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Selection of long-scale oscillatory convective patterns
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A model equation describing oscillatory convective patterns is derived using the long-scale expan-
sion under conditions of slow exchange at the containing walls. The complex amplitudes of convec-
tion waves obey on an intermediate time scale the free Schrodinger equation, and are modulated on
a slower time scale, following an evolution equation that is similar to a complexified equation of
long-scale stationary convection, but involves nonlinear interactions restricted by resonance condi-
tions. The analysis of pattern selection in the vicinity of the symmetry-breaking bifurcation indi-

cates the prevalence of a square-standing-wave pattern comprising a certain phase-locked ("anti-
phase") combination of perpendicular modes. The stationary antiphase pattern can be destroyed,
giving way to a pattern with time-dependent amplitudes, under the influence of weak non-

Boussinesq effects.

I. INTRODUCTION

Transition to oscillatory convection, leading to wave
patterns in large-aspect-ratio systems, has been extensive-
ly studied in the context of double-diffusive convection,
both theoretically' and experimentally. The symmetry-
breaking bifurcation with formation of wave patterns
poses a particularly attractive theoretical problem, since
a high degeneracy of the bifurcation in the infinite
domain makes rich dynamics possible already in the
analytically tractable small-amplitude region near the bi-
furcation point. In contrast to amplitude equations of
stationary patterns, that have a dull gradient structure,
amplitude equations of wave patterns are capable of gen-
erating time-dependent behavior that involves competi-
tion between propagating and standing waves and is
enhanced by resonant interaction between noncollinear
waveforms.

So far, numerical studies of oscillatory convection have
been by necessity restricted to either small-aspect-ratio
systems or to one-dimensional setups that do not leave
space to interaction of alternatively directed waves and
selection of two-dimensional patterns. The latter prob-
lem has also remained out of reach of analytical studies,
due to the difficulty of actual computation of wave in-
teraction coefficients. Even the linear theory can be con-
structed analytically only at the price of either abandon-
ing no-slip boundary conditions in favor of stress-free
boundaries, or replacing the Navier-Stokes by the Darcy
equation. At the same time, analytical studies of pattern
selection remained abstract before wave interaction
coefficients could be connected with actual parameters of
a viable physical model.

In this paper, we shalI adopt a model of long-scale con-
vection that allows us to circumvent computational
difficulties, while retaining rich dynamics of competing
patterns. It is known"' that convective cells with a large
aspect ratio are formed under conditions of poor heat ex-
change at the confining plates. Under these conditions,
the "lubrication approximation" can be used to solve hy-

drodynamic equations easily without resorting to non-

physical stress-free boundary conditions. A remarkably
simple equation describing stationary convective patterns
in long-scale approximation can be written in a rescaled
form

This equation possesses a gradient structure that rules
out interesting dynamics. The gradient structure is des-
troyed when Eq. (1) is amended to take into account iner-
tial effects, but this does not influence behavior in the vi-

cinity of the symmetry-breaking bifurcation.
Long-scale equations with a more complex structure

than (1) can be obtained for double-diffusive systems; a
(structurally unstable) equation derived by Childress and
Spiegel in the vicinity of bifurcation at the double zero ei-
genvalue, that replaces tl, in Eq. (1) by tl2„ thereby chang-
ing the gradient structure to Hamiltonian, is particularly
interesting.

In this paper, we shall derive and explore a long-scale
equation describing oscillatory convective patterns. The
long-scale expansion leads us in Sec. II to the
Schrodinger equation for amplitudes of bifurcating
waves. The amplitude modulation on a slower time scale
is described (Sec. III) by an evolution equation that can
be viewed as a complexified Eq. (1), but involves non-
linear interactions severely restricted by resonance condi-
tions. The problem of pattern selection in the vicinity of
the symmetry-breaking bifurcation is addressed in Sec.
IV. In further sections, we discuss the influence of iner-
tial and non-Boussinesq effects and apply results to a par-
ticular case of thermal convection in the presence of the
Soret effect.

The principal conclusion regarding pattern selection in
the particular case considered in Sec. VII is the pre-
valence of a standing-wave pattern comprising a certain
phase-locked (antiphase) combination of perpendicular
modes. This effect is purely three dimensional. In a one-
dimensional setting (corresponding to two-dimensional
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flow) a propagating wave would be selected, but in a
two-dimensional setting (three-dimensional flow) a
standing-wave pattern is favored due to specific phase-
dependent interaction of non-collinear modes. The sta-
tionary antiphase pattern can be destroyed, giving way to
a pattern with time-dependent amplitudes, under the
influence of weak non-Boussinesq effects.

II. LONG-SCALE EXPANSION

(v +a ) v x=A+v 8 (2)

where % is the vector of Rayleigh numbers, and V is a
two-dimensional operator in the lateral plane x (hence V
is the two-dimensional Laplace operator). The no-slip
boundary conditions are

We shall consider convection in a fluid layer confined
between two rigid horizontal plates and infinitely extend-
ed in horizontal directions, and use hydrodynamic equa-
tions in the conventional Boussinesq approximation, to-
gether with transport equations for appropriate state
variables (concentrations and temperature). In the quies-
cent state, state variables vary linearly across the fluid
layer due to externally imposed increments between the
upper and lower plates, and are constant in the lateral
direction. While decrements of some variables can be im-

posed independently, others may emerge spontaneously
due to nondiagonal transport effects (e.g. , concentration
gradients induced by thermal gradients in the presence of
the Soret effect). The symmetry-breaking bifurcation to a
convective state is caused by buoyancy forces due to
changes of the fluid density, that is assumed to depend
linearly on state variables.

We shall use an n-component state vector 6 to denote
deviations of the composition and temperature of th
fluid from their values in the quiescent state, i.e., from
linear profiles in the vertical direction. Hydrodynamic
and transport equations will be written in a dimensiopless
form, using the layer thickness as a length scale, scaling
time by a characteristic diffusion time of one of the state
variables, and components of the state vector, by respec-
tive decrements across the fluid layer in the quiescent
state.

It is convenient to represent a solenoidal velocity field
in the form u=curl(AQ)+curl (AX), where l(, is the unit
vector along the z axis (directed against the gravity) and

P and X are toroidal and poloidal potentials, respectively.
Hydrodynamic equations for the potentials X and g are
obtained by applying operators curl and curl to the
Navier-Stokes equation. If inertial effects are neglected
(in the limit of large Prandtl numbers), source terms ap-
pear only in the equation of the poloidal potential X, and
the toroidal potential g can be set to zero. The equation
of 7, with inertial terms omitted, takes the form

where B is the matrix of dimensionless exchange
coefficients at the containing horizontal plates (Biot num-
bers).

We are interested in the case of long-scale convective
patterns that emerge when Biot numbers are small. We
set therefore B~e B, and rescale the lateral coordinates
and time as V~e' V, a, ~ea, . Equations (2) and (4) are
solved by expanding the variables in small parameter e,

e=e,+~e,+, x=x,+~x, +
To allow for parametric deviations, we shall also use ex-
pansions of the vector of Rayleigh numbers and matrix of
diffusivities,

%=%0+a%,+, D=DO+eD)+

In the zeroth order,

a,'8, =0, V'a,'x, =A, e V'e„a,e,(+,')=0 . (8)

The zeroth-order state vector 80 satisfying (8) is any z-
independent vector 80(x, t). The X potential is computed
as

X =f ( )% 48, f (z)= —,
' (z4 ——,

' ~+
—,', ) .

In the first order, Eq. (4) reduces to

D,e a,'e, =a,e,+ [f,(z)R,—D,]*V'e,

+a,f,(x,*ve, ) ve, , (10)

where Ro is the outer product in the state space
Ro——AoG. It is required for solvability of this equa-
tion, subject to the boundary conditions Do+a, e,(+-,' )

=0, that the integral of the right-hand side of (10) across
the fluid layer vanish. Since the nonlinear term vanishes
upon integration, this gives

a,e,= A*V'e, ,

Here D is the matrix of diffusivities (not necessarily diag-
onal), and the asterisk denotes the scalar product in the
state space, so that it would not be confused with the sca-
lar product in the x plane, denoted by the dot; G is the
vector of gradients of state variables across the fluid layer
in the quiescent state (by scaling convention, the com-
ponents of Cx can be either +1 or 0, and are positive when
the value of the respective variable increases in the direc-
tion of gravity). The last term, containing the vector
product forming a pseudoscalar from a pair of two-
dimensional vectors, can be omitted at large Prandtl
numbers (see, however, Sec. VI).

The boundary conditions are

De a,e+—,'Bee=0 at z =+—,',

V X=V B,X=O at z=+—,
' .

The convective diffusion equation takes the form

(3) with

A=Do —( fo(z) )Ro, (12)

+vexvq. (4)

D*(a,'+ v')e —Gv'x=a, e+ve.a, vx —v'xa, e where (( ) ) = f ', z2(
. )dz, ( fo(z) ) =—„,.

Being linear, Eq. (11) can yield only trivial dynamics.
If all eigenvalues of the matrix A have negative real
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of Eq. (11) is

eO=)t)(X, t, r)U+p'(X, t, r)U*, (13)

where the superscript asterisks denote complex conju-
gates. The eigenvector U satisfies

A«U= —io)oU, (14)

and the complex amplitude ))) obeys the free Schrodinger
equation

parts, it describes diffusional relaxation to the quiescent
state eo ——0. If the real part of at least one eigenvalue of
this matrix is positive, catastrophic short-scale instability
sets in, causing the breakdown of the long-scale approxi-
mation. The only interesting situation, where the long-
scale expansion can be useful, is encountered in the vicin-

ity of a bifurcation manifold, where the matrix A has an
eigenvalue with the vanishing real part. In the following,
we shall concentrate on the case when the matrix A has a
pair of imaginary eigenvalues, that corresponds to transi-
tion to oscillatory convection. The steady-state solution

~,'e) =(fo~&fo&-I)(I-~,D }«U,Vzq,

+B,fo (Ao«U; )( Do '«UJ. )VP; V.PJ. . (18}

It is convenient to separate a constant part of the first-
order state vector 6", and z-dependent even and odd
parts that both vanish upon integration across the fluid

layer,

e e(c)+e(even)+ e(odd)
1 1 1 1

e'i'"'"' ——gi(z)(1 —I(,;Do ')«U;V )t);,

e", '=h, (z)(A «U;)(D '«U. )VP; VP

&,'g) =(fol(fo) —1), B,h) =f, .

(19)

(20)

(21)

(22)

The only condition needed to fix integration constants
in (22), while keeping g, even and h, odd, is (g, ) =0; the
conditions B,g i (+—,

'
) =B,h i ( 6—,

'
) =0 are satisfied au-

tomatica11y.
Next, the first-order flow potential is obtained by in-

tegrating the first-order hydrodynamic equation

iB,)I)=o)ov )t) . (15)
a,'v'x, =%,«v'e, +x,«v'e, —2(v')'a,'x, . (23)

The ainplitude P can be also modulated on an extended
time scale r. The general solution of Eq. (15} can be
presented as a Fourier decomposition

())= g P;(k;,r),
I

P, =P(k, , r)exp[i (k, .x)+k, o)ot)] .
(16)

The evolution equations for Fourier amplitudes )t)(k;) on
the slow time scale w have to be obtained in the next or-
der of the long-scale expansion. Solvability conditions in

higher orders will involve averaging over the intermedi-
ate time scale t, as well as integrating across the fluid lay-
er. Therefore only resonant terms from the Fourier
decomposition (16) can contribute to solvability condi-
tions. In particular, linear terms containing ))I)* will not
contribute to the evolution equation of P, and can be om-
itted from the outset. A nonlinear term containing a
product P))I);)))* can enter the evolution equation of P) if
it satisfies the resonance conditions gk; —gkt =k),
gk; —gkj =k(.

The solution of this is

y(even) +y(odd)
1 1 1

X~) "'"'=[f„(z)&o«(1—A Do )*U

—f)o(z)Ao«U ]V )))) +fo(z)%) «U

+fo(z)Ao «eI',
X", '= f)(z)(Ao«U;)(Ao«Do '«Ut )V((), V)))

B,f„=g,(z), d,f, =28,f (z), )3,f, =h, (z),

f ii =~.f) i =f io =~,f io =f i =~,f i
=o

at z=+-,' .

The equation of the second-order state vector is

D, «a,'e, =a,e,+a,e, +Gv'x, —D,*v'e,

(24)

(25)

(26)

(27)

III. EVOLUTION EQUATION

In this section, we shall derive the evolution equation
on the slow time scale using the general zero-order solu-
tion (13) and (16), with P; standing for either )))(k;) or
P*(k, ), and A., =+io)o denoting eigenvalues correspond-
ing to U,-=U* and U, =U, respectively. Summation
over repeated eigenfunction indices is presumed
throughout.

Before solving Eq. (10), we eliminate the time deriva-
tive with the help of Eq. (11), and replace the matrix Ro
using the identity

—D, ~ v'e, +a, vx, ve, +a,vx, .ve,
—v'x, a,e, . (28)

D «a,'e, =a,e,+a, e',"+[f,(z)R,—D,]*V'e',"
1 0

—D ev e +Gv g(,'"'"'

+a vx -ve'""—v'x ee' (29)

Using the representations (19) and (24) of the first-order
functions and omitting terms that vanish upon integrat-
ing across the fluid layer reduces (28) to

Ro«U, =(Do —A, , )«U;I( fo) .

This reduces Eq. (10) to

(17)
Integrating (29) across the fluid layer and using the
boundary condition
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DO+8, e,+—,'B+eo——0 at z =+—,
' (30) a, e", = A*V'e',"+F(e,), (31)

yields the solvability condition in the form
where the matrix A is the same as in (12), whereas the in-
homogeneous part is

F(e )=U, B,P, +BeU, Q, —(D, —(f &R, )eU, V P, +[(f„&R e(l —A, , D ') —(f, &R )]eU, (V ) P,

—(fo&(QOeU, )(&a+Uk)(DO 'eUJ)V [(Vp; VQJ}Vpk] . (32)

Since the homogeneous part of (31), coinciding with
(11), has a nontrivial steady-state solution, the solvability
conditions of Eq. (31) are

f f exp[ i [(kt—x)+kt coot)]I(U F)d xdt=0, (33)

where U is the eigenvector of the transposed matrix A
with the eigenvalue

igloo

—Usi.ng Eq. (16), we obtain the
evolution equation for the Fourier amplitude Pt of a
mode with the wave-number vector k& in the form

a,y, +~y, i k'y—, +vk4y,

Physically, one can expect that the linear terms of zero
and fourth order in k both act in a stabilizing way,
suppressing both long- and short-scale waveforms (the
formal condition insuring this action is that ~ and v both
have positive real parts). Unlike a. and v, the coefficient
at the quadratic term, p, depends on parametric devia-
tions D&, R&, which can be chosen in such a way that
Re(p) &0 to induce linear instability in an intermediate
range of k. The preferred absolute value of the wave-
number vector, corresponding to the extremum of the
dispersion relation of Eq. (34) is given by

—g o;~k((k( k~ )(k( kk )p;p/pk
——0, (34) ko ——Re(p)/2Re(v)=p/2v . (40)

where summation is carried over all modes satisfying the
resonance conditions

+ki+kj +kk = kl& +ki +kj +kk = kl (35)

~=U +BEAU, p=U e((fo&Ri —D, )eU,
v=U eRoe[(f» f&o&+i've(f» &Do ]eU

;, =
& fo' &(&,*U; )(&,*U„)(U *D '*U, ) .

(36)

(37}

(3g)

The averages can be easily computed after integrating
(22) and (27),

(39)

with the positive or negative sign, respectively, when P;
stands for P(k;) or P'(k;). Carets over the symbols of
Fourier amplitudes are omitted. The coefficients of Eq.
(34) are

The last expression uses the convenient shorthand nota-
tion p=IT, +i@, etc. Setting k =ko, we obtain the linear
growth coefficient in (34) with real and imaginary parts

&= —K+p /4v, A, = —K+pp/2V —Vp /4V (41)

oil o, (8), )=—g ——o, kt(k, k }(kt k„), (42)

where summation is carried out over all permutations as
stated. Denoting

Cubic interaction terms involving modes with the iden-
tical absolute value but different orientations of the
wave-number vectors, that satisfy the resonance condi-
tions (35), can be of two different kinds. Interaction
terms of the first kind, that are insensitive to phases of
respective amplitudes, are obtained by setting P;, PJ, and

Pk in (34) to Pt, PJ, and Pj', and summing over all possi-
ble permutations of these amplitudes. The interaction
coefficient depends on the angle 8 between the two
modes, cos8=(k~ kJ )/ko, and is defined as

IV. SINGLE-WAVELENGTH PATTERNS

a=(fo& i%0+Ui (U eD0 'eU),
P= +&f,'&(~,*U)'(U'*D *U*),

we obtain from (38)

(43)

In this section, we shall explore solutions of Eq. (34) in
the case when wave numbers of interacting waves have
the same absolute value k =

~

k
~

but different orienta-
tions. This situation arises quite naturally near a primary
symmetry-breaking transition, when waves with a certain
preferred wavelength are excited, but no preferred orien-
tation exists due to the rotational symmetry in the hor-
izontal plane.

o,(8)=ko[P+(P+2a}cos 8] . (44)

Another kind of interaction, that turns out to be phase
dependent, involves pairs of oppositely directed waves
(that can combine to form a standing wave). Denoting by

, the amplitude of the wave with the wave-number
vector —k. , we obtain the interaction term of the second
kind by setting P, , P, and Pk in (34) to P., P, and P* I,
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with all possible permutations. The respective interac-
tion coefficient is computed, analogous to (42), as

o~(8)=2kp(a+Pcos 8) . (45}

As we shall presently see, interaction of this kind favors
formation of standing waves with suitably adjusted
phases.

Collecting all interaction terms and noting that, for
combinatorial reasons, the self-interaction coeScient is
o p= —,'o, (0), we rewrite the amplitude equation (34) in the
form

+ 2 al(8~! }
I 0, I

'

—X a2(8ll )4,4,4' l ~ (46)

The first summation is carried over both positive and
negative indices +j.

If one momentarily abstracts from the last term in Eq.
(46), which is activated only when pairs of waves propa-
gating in opposite directions are present, this amplitude
equation would not significantly difrer from its counter-
part in the case of stationary convection. All terms, be-
sides the last one, are phase independent, and the trun-
cated equation can be converted into an equation for real
amplitudes pl

——1$! I
involving only real parts of interac-

tion coefBcients,
r

N! =~PI Pl aopl+—y lr l(8~I }p, (46a)

The angular dependence of the interaction coemcients
o'l(8) is very simple, with the extremum at 8=m /2. This
favors, in the case harp&o l(m/2), or, due to (44), a&0,
formation of a square pattern comprising a pair of per-
pendicular modes (the same is true in the case of long-
scale stationary convection ). At a &0, it is necessary to
have p& —a to insure a supercritical bifurcation; in this
case a single-mode (roll) pattern is favored.

A hexagonal pattern comprising three modes at mutual
angles n /3 or 2m'/3 is also possible, provided P & 2a. The
latter condition insures that oblique modes do not decay,
leaving behind a roll pattern that would consequently
change into a square pattern due to the excitation of a
cross wave. The direct transition from a hexagonal to a
square pattern requires a strong perturbation, since it
would involve excitation of a mode directed at the angle
n/6 to existing modes, that is suppressed due to strong
interaction at this angle. Equation (46a) has a gradient
structure, and the hexagonal pattern can be characterized
as metastable since it corresponds to a higher minimum
of the potential, compared to the square pattern. Forma-
tion of other patterns is ruled out due to the strong mutu-
al damping at oblique angles.

The new feature characteristic of oscillatory convec-
tion patterns is the competition between propagating and
standing waves. If the roll pattern is chosen (at a &0),
the wave must be propagating, since the interaction
coemcient at 61=m. is twice as large as the self-interaction
coeScient and a counter wave is strongly damped when-

and symmetrically for other P . Interaction of noncol-
linear waves described by the same system of amplitude
equations has been studied earlier in a more abstract set-
ting. Representing the amplitudes in the polar form

P!=p!exp(ig/) and separating the real and imaginary
parts reduces Eq. (47) to

p!——Pl[X—(a+p)p', 2(a+—p)p', p(p2+—p 2)]

—2 Re( ae '~
}p2p

4l =~—(a+8)p!—2(a+p}p' l
—p(P2+ p'-»

—2 lm(ae'~)p2p 2p, /p, .

(48)

(49)

Equations of other real amplitudes and phases are sym-
metric, with —p replacing lt in equations of p+z, /+2.
This system depends upon a single phase combination
P= $2+ g 2

—g, f,. The s—yrnmetry to translations of
other three phase variables corresponds to translational
symmetries in two spatial directions and in time. Intro-
ducing new variables

q = (P!+P l+P2—+P 2)— —

p =
2 (Pl+P —l

—P2 —P —2}

r (pl p —1 +p2 p —2)
2 2 2 2

s = ~(pl —P —l P2+P 2)— —

we arrive at the system of amplitude equations

q =2l(q —(3a+5p)q —(3a+p)p +(a+p)(r +s2)

—2aR cosset!,

p =2Xp 6(a+p)pq+2(a—+p)rs+2aR sing,

r =2Xr 2( a+ 2p)qr —2—aps,
s =2Xs —2(a+ 2P)qs —2apr,

/=2(3a+P)p

+2R '[a sinP[q (q p r s)+2prs]— — —

(50)

(51)

(52)

(53)

(54)

+a cosf[p (q p r s)+2qrs] }l, (55—}——

where R ={[(q+p) —(r+s) ][(q —p) —(r —s) ])'
It is clear that the phase variable can be relevant only
when counterpropagating waves are present. If there are

ever the bifurcation is supercritical. A more interesting
situation arises when two perpendicular modes are
present, due to the specific interaction of pairs of stand-
ing waves. For the remainder of this section, we shall
concentrate on this problem, assuming that the interac-
tion coefficients satisfy a&0, a+p&0 and restricting to
the favored square pattern.

Since the attention can be now restricted to four per-
pendicular modes P+„$~2, we can rewrite Eq. (46) set-
ting 8=m. /2 and rescaling the amplitudes by ko;

(t l =l(4l —4![«+P}I dl I
'+2«+»10 l I

'

+p( I kz I

'+
I 0 21')]—2a424 —24 —1,

(47)



38 SELECTION OF LONG-SCALE OSCILLATORY CONVECTIVE. . . 2569

only two waves propagating at the right angle (which cor-
responds in new variables to q =r, p =s), Eq. (55) be-
comes singular, and the variable P can be assigned arbi-
trary values. This implies that stability of a propagating
pattern to excitation of counterwaves should be checked
at a "most dangerous" value of P. It is more convenient
to use for this purpose Eqs. (48) and to linearize them in

the vicinity of a stationary solution p, =p2 ——A, /(a+2P),
p &

——p 2
——0. The stability conditions of this state are

a+P&0 (which coincides with the condition of super-
critical bifurcation) and

(a+P) &4
~

a
~

cos(arga —P) .

The most dangerous value of the phase variable is
f=arga; thus the latter condition reduces to

~
a+P

~
& 2

~

a
~

. The square propagating wave pattern
is destabilized due to the excitation of counterwaves
whenever phase-dependent interaction of the second kind
is sufficiently strong. The absolute value, rather than the
real part of the respective interaction coefficient, is im-

portant, since the argument of this coefficient affects only
phases of excited counterwaves.

Solutions of Eqs. (48) and (49) or (51)—(55) belonging to
the class of standing waves can be obtained by setting in
(51)—(55) r =s =0. The system of amplitude equations
restricted to standing waves is

q=2l(q —3(a+P)(q +p )

sing&0. This solution yields rotating phases g;, rather
than a stationary standing-wave pattern, so that behavior
becomes persistently time dependent. We shall return to
this question after computing interaction coefficients for
a particular convection problem in Sec. VII.

V. NON-BOUSSINESQ EFFECTS

It is known that non-Boussinesq effects, that destroy
the symmetry of the problem to reflection in the plane
z =0, strongly influence the selection of convective pat-
terns; in particular, they are responsible for transition
from roll to hexagonal patterns in the classical problem
of stationary thermal convection in a layer between per-
fectly conducting plates. The problem of long-scale con-
vection at low Biot numbers is quite sensitive to non-
Boussinesq effects. Indeed, 0 (1) terms lacking the
reflectional symmetry would contribute a quadratic term
to Eq. (11)and make further arguments pointless. A con-
sistent theory, leading to a nonsymmetric amplitude
equation replacing Eq. (34), can be, however, constructed
for the case when non-Boussinesq terms are restricted to
O(e). To be definite, we shall introduce a single non-
Boussinesq term reflecting dependence of viscosity on
state variables, and express the dimensionless viscosity as
(1+aM we). The additional term, being O(e), makes its
first appearance when the first-order flow potential is
computed, and a new term,

—2(p+a cosl(t}(q —p },
p =2Ap —6(a+P)pq —2a(q —p )sing,

P=2aq sing+ 2( 3a+P—2cz cosP)p .

(56)

(57)

(58)

—M*V a,'(e,Va2X, ),
should be added to the right-hand side (rhs) of Eq. (23).
The resulting contribution to the expression (25) for the
even part of the first-order flow potential is

Two easily computable stationary solutions of (56)—(58)
correspond to symmetric synphase and antiphase pat-
terns,

q =2X/5(a+P), p =0, /=0,
q =2k, /(a+5P), p =0,

(59)

(60)

5
~

a
~

+Re(a"P) & 0 . (61)

The point of marginal instability corresponds to bifurca-
tion of a stationary solution of Eqs. (56)—(58) with

Stability of these solutions to disintegrating into propaga-
ting waves can be checked with the help of Eqs. (53) and
(54). The stability condition for the synphase pattern is
3a+P &0, which never holds under assumed conditions
of supercritical bifurcation. For the antiphase pattern,
the stability condition is a&P. Recalling the stabil-
ity condition for a pair of propagating waves,

~
a+P

~
&2

~

a ~, and replacing
~

a
~

by a, we see that
the latter condition is violated at a &P. Thus the propa-
gating wave pattern and the antiphase standing wave are
mutually incompatible, while the synphase pattern is nev-
er realized.

The antiphase state can also be destabilized within the
class of standing-wave solutions, giving way to a time-
dependent standing-wave pattern. The stability condi-
tion, that can be obtained by linearizing Eqs. (57) and (58)
in the vicinity of the stationary solution (60), is

where

y J =(M+U, )(A+U )(U eG)

=(M4 U, )(U 4 R4 U ), (63)

and the quadratic terms under summation satisfy the res-
onance conditions

+k, +k =k(, +k, +k =ki (64)

Turning to single-wavelength patterns considered in
Sec. IV, we observe that quadratic interaction of a pair of
perpendicular waves leads to the excitation of a wave
with double frequency directed at the angle m. /4. This is
the only possibility compatible with the resonance condi-
tions (64). Four such oblique waves would appear as a re-
sult of interaction between four waves constituting the
square pattern. Viewing the shorter oblique waves as

—(M+U;)(ReU, )V '[V (P;VP, )] .

The operator V, standing for the resolvent of the two-
dimensional Laplace operator, cancels when this new
term is added to Eq. (29). As a result, we arrive at the
amended amplitude equation (34),

~ 0'i+ "0t pk 4, +vk P, + g y;, (k& kj)P;P~

—g (r;Jk(k, k) )(k( kk )p(/~yak ——0, (62)
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VI. INERTIAL EFFECTS

Inertial effects are, generally, expected to enhance com-
plexity of behavior due to the generation of vertical vorti-
city by nonlinear interactions. The hydrodynamic equa-
tions to be used, instead of Eq. (2), when the inverse
Prandtl number P '&0, are

( V2+ a2 )2V2X

=x*v'e+P-'[(V2+ a,')v'a, x+v a, (v'xva,'x)],
(66)

(v +a )v 1(=p '(a v y+vv xxva x) (67)

Other nonlinear terms, that would be relevant only in
higher orders, are omitted. The boundary conditions for
the toroidal potential f are, analogous to (3},

V /=0 atz=k —,
' . (68)

The additional terms do not have to be taken into ac-
count before the first-order How field is computed with
the help of Eq. (23), which has to be now replaced by

small-amplitude "slaved" modes, we can use Eq. (62)
(with cubic terms omitted) to compute $,2
= —(y/k)kopiiI)2, where

y=2(M+U)(U +Re U), A, =x —2iuko+4vko .

The amplitudes p, 2, iI), 2, and p, 2 are expressed in a
similar way.

Using the amplitudes of oblique waves in quadratic
terms of the amplitude equations of iI)+, , $~2, we observe
that the quadratic resonance conditions (64) can be
satisfied by setting, say, 1=1,i =12, j=2, and entering
the latter mode with the negative sign, i.e., taking the
complex conjugate of the second mode. This leads to the
amplitude equations of the same form as (45) and (46) but
with the interaction coefficient between perpendicular
waves, P, replaced by P—y, where

y=2A, 'k4ol MeU
l
2(UtoRoU)2 . (65)

Other interaction coefficients remain unchanged. The
stability conditions of alternative patterns discussed in
Sec. EV are, of course, modified when the above correc-
tion to the interaction coefficient is introduced, but, as
before, the choice is between either standing or propaga-
ting roll and square-wave patterns. Quadratic interaction
between waves of identical wavelength directed at an an-
gle other than right is incompatible with the resonance
conditions (64).

The nonlinear term in Eq. (69) contributes to the expres-
sion (25) for X", ', but odd terms do not enter Eq. (29)
and are therefore irrelevant for our purpose.

The toroidal potential, that can differ from zero only in
the presence of inertial effects, is computed using Eq. (70)
as

a,fi ——foa, fo, f, =0 at z=+—,
' . (73)

Using (70)—(73) in the equation of the second-order
state vector (29), supplemented by the term Veo&(vpi,
we arrive at the amplitude equation (34) containing addi-
tional terms of the type

oijklt&','/ I &;+k) l
](&

&&)re )(&k && ki )4;iI)J'iI)k

with

8,pi P'( f, ) (——Roe U; )(Roe U, }(U + Do ' + Uk ) .

(74)

(75)

Integrating Eq. (73) yields (f, )/(fo) = —", . As before,
the interacting modes should satisfy the resonance condi-
tions (35).

The correction to the coefficient v in (38) due to Eq.
(71) is purely imaginary, ——,'iso(f io)P and therefore
does not affect the preferred wavelength of bifurcating
waves. The additional interaction terms cancel when the
wave numbers in Eq. (74) have the same absolute value;
therefore, inertial effects do not affect pattern selection in
the vicinity of the primary bifurcation.

VII. THERMAL CONVECTION IN THE PRESENCE
OF THE SORET EFFECT

As a simple example, we consider thermal convection
in the presence of the Soret effect that is responsible for
coupling of thermal and diffusional cruxes. The heat and
mass cruxes are defined as

—j~=a V'T, —jc=~~V T+DV C, (76}

where z is the thermal diffisivity, D is the molecular
diffusivity, ~z is the Soret coefficient; the conjugate
Dufour effect is neglected. The Quid density is assumed
to vary linearly with both temperature T and concentra-
tion C,

f,=P 'f, (z}(%oeU;)(Ao+Ui)v (vv P;)&vP. ) .

(72)

Here V stands for the resolvent of the two-dimensional
Laplacian and the function f, (z) satisfies

a,'v'x, =e,*v'e, +x,*v'e, —2( v')'a,'x, P=Pol 1 '2r(7 —7'o)+i2c(C —Co)l . (77)

+P '[a,'v'a, x,+v.a-, (v'x, va,'x,)], (69)

a, V f,=P 'VV XiiXVa, Xii . (70)

—,'A,;P 'f,o(z)U;v P; . (71)

The additional term entering the expression (25) for
XI'"'"' is computed using (9), (11),and (13) as

It is advantageous to use a "rotated" state vector, replac-
ing concentration C by the linear combination
i)=C —Co+(as/D)(T —To}, which is constant in the
quiescent state. We shall scale the vertical coordinate z
by the layer thickness h, horizontal coordinates x by
I =h/e', time by the characteristic horizontal conduc-
tion time i /i~, and X potential by ha. The small parame-
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The condition of oscillatory instability is

A =Rp ——720(1+L), (79)

corresponding to the onset of oscillatory convection with
the frequency

cop L~ I+/——(1+L ')
~

' ' (80)

The normalized eigenvectors U, Ut, of A, A with the ei-
genvalue —i mp are

L + scop l /cop

QL ' — 2 1/L /+i /cop&(

It is convenient to parametrize the locus of Hopf bifurca-
tion by the frequency cop and to eliminate P by inverting
Eq. (80),

ter e is identified with the square root of the thermal Biot
number. The temperature deviation from the linear
profile in the quiescent state is scaled by the temperature
decrement across the layer hT, and the concentration de-
viation, or the combination ri, by ab T/a, where
a=ar(1+S); S=~sac/Dar is the separation ratio. In
this formulation, the problem contains dimensionless pa-
rameters A=agh hT/a. v (Rayleigh number), L =D/Ic
(inverse Lewis number), and g=S/L(1+S). Inertial
effects are neglected. The matrices used in the general
formulation of the problem in Sec. II are identified as

1 0 1

PL L ' 0
(78)

1 0
B= 0 0

yielding waves with the wave number
—1/4

1 11+—(17L + 5cop)
2

462 L
(85)

The interaction coefficients entering Eq. (47) are

a =—1+—[L '+ cop( I +L ')+ cop]

[L2+copz(L+ cop)(1+L +L )cop], (86)
2L cop

P= [L +cop(1+L )+cop] .
COp

(87)

The interaction coefficient of two perpendicular waves P
turns out to be purely imaginary. As follows from the
discussion in Sec. IV, this implies that propagating pat-
terns are unstable. The antiphase standing pattern is
stable both to disintegration into propagating waves and
to perturbations within the class of standing waves. The
latter is seen immediately, since the imaginary parts of
both a and P are positively definite, so that the condition
(61) always holds. Thus the antiphase pattern of standing
waves is selected.

Non-Boussinesq effects are qualitatively significant in
this case, inasmuch as they contribute a nonvanishing
real part to the interaction coefficient of perpendicular
waves. If we assume that viscosity depends on tempera-
ture orily, but not on concentration, i.e., set M =

~

m „0~,
the interaction coefficient (65) is computed as

y =720m i(L +cop)[(1+L) +cop}]

X [[(1+4L+2L ) —cop(3+2L)]

g= —(L'+cop)/L(L +1) . (82) +(i /cop)[ —cop+cop(3+SL +L ) —L(1+L)]I .

a =—1+ [L (L +1)+cop]
2 cop

i L —cop
2

a)p L +1 (83}

1

924
1+—(17L + Scop)

( —17L + 12cop+ Scop/L)
COp

The value of f is negative, in accordance with a well-
known fact that the Soret effect must be anomalous (with
the light component concentrating in the cold region) to
allow for oscillatory convection. ' Computation of the
parameters of the amplitude equation yields

(88)

The real part of y is positive at cop & ( 1+4L
+2L )/(3+2L). Under these conditions, perpendicular
waves actually enhance one another, and bifurcation be-
comes subcritical when the value of m& is sufficiently
high. The stationary amplitude, Eq. (60), of the antiphase
pattern, is modified to q =2X/(a +SP—2y), and the
transition to a subcritical bifurcation manifests itself as a
high-amplitude runaway at large y. On the contrary, at
higher frequencies, ipcreasing temperature dependence of
viscosity leads to mutual damping of perpendicular
waves, and a propagating roll pattern becomes favorable
at large values of m, .

Another possibility is the destabilization of the station-
ary antiphase pattern due to the violation of the condi-
tion (61), which is now modified to

5
~

a
~

+Re(a*@)+2Re(a"y)&0 . (89)

1+—(17L +Scop)
2

1/2

(84)

The real parts of a and v are always positive, insuring sta-
bilization on both large and small scales. The symmetry-
breaking bifurcation occurs at

This condition is violated, at a sufficiently high value of
mi, if the last term is negative. Inspecting Eq. (88) we
see that this is indeed the case at sufficiently large fre-
quencies when both the real and imaginary parts of y are
negative. Instability is also possible at low frequencies,
when the imaginary part of y is negative and large. Un-
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der these conditions, non-Boussinesq effects induce time-
dependent behavior by destabilizing the antiphase pattern
of standing waves that is prevalent in their absence.

VIII. HIGHER DEGENERACIES

Higher degeneracies can be arranged by fixing values
of additional parameters of the matrix A, i.e., restricting
to a higher co-dimension manifold in the parametric
space of the original problem. With the dimension of
state space n =2 (double-diffusive convection), the only
possible degeneracy is the double zero eigenvalue. If
n =3, one can obtain another co-dimension two degen-
eracy, when the matrix A has a zero and a pair of imagi-
nary eigenvalues. In addition, a co-dimension three
degeneracy —triple zero eigenvalue —becomes possible.
The list can be continued at higher n Wh. en the degen-
eracy is algebraic, but not geometric, an amplitude P; can
be assigned to each distinct eigenvector U;, and the solu-
tion expressed as

(90)

with the amplitudes P; either constant on the 0(l/e)
time scale (for zero eigenvalues), or obeying on this scale
the Schrodinger equation with a suitable frequency (for
imaginary eigenvalues). The resonance conditions analo-
gous to (35) govern the structure of amplitude equations.

When the degeneracy is geometric as well as algebraic,
the expansion procedure has to be modified by using mul-
tiple scaling of different amplitudes. Higher degenera-
cies are generally expected to yield a rich, and as yet to-
tally unexplored variety of dynamic patterns.
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