-
ing to the forward path, x &0 to the backward one. Now
the transcendenta1 terms are generated by the singulari-
ties of the T=0 solution Qa..

(bi b2)—
g2

b, g+ =2k, —1— that is, the zeros of the right-hand side of Eq. (28). They
are near the origin and we will obtain the transcendental
terms by deforming the above paths to make them pass
near the singularities. That is, we go from —i (x} to i ~
along the imaginary axis either on the x & 0 or on the
x & 0 side. If we start with Q =QD on one side, we want
to have Q=Q0 on the other side. More generally we
want Q =Q0 everywhere, except near the singularities,
and in particular for x ~+ ~.

We consider first the case 2k —1&0. For p=O the
problem Eq. (28) is identical to the one dealt with in Ref.
6. We will only treat the large-a situation which can be

16

(27)

By rescaling f=
f

2A, —1
f

'
Q and

$=4ix f2)i, —1 f'~/fb, b2f-
we obtain

—x x +Q =sgn(2A, —1) i px+x (28)—1 d dQ
Q dx dx
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handled analytically by a WKB method. We will not
consider the case where a is of order unity as in Ref. 6.
Since it has been shown in Ref. 6 that even in this case
the WKB result is a very good approximation, we expect
the same to be true here.

Let us recall how the p=0 case has been treated. We
have two singularities at x =+i. We arrive from —i (x)

and approach —i. In the vicinity of this point we set
x = i—(1—y ) and after the rescaling Q =(a/4)'/ F and

y =(a/4) (r l2), Eq. (28) becomes

d F 1

dp2 F2
(30)

When one looks for exponential corrections to the
asymptotic solution Fo ——I /Qr (corresponding to
Q=QO), one finds Stokes lines at arg(r )= 6n/7 —and
arg(r )= —2m/7. We want a solution which satisfies
F=Fo in the two Stokes wedges —10m/7 & a.rg(r )

6n /7 —and —6m /7 & arg(r ) & —2m /7. It has
been shown in Ref. 6 that this solution behaves as

4mF=y(r )
/ exp( 4&2r ), arg(y) = (31)

in the wedge —2m/7&arg(r ) &2m/7. Actually this is

improper since this term is supposed to be a correction
whereas being divergent it dominates Fo. It is in fact the
analytic continuation of the exponentially small correc-
tions arising in the wedges where F=FO and we could
stay in these regions. But it is more convenient to work
on the arg(r )=0 axis with the analytic continuation
(the same remark applies to our WKB expression below).

Away from the singularities we may solve Eq. (28) by a
1/a expansion around Qo. We obtain a linearized
differential equation. The possible transcendental correc-
tions h are solutions of the homogeneous part of this
equation

s — d Q 1
=Sy

a d 2 Q2
(35)

where S =s +s . After the rescaling
Q=(a/S s )' F and y =(a/S s )

/ r /S, we
obtain exactly Eq. (30). Since our boundary conditions
are unchanged the solution is still given by Eq. (31).

Then between the two singularities the transcendental
correction is still the solution of Eq. (32) and is of the
form Eq. (33), except that in order to match Eq. (31) the
prefactor must be changed. We find

1/28
a=y 22Ss Q

3/4

X exp —(2a)'/ f Qo
3/2

—lS
(36)

F+ =y"(r+ ) exp( ', &2r+— (37}

in the wedge 2n. /7 & arg—(r+ ) &2n/7 The .WK. B solu-
tion of Eq. (32) which matches this behavior is

' 1/28

Q
3/4a

+

In the same way we set x=i(s+ —y+ ) in the vicinity
of is+ and after the rescaling Q=(a/S s+ )' F+ and

y+ ——(a/S s+ )
/ r+ IS we find again Eq. (30). But

now the boundary conditions of convergence for
x~+ ~ and x~i ~ are translated into a convergence
condition in the two wedges 22r/7 & arg(r+ ) & 6m l7 and
6m/7 &arg(r+ }&10m/7 T.hes.e are just complex conju-
gates of the conditions for F . The solution is
[F (r' )]' as seen by taking the complex conjugate of
Eq. (30). Therefore we find that F+ behaves as

1 d dh

a dx dx
—2QO i2 =0, (32)

)(exp (2a)1/2 f Q
—3/2

lS+
(38)

and they can be obtained by the WKB approximation.
The solution which matches Eq. (31}is

' 1/28

h =y — Q exp —(2a)' f Q4 —i X

a=2 n+ arg(y)
(34)

(33)
Then it was required that h is real when x is on the real
axis which leads to

2

s+
—,', ln +2i rag( y) +2in n.

S

(2 )1 /2 f + ds (1+ps —$2)3/4
s $

(39)

where we have set x =is The ima.ginary part of Eq. (39)
reduces to our preceding condition Eq. (34) but the real
part, which is trivially satisfied for s+ ——s, gives an ad-
ditional condition

Since this WKB solution is also given by Eq. (36) we end
up with the selection condition

But we would get the same result if we keep going to the
singularity at x =i, turn around it, and require that there
is no transcendental correction when we go toward i ~.

Now when p&0 the only change is Qo. Let us call is+
and —is the position of the two singularities (with

s+,s &0). They are the roots of x —ipx+1=0. In the
vicinity of is we se—t x = —i(s —y ) and Eq. (28) be-
comes

S—', ln =(2a)' P (1+Ps —s )
s —S

(40)

We show now that this condition is satisfied only if
s+ ——s . We study the two sides of Eq. (40) as a function

p =s+ /s (or equivalently P since P=s+ —s and
s+s =1). They are both zero for p= 1 and change sign
for p~1/p, so we can consider only the case p) 1. If we
calculate the derivative of the right-hand side with
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respect to p, the contribution from the boundaries disap-

pears because the integrand vanishes for these
boundaries. The resulting integral is easily calculated by
a change of variables. This derivative is

(2a)'~ —'(s +s )' B(—' —') dp
p

(41)

where B(x,y ) is the Eulerian p function. Since

p=s+ ——1/s we obtain finally for this derivative, with

B( ,', ,'—)—=I'(,')/—I ( ', ) —=1.69,
' 3/2 1/2

0.63(2a ) —v p+
1 0.63(2a )

p p p'" (42)

(43)

This is identical to the result found for the Saffman-
Taylor fingers. In particular in the limit of zero surface
tension we obtain that the bubble moves at twice the ve-

locity of the surrounding fluid at infinity: U=2. This
agrees with the numerical results' of Tanveer. '

Finally, we have not considered yet the case 2A, —1 & 0
but this is handled as in Ref. 6. Indeed for p & 2 we have
two singularities 2x =ip+(4 p)', one i—n the x &0 re-
gion and one with x &0. In our path from —i ao to i ~ in
the x & 0 region we will go only around the single x &0
singularity. But if we have Q =Qo in two Stokes wedges
we will have divergent corrections as Eq. (31) in the third
one with no way to get rid of them since there is no other

On the other hand, the derivative of the left-hand side
is —,',p. From Eq. (34) of Ref. 6 we have always (2a)'~ & 1

for all the possible values of a. Therefore, the right-hand
side of Eq. (40) is always growing faster than the left-

hand side. Since they are equal for p=1, there is no oth-
er possible solution.

Therefore, we find that our asymmetry coefficient

b, =C+(b, +b2)/2 must be zero when we take into ac-
count the selection due to surface tension. But Eq. (14)
gives an additional relation between C, b„and b2. If we

set C= —(bi+b2)/2 in Eq. (14), it is easily seen that the

only solution is b, +b2 =0. This is done by the change of
variable W=(b i +b2)/2 + u(b2 bi )l2 and—reducing the

range of intergration on u to [0,1]. The quantity to be in-

tegrated is easily shown to be positive unless b, +b2 ——0.
Therefore, we come to the conclusion that, after surface
tension is taken into account, only symmetrical bubbles

b&+b2 ——C =0 can exist in agreement with Tanveer's nu-

merical calculations. ' On the other hand, we have seen
that the velocity U =k ' is also selected. Finally, the
surface of the bubble is fixed (if we assume that the fiuid
inside is incompressible); the overall result is that there is
no free parameter left anymore. In the case of the
asymmetrical finger we have b2 ———b, =1 and therefore
we obtain the selection C=O: only the symmetrical
6nger survives after selection by surface tension is taken
into account. This is in agreement with Tanveer's re-
sult. "

Gathering our results we find that the velocity of the
bubble is selected for low surface tension according to

' 2/3——1= (n+ —,') ~~2Th 2
4 3

U 24JM

singularity available on this side. Therefore the conver-
gence condition cannot be satisfied. For p&2 the two
singularities are again on the imaginary axis, but this
time on the same side of the origin. Then the path going
from one singularity to the other will not pass near the
origin and imaginary term im(2.a )' produced by the ori-
gin in the right-hand side of condition Eq. (39) will not be
present here. Again the imaginary part of this condition
cannot be satisfied. In conclusion there is no solution for
2A, —1 g 0 as for the finger case.

%e notice that, although as we said our selection con-
dition should be enforced when following the forward
part as well as the backward part of the bubble, we have
actually considered, say, the forward part. The reason
for this is that, at first sight, the condition for the back-
ward part is then automatically satisfied. Indeed, far
away from the singularities we have three Stokes sectors
—m &arg(x) & —m/3, n/3—&arg(x) &n/3, and
n/3 &arg(x) & m. This can be seen from WKB behavior
as exp(+x ~

) of the transcendental corrections [see Eq.
(36) for large x]. Our condition insures that, when

Q Qp in the first two sectors, the same is also true in the
third one. Then the whole complex plane is covered and
there is no need for another convergence condition.

However, this argument is not completely correct be-
cause of the finite size of the bubble. The Stokes line

arg(x) =+~ for x —+ —00 results from the fusion between
the Stokes line starting from x = —i with

arg(r )= —10m/7 and its symmetrical starting from
x =i. But this fusion is only complete at x = —~, which
is never reached because of the finite size of the bubble.
Therefore, there is a small Stokes sector, located between
these two preceding Stokes lines, which reaches the bub-
ble. This comes in addition to the three above Stokes sec-
tors. But we have no way to enforce convergence in this
new sector and we would come to the paradoxica1 con-
clusion that there is no solution to the selection problem.

Actually it is easier to see this point qualitatively when
one works directly in the physical plane of the Hele-Shaw
cell channel. There are then four singular points, which
are far away from the bubble. Two of them are in the
forward part of the channel, located on the upper and
lower side, respectively. The two other singular points
are located in the backward part symmetrically from the
two first ones. There are then two relevant Stokes lines
starting from the upper forward singularity. The first
one, starting with an angle —2m/7 with respect to the
channel axis, goes to the lower forward singularity. In
our x representation it corresponds to the Stokes line
starting from x = i with arg(r —) = —2m/7 and going to
x =i. The second one [corresponding to
arg( r ) = 6n./7] starts wit—h an angle 6n./7 with—
respect to the channel axis. From the behavior of the
field (2u /U) —1, which is easy to draw qualitatively, one
can see that this line must end up on the bubble. This is
obtained from the relation a, +(3/4)a„= —3m. /2, where

a, and u„are, respectively, the local angles of the Stokes
line and of the (2u /U) —1 field with respect to the chan-
nel axis. This relation shows that this Stokes line cannot
cross the channel axis, which leads to our conclusion. Fi-
nally, there is a relevant Stokes line starting from the
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backward upper singularity [corresponding to our trou-
blesome arg(r }=—10ir/7 Stokes line] with an angle
—3m. /7 with respect to the channel axis This line
satisfies also a, + ( —,

' )a„=—3m /2 and again can be shown

to end up also on the bubble.
A possible way out of the preceding paradoxical con-

clusion is the following. Our WKB analysis is strictly
speaking only valid in the a~0 limit. For small but
nonzero a, there are no sharply defined Stokes lines (ex-
cept near the singularities) and the transition from one
Stokes sector to the next is progressive. The Stokes lines
must be thought of as fuzzy. Since our divergent Stokes
sector is very small on the bubble, this fuzziness may
make it completely disappear, thereby restoring the solu-
tion. This will happen for small 2A. —1, that is, small sur-
face tension, because in this case the singularities are (in
the channel plane, that is, with the variable z or
equivalently W) very far away from the bubble and the
divergent sector is very small. This disappearance re-
quires also that the order n of the solution [see Eq. (43)] is
rather low in order that the Stokes lines are fuzzy
enough. If at fixed n we increase the surface tension T,
the singularities come nearer to the bubble and the diver-
gent Stokes sector gets too large to be destroyed by fuzzi-
ness. The solution could disappear and this might ex-
plain the loss of solution found numerically by Tanveer. '

Similarly, if we increase n at fixed T, the Stokes lines get
sharper (and also the singularities get nearer) and again
the divergent Stokes sector will no longer disappear, im-

plying perhaps a loss of solution. However, we have not
proved that this indeed happens and it could well be that
the corrections in the "divergent" sector are small
enough to cause no problem to the existence of the solu-
tion.

As a final remark, we note that we have found in our
problem a strong asymmetry between the forward and
the backward regions of the bubble. This is probably a
real feature of the actual solution for the bubble shape.
Indeed, since pressure in front of the bubble is smaller
than in the rear, the curvature will be slighty more in the
front than in the rear.

IV. SMALL SYMMETRICAL BUBBLE

In this last section we suggest for the loss of solutions
found numerically' by Tanveer for bubbles an analytical
explanation different from the one considered at the end
of the last section. We consider the following possibility.
We have assumed precedingly that the two singularities
are on the real W axis and correspond to

~

W
~

~~1. If,
however, they satisfy

~

W
~

&1 while still on the real
axis, our selection condition might be changed because
we have branching points at W=+1 in our conformal
mapping. This is not a technical point: physically the
singularities would be in the surrounding fluid, between
the bubble and the sides of the channel, instead of being
on the channel sides.

But we meet a technical difficulty. For a symmetric
bubble (C=O, b2 —— b, =b), the sin—gularities [i.e., the
zeros of the right-hand side of Eq. (20)] are located at

W=+bk, /(2)t, —1}'~ =+R .

Our approach works in the limit of low surface tension,
which implies according to Eq. (43) a small 2A, —1, and
the singularities correspond to large W except in the case
of small bubbles b «1. Therefore, we will only consider
this case and hope that our results extend qualitatively to
other bubbles for which the numerical calculations have
been performed. Another practical reason which re-
quires b «1 is that in our method we match the solution
of an inner rescaled problem Eq. (28) to the solution of an
outer problein QD

'~ which is merely the T=0 solution
far away from the bubble. In order that the singularities
at

~

W
~

=1 are "far away" froin the bubble, we need the
bubble to be small again.

Starting from Eq. (20) with b «1, we can perform an
expansion of the right-hand side which is still valid for
W=1

2u 1 b

U 4W~'—1=2K,—1 —— (44)

where we have used A, =—,'. The inner region corresponds
now to W=1, and there is no need to rescale this vari-
able. As before, we rescale f by f=(2)i,—1) '

Q which
gives

1 dQ 1+ =1+x
dz~ Q2

(45)

where we have set R/W=ix and ri=(2A, —1) /e. As
before we will work in the WKB regime where g is large,
and hope that our result extends to the low-order
branches qualitatively.

We are back to the same inner problem again except
that the relation between z and W cannot be approximat-
ed by its large- W expression. Away from the singularities
at x = +i, the transcendental corrections to QD are again
obtained by the WKB approximation and following the
same path as in the preceding paragraph, this leads to

(2i) )' J dz(1+x
X= —l

(46)

and expression (46) can be replaced by

dx (1+x')'"
2n

( 1 ix'/R ')'" (47)

This reduces to the right-hand side of Eq. (39) in the limit
R ~& 1 (with a =4rilvr ).

As long as R & 1 nothing is changed compared to the
situation R »1. Indeed for a symmetric bubble only the
iinaginary part of expression (47) comes in. Since it
comes only from the vicinity of x =0, it is unchanged.
Moreover in the vicinity of x =+i we obtain the same
nonlinear problem Eq. (30), y is unchanged and we find
again Eq. (43}.

If R & 1, the square root becomes imaginary when x is
between +iR and +i and this leads to an additional con-
tribution to the imaginary part of (47) which is

which replaces the right-hand side of Eq. (39). Since the
bubble is very small we can approximate to lowest order
in b the velocity field by u =1. This gives

3iz/BW=Bw/BW=2/in(1 —W )'~
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since the contribution from [ i—, —iR ] and [iR,i ] add
together. We note that the actual cut, corresponding
physically to the sides of the channel, is between —iR
and iR and we work with the determination correspond-
ing to the forward side of the bubble. In fact the other
determination never appears because we have no WKB
expression valid both for the forward and the backward
regions.

One may also worry because of the integrable singular-
ities at x=+iR. However, there is no real singularity
here, this problem appears only because of our conformal
mapping. If we go back to the physical variable z, these
points correspond to the two points on the sides of the
channel facing the bubble. Clearly there is nothing par-
ticular around these points. It can be checked directly by
considering the nonlinear problem that there is no addi-
tional contribution from these points.

Finally we consider the nanlinear pl.oblem around
x =+i We .set again x = i(1——y ) which gives

2dQ 1
(1—R ) + =2y

4' g 2 Q2

With the rescaling

Q =[ri/rr (1—R )]'/ F
and

(49)

y =[ri/m. (1—R )] (r /2),

we have

d F 1 =r
dz F (50)

with the asymptotic behavior Fo=(r )
'/ as in Eq.

(30}. But here, because of the change of sign in front of
the second derivative, the Stokes lines [corresponding to
the exponential corrections to Fo obtained by linearizing
Eq. (50)] are for arg(r )=0 and arg(r )= —4m/7. Our
boundary conditions require convergence in the two
wed ges

—12ir/7 & arg(r ) & 8n./7—

s2 3/4
(2ii)' = —2'(2 ) P(R)im. g s [(s /R2) —1] /

(48)

(we must have divergence in the wedge
4—n /7 &arg(r ) &0 in order to match the known WKB

divergent behavior when we start from —iR and go along
[ i—R,O[).

Instead of solving directly this new nonlinear problem,
we map it on the old one by F=e' F' and
r =e ' r' . The equation for F' and the boundary
conditions are just the same as Eq. (30). Therefore the
solution for F' is again Eq. (31) which gives for F

F=e' / y(r ) exp( i 7v—2r— ) . (51)

2 arg(y) 1

1 —$(R } 7r 28
(52)

instead of Eq. (34).
In conclusion we find that, when R crosses the value

R = 1 (which means when 2A, —1 goes beyond
bid, 2=b /4), there is a sudden jump in the selection con-
dition and therefore a discontinuity in the selected solu-
tion. This might explain the disappearance of solutions
found by Tanveer. %'e note, however, that this jump is
small, and it is not obvious that it would lead to a prob-
lem in the numerical procedure (note that we do not find
disappearing solutions, we just suggest that the discon-
tinuity might produce difficulties in the numerical calcu-
lation). But we cannot have a definite conclusion since
we worked in the limit of large order n and small bubble
b It is con. ceivable that for low orders and large bubble
the jump is larger. In order to check our proposal it
would be interesting to perform numerical calculations
for large order and small bubble.

Between this explanation and the one considered at the
end of Sec. III, we do not know which one is the good
one, if any. Let us stress, however, that in the case con-
sidered in this last section, where the singularities are in
the liquid, it can be seen by looking at the large x limit
that there is no longer any divergent Stokes sector on the
back of the bubble. The troublesome Stokes lines close
on each other instead of reaching the back of the bubble.
Therefore, one should always find solutions in this re-
gime.
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