
PHYSICAL REVIEW A VOLUME 38, NUMBER 5 SEPTEMBER 1, 1988

Bifurcation analysis of interacting stationary modes in thermohaline convection
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The Boussinesq equations for thermohaline convection in a finite two-dimensional box and with

stress-free boundaries are considered. There are critical values of the aspect ratio at which the con-

duction state becomes unstable to two different roll patterns simultaneously. Near such a critical
value a center manifold reduction allows us to reduce the dynamical behavior of the Boussinesq

equations to a standard normal form equation that describes the interaction of two stationary

modes. We present explicit analytical expressions for the linear and nonlinear coefficients on which

the normal form depends. A numerical investigation of these coefficients leads to a division of the

space of parameters (Prandtl number, solute Rayleigh number, Lewis number) into various regions

that give rise to qualitatively different bifurcation behavior. Besides those encountered in ordinary

convection, a variety of further phenomena is found, in particular in a vicinity of double tricritical

points.

I. INTRODUCTION

Double-diffusive convection problems are character-
ized by two different processes. Besides the heat diffusion
which eventually drives the convection, a second gradient
induces another diffusion process which may substantial-
ly alter the qualitative behavior of the convection states.
In thermohaline convection a concentration gradient is
established by salt reservoirs at the top and the bottom of
the box containing the fluid. Depending on whether the
salt migrates to the cold or warm boundary, this second
gradient acts stabilizing or destabilizing on the conduc-
tion state. The salt diffusion can have a strong influence
on the onset of convective motion. Whereas in the ab-
sence of salt the first instability, or primary bifurcation,
always leads to steady convection states which bifurcate
supercritical from the conduction state as the Rayleigh
number increases, the thermohaline problem may exhibit
overturning convection and subcritical or supercritical
steady convection states, depending on the imposed con-
centration gradient (solute Rayleigh number) and on the
ratio of the diffusivities (Lewis number).

A common tool for analyzing secondary or higher-
order bifurcations in multiparameter problems is to in-

vestigate the solution in a neighborhood of a point in pa-
rameter space, where two or more primary bifurcations
coalesce. If the primary bifurcations lead to steady
states, then such a multiple-bifurcation point gives rise to
the interaction of stationary modes. For two-dimensional
Boussinesq convection in a finite box the interaction of
two steady roll patterns with consecutive wave numbers
has been analyzed by Knobloch and Guckenheimer. '

These authors found two different kinds of behavior. For
small Prandtl numbers a continuous transition between
the two pure roll patterns takes place across a stable
mixed-mode branch, i.e., a superposition of the roll pat-
terns. Contrary to that, for large Prandtl numbers, the
mixed-mode branch is unstable, and hysteretic behavior
occurs involving both roll patterns. A similar kind of

II. DERIVATION OF THE NORMAL FORM

Thermohaline Boussinesq convection in a two-
dimensional box is described by the equations

Vg+J(g, V g) —=V Q+RO„RsI „, —

ao 2

at
+J($,8)=g„+V 8, (lb)

(lc}

analysis was recently pursued for the first two modes in
the case of an infinitely extended fluid layer with periodic
boundary conditions imposed. ' Here, besides mixed-
mode branches, also traveling wave solutions were ob-
tained.

The purpose of this paper is to investigate interactions
of stationary modes for the problem of thermohaline con-
vection. Apart from the scenarios occurring in the case
of ordinary convection, we find a variety of further phe-
nomena, for example, subcritical pure-mode branches
connected by a mixed-mode branch, and unbounded-
mixed mode branches. We classify the different scenarios
according to the theory of imperfect bifurcations and
present a detailed discussion of the regions in the space of
the parameters (Prandtl number, solute Rayleigh number,
and Lewis number) where these scenarios occur. In Sec.
II we derive the normal form for mode interactions and
present expressions for the relevant linear and cubic
coefficients on which the normal form depends. In Sec.
III we describe results of a numerical investigation of
these coefficients which leads to a division of the parame-
ter space into regions giving rise to qualitatively different
bifurcation behavior. In Sec. IV our results are com-
pared with those of Ref. 1 and an outlook is given on fur-
ther open questions and problems. Mathematical details
are summarized in two Appendixes.
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$=$„=8=I=0 for z =0, 1,
$=$„„=8„=I„=0 for x =O, l,

(ld)

(le)

U= Uk(x, z}

(k +I )n sin(knx/I)
klncos(km. x/I) sin(nz),

(kin /r) cos(knx /I)

when R =R,"(I), i.e., the conduction state encounters a
stationary bifurcation. Here, k =1,2, . . . , and

(2)

R,"(I):Rs /r+ R—o ( k, I),
where

where J(f,g)=f„g, f,g—„. Here, g is the nondimen-
sionalized stream function, 0 and I describe deviations
of the temperature and concentration fields from the
basic conduction state, and R, o, Rz, and ~ are, respec-
tively, the (thermal) Rayleigh number, the Prandtl num-

ber, the solute Rayleigh number, and the Lewis number.
The system of partial differential equations (la) —(lc) is
valid inside the box [(x,z):0&x &I, 0&z & lj, with the
boundary conditions (ld) and (le) corresponding to tem-
perature and concentration fixed at the top and bottom,
no sideways heat and concentration fluxes, and no
tangential viscous stresses. The concentration gradient of
the conduction state is proportional to the solute Ray-
leigh number and is induced by reservoirs at the top and
the bottom. This is in contrast to convection in binary
fluids, where the concentration gradient originates from
the Soret effect which has been neglected in (lc).

For all values of R, o, Rs, and r Eqs. (1) admit the
basic conduction solution /=8=I =0. Setting
U =($,8, I ), the linearized equations (1) possess a non-
trivial stationary solution of the form

Rs&Rs;„=——rRo(k, l} . (6)

X= —( AX +BXY aX)+-
Y= —(CX Y+DY f3Y)+—

(7a)

(7b)

where the dots represent terms of higher order. The
linear coefficients a,P are unfolding parameters depend-
ing on R —Rk and I —lk. To linear order they are given
by

pk R —Rk

where

pk+ & q~+] l —lk

When (5) and (6) are satisfied and lk, & I & I„, then the
conduction state is stable for 0 & R & R,"(I}, but loses sta-
bility to exponentially growing solutions of the form
e"Uk(x, z) [Re(s) &0] for R &R,"(I).

When the width is adjusted such that l =lk we find

R,"(lk ) =R,"+'(lk ) =Rk—. This means that two modes
with horizontal wave numbers k and k + 1 become unsta-
ble simultaneously giving rise to a bifurcation of codi-
mension 2. In this paper we are interested in analyzing
the behavior of (la) —(lc) for parameters values (R, I)
close to (Rk, lk). In the ordinary Benard problem this
simultaneous instability occurs for (R, I)=(Rok, lk )

[Ro& =—Ro(k, Iz )] and has been analyzed in Ref. 1.
In the vicinity of (Rk, lk ) the dynamics of (la) —(lc) will

contract to a two-dimensional center manifold. The
center manifold can be parametrized by coordinates of
the neutrally stable eigenspace of the linearized equa-
tions, i.e., by the amplitudes of the unstable modes Uk
and Uk+, which are denoted by X and Y, respectively.
The center manifold reduction then yields a system of or-
dinary differential equations for (X, Y) which, owing to
the Z (2) )& Z (2) symmetry of (la) —(lc), has the form

R (kl) ~(k+I )

k'i4 (3b) p, =aj 'I„'/(~'~, ), q =(20~'IIk )(2j'—I„') (9a)

is the critical Rayleigh number for the ordinary Benard
problem without an imposed concentration gradient
(Rs ——0). For fixed k we require that the first instability
occurs at R =R,"(I) when R is increased from below.
This leads to the following two conditions. (i) The aspect
ratio I is restricted to the range lk &

&I &lk, with the
critical aspect ratios l. (j = 1,2, . . . ) given by

l, =[J(l+J')]' '[J' '+(J+1)' ']' '. (4)

This condition guarantees that R,"(I) is the minimum
value in the set [R~(l),j =1,2, . . . ]. (ii) We have to ex-
clude overturning convection to occur before the station-
ary instability. This restricts Rz to

r (1+0.)
Rs &Rs:Ro if r& 1

cr(1 —r
whereas for w& 1 no oscillatory instability exists if R & 0.
We assume that the fluid is always heated at the bottom,
i.e., that the Rayleigh number R is positive. Consequent-
ly R,"(I)&0 which leads to a further restriction on Rs,
viz. ,

with

a, =j +Ik (j =k, k+1) . (9b)

(10b}

The mixed coefficient 8 has the form

8 = 8 ) /o +80[1+(Rs/Rok )(r—1)/r ]

+a[8~~+(Rs/Rok)(8~2/r +8~3/r +8~4lr)

+B,~(Rs!Rok ) (1—2r —r )/r ] .

The calculation of the nonlinear coefficients A, B,C,D is
very tedious and has been performed by means of a 14-
mode representation for the solutions of (1). The main
steps of the calculation are summarized in Appendix A,
here we present the results. The pure-mode coefficients
A, D are given by

A =(ok m. Iglk)[1+(Rs/Rok)(r —1)lr ], (10a)

D =[cr(k +1) ~ Iglk][1+(Rs/Roy )(r —1)/r ] .
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An analogous formula holds for C, with B „Bp B,J.

(j= 1,2,3,4,5) replaced by C, , Co, C, . These expres-
sions depend only on k and are presented in Appendix B.

III. ANALYSIS OF THE NORMAL FORM

In Sec. II we have reduced the Boussinesq equations
(la) —(lc) to the normal form (7) which is valid in a neigh-
borhood of (R, l)=(Rk, lk). This normal form has been
discussed by several authors in different contexts (see,
e.g., Refs. 4 and 7) and is well understood. A study of its
dynamics involves locating fixed points, analyzing their
stability, and using the divergence test to locate possible
limit cycles. The behavior of (7) depends crucially on the
signs of A, D and of the determinant dp—:AD —BC so
that a number of cases has to be distinguished. There are
three types of steady states: the trivial solution T
(X = Y =0), single-mode solutions Sx and S„with
(X&0,Y =0) and (X =0, Y&0), respectively, and
mixed-mode solution Szz, where both X and F are
nonzero. If AD &0 oscillations do not occur, if AD &0,
a limit cycle is created through a Hopf bifurcation from
the mixed-mode branch. Frotn (10) we infer that A and
D cannot have opposite signs, i.e., the Hopf bifurcations
do not occur. This means that the expansion to cubic or-
der in (7} is sufficient. (The stability of bifurcating limit
cycles is determined by fifth-order terms; however, the
type of the steady states is completely fixed by the cubic
terms. )

In Fig. 1 we have sketched the stability diagrams in the
(a,P) plane for the six qualitatively distinct cases of (7)
that occur if AD &0. The dynamical behavior is com-
pletely determined by the steady states, thus we have
confined ourselves to the existence and the type of the
steady states in dependence of the "unfolding parame-
ters" a and P. For each case of Fig. 1 the (a,P) plane is

divided into six regions by the axes (primary bifurcations)
and the lines L+,Lr (secondary bifurcations). In each re-
gion we find a certain configuration of steady states with
specific stabilities. The existence of a nontrivial steady
state (Sx, Sr, or Sxr ) is indicated by a curved line pass-
ing through the regions in which it exists. Stabilities are
characterized by the stability assignments, i.e., by the
signs of the real parts of the eigenvalues corresponding to
the linearized matrix. Solutions with assignment ( ——)

are stable, all other solutions are unstable. For Sx and

Sz the stability assignments change when the lines Lz
and Lz are crossed, respectively. The trivial steady state
exists for all values of (a,P) with assignments (+ + ) in

Ia&OP&OI, ( ——) in Ia&O, P&OJ, and (+ —) in

taP &OI.
Convection experiments are usually performed in a

particular box where the Rayleigh number is varied by
successively increasing the temperature at the bottom.
Therefore we are interested in bifurcation diagrams
which exhibit for fixed l the behavior of the steady states
of (7} in dependence of R —Rk. Generic bifurcation dia-
grams associated with (7) are discussed in detail in Ref. 4,
here we shortly review these results in terms of the physi-
cal parameters. When 1 is fixed near l„and R —Rk is
varied from below, the (a,P) plane is traversed by a (ap-
proximately straight) path passing through the various
regions of a stability diagram of Fig. 1. The path corre-
sponding to l =Ik passes through the origin and will be
called the basic path. For 1&1k the basic path is distort-
ed to a generic path giving rise to a generic bifurcation
diagram. The qualitative type of these diagrams depends
crucially on the position of the basic path relative to the
secondary bifurcation lines L~,L~. Since pk, pk+, &0
each basic path passes from the region Ia&O, P&OI
(R &Rk) to Ia&O, P&0) (R &Rk). For the stability di-
agrams I, II, IV, and V the basic path can be located
below, above, or inside the region in which the Sz& solu-
tion exists, i.e., there are three cases to be distinguished.
Which of these cases occurs depends on the determinants

d) ——Apk+, —Cpk, d~ ——Bpk+, —Dpj, . (12)

~SX
I: A&0, dG&0

(B,C &0)

~xy

Lx

Y

+~x
II: A&0, dG&0

B&0

+X

LY

LxI:A&0, dG&0
B&0

~XY

If d& ——0 and d2 ——0 the basic path is tangent to LX and
Lz, respectively. The different cases for a basic path cor-
respond to different sign combinations of d ] d2 ~ Numeri-
cal investigations of these determinants show that for the
stability diagrams I, II, and V two different cases Ia, IIa,
Va and Ib, IIb, Vb occur, whereas for III and IV the
determinants d&, d2 do not change sign. Specifically we
find

N:A&0, do&0
(B,C& 0)

V: A&0, Cj0&0
B&0

VI: A&0, dG&0
B&0

d) &0, d2 &0 for Ia, IIa, IV, Va,

&0 d2 &0 for IIb

d, &0, d2&0 for Ib, III, Vb .

(13)

FIG. 1. Stability diagrams for normal form (7) with AD & 0.
Here, do ——AD —BC and L~:P=(C/A )a ( A a & 0),
Lr a=(B/D)13 (DP&0). .To case I there correspond actually
four different subcases depending on the signs of B,C. Chang-
ing B & 0 to B & 0 moves Lz across the a axis and analogously
for C. A similar situation holds for case IV.

The stability diagram VI does not appear in the ther-
mohaline problem. Because qk & 0 & qk+ &, a generic path
with 1 & lk intersects first the P axis and then the a axis,
and conversely for l & lk, i.e., to each case there corre-
spond two different generic bifurcation diagrams. The
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TC: Rs„;(r)=Roe /(I r), — (14)

which only for ~ & 1 is inside the physically allowed re-
gion, defined by [cf. (5) and (6)]

basic and the distorted paths for Ia and Ib are shown in
Fig. 2. In Fig. 3 we have sketched the generic bifurcation
diagrams corresponding to the cases summarized in (13).
Observe that the Szz branches are unbounded for Ib, IIb,
Vb and bounded for the other cases.

The task is now to locate the different cases of (13) in
the space of the physical parameters. Since the Rayleigh
number and the length are fixed by R =Rk and I =1k, we
have to investigate the (o,Rs, r) space. This space must
be divided into different regions such that each region
corresponds to one of the cases of (13), distinguished by
the signs of A, D,S or C do d ] d2. We represent the
division of the (o,Rs, r) space in the (R„r) plane for
fixed Prandtl number 0.. The coef6cients A, D vanish
along the line of "tricritical points"

4(c)]. A similar event takes place for [d, =0[ so that the
lines [do ——0], [d t =0I, and TC have two common inter-
sections giving rise to the appearance of region III and
lb. These threefold intersections occur because TC is ac-
tually a line of double tricritical points where both
coefficients A and D vanish. (If A =D =do =0 it follows
that dt =0 or d2 ——0). For 0&o &o2 the lower [do=01
branch terminates on the boundary line M:Rs ——Rs;„(r)
of the physically allowed region. This termination point
moves towards infinity when cr approaches o.

2 and disap-
pears for o & cr2. A similar event happens for [d2 =0].
When 0 z & 0 & o s the lower [do =0I branch is still locat-
ed below the r axis [Fig. 4(c)], it coincides with the r axis
for 0 =0 i and moves into the region [Rs & 0) for rr & o 3

[Fig. 4(d)].
To give an impression of the scales hidden in Fig. 4 we

note that the lower of the two triple intersections occur-
ring in Figs. 4(b) and 4(c) is typically in a range between
Rz =1500 and Rz =10, whereas the upper one lies be-
tween R+=10 and Rz=2X10. On the other hand, on

Rs, mt'(r) &Rs &Rs,c(r) . (15)

The line TC constitutes one of the boundaries in the
(Rs, r) plane separating the various regions. The other
boundaries are given by

(x'+v')"'

Sy Sx

do =0 d& =0 d~ =0 (16)
T

Ia, lla: l& l„ Ia: l&l[,

We have analyzed these equations numerically for
1&k(10. For all of these values we found the same
qualitative behavior. There are three critical values
(7 ] (0 2 Q 0 3 tabulated in Table I, such that the division
of the (Rs, r) plane undergoes a qualitative change when
o. crosses one of these values. The results of our numeri-
cal computations are sketched schematically in Figs.
4(a) —4(d). We find two branches of do ——0, distinguished
by large (upper branch) and small (lower branch) values
of Rs (solid line in Fig. 4). The equation dt ——0 possesses
a branch with R, & 0 and for d2 ——0 we find a branch with

Rs &0 (dashed-dotted lines). For 0&o &o, the upper
[do ——0[ branch lies to the left of TC [Fig. 4(a)]. When a
increases this branch becomes tangent to TC for o. =o

&

and develops two intersections for 0 & o t [Figs. 4(b) and

Sx(S„)

S„(sx)

lb: l& lt, (l& l[, )

x(S„)

Sv(Sx)

ttb: t& t„(t&t„)

— Sy

Sx

Ea: l&li,

x(S„)

S„(S„)

I: t&tt, (t&tx)

Sx Sq

IV, Va: l& ll, IV: l& tg

Lx

Sx— S„(S„

S„(S„)
++

Ia Va. l& l„ Vb l l„(l l)

FIG. 2. Paths in the (a,P) plane traced out by varying
R —Rk from below for fixed 1. b: basic path for I =1k. Per-
turbed paths for I &1k and I &Ik are marked by + and —.
Cases Ia and Ib are distinguished by d l &0, d2 &0 and d» 0,
d2 & 0, respectively.

FIG. 3. Bifurcation diagrams for fixed 1&1& corresponding to
paths through the stability diagrams I—V of Fig. 1. T: trivial
solution X = Y=0 (conduction state). S&,S&.. branches of
single-mode solutions. S».. branch of mixed-mode solutions
bifurcating from a single-mode branch.
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TABLE I. Critical Prandtl numbers 0.
&,

o.2, o.3.

a&

CTp

0'3

0.117
0.377
0.402

k=2

0.092
0.239
0.251

k=3
0.067
0.188
0.200

k=4

0.052
0.161
0.172

k=5

0.043
0.144
0.154

k=6
0.037
0.131
0.141

k=7

0.033
0.121
0.130

k=8
0.029
0.113
0.122

k=9
0.026
0.107
0.155

k =10

0.023
0.101
0.110

the lower Ido ——0I branch Rs varies for v=1 between
R&= —100 and R+=20. It is, therefore, impossible to
present a quantitatively correct version of Fig. 4 without
using different scales for different regions. Thus we have
con6ned ourselves to a qualitative picture.

TC TC

Ia

(o) 0&~r&oi

C Rg C TC

Ib'.

la

lla
Ilb

(c) cr2&o.«o.
3 (d) a. &cr&

IIb

M

FIG. 4. Schematic representation of the (Rz, ~) plane for
different generic values of cr. TC denotes the line of tricritical
points [ A =D =0, Eq (14)], all o.ther sohd lines are branches of
(10=0[. The dashed lines C: Rz Ra, and M: Rz ——Re-—
constitute the boundaries of the physically allowed region. C
and TC approach t ~=1] asymptotically for Rz ~~. The solid
lines separate the regions corresponding to the different stability
diagrams of Fig. 1 4', Roman numerals). Regions I, II, and IV are
further divided into subregions Ia, Ib, etc. by the dashed-dotted
lines giving rise to the diferent bifurcation diagrams of Fig. 3.
On the dashed-dotted lines above and below the ~ axis we have
d& ——0 and d2=0, respectively. No attempts are made to
preserve scales.

IV. DISCUSSION

We have studied thermohaline Boussinesq convection
in a finite two-dimensional box near a double critical
point, where two consecutive modes become unstable
simultaneously. This extends the work of Guckenheimer
and Knobloch, ' who analyzed this multiple instability for
ordinary convection problems. Our problem reduces to
that considered in Ref. 1 if r is large and ~Rs ~

is
sufficiently small. In that case we recover essentially the
results of Ref. 1. For small o the stability diagram I
occurs, whereas for larger Prandtl number the deter-
minant do has changed its sign, leading to the stability di-
agram II. A glance at Fig. 4 shows that this behavior
holds actually for all ~& 0, provided Rz, i.e., the imposed
concentration gradient, is sufficiently small. It is obvious
that our cr3 should coincide with the critical Prandtl
number 0., of Ref. 1. A comparison of the numerical re-
sults shows that this is indeed the case for k =3 and
k =4, however, there is a disagreement for k =1 and
k =2. The values o, (k =1)=0.30 and o., (k =2)=0.22
of Ref. 1 are smaller than our results for cr3 (cf. Table I).
The reason for this disagreement is not yet clear. Knob-
loch and Guckenheimer have also found that the
coefficient 8 is negative for very small cr and changes sign
at some cr ~ a, . This result agrees with our calculations,
but we have not included a discussion of the zeros of 8,C
in Fig. 4 because we concentrated on the bifurcation dia-
grams which are determined by di, d2. We note that in
the limiting case of ordinary convection the S&z branches
of the bifurcation diagrams are always bounded, giving
rise to a continuous transition from a stable (k +1)mode
to a stable k mode across a stable mixed-mode branch
(case Ia of Fig. 3), or to hysteretic behavior of the pure
modes in virtue of an unstable Sz„branch (case IIa).
This also agrees with the results of Ref. 1.

When R& is negative the diffusions of salt and heat are
both destabilizing effects for the conduction state. This
means that we should expect similar behavior as an ordi-
nary convection, but with the stationary instability occur-
ring at a smaller Rayleigh number. For small

~
Rs

~

this
is indeed the case, however, if we come close to the line
M:Rs ——Rs;„(r), we find bifurcation diagrams of the
type IIb, i.e., unbounded mixed-mode branches and glo-
bally stable coexisting single-mode solutions. At this
point we mention that our analysis is strictly local and
that more global information can be inferred by analyz-
ing higher degeneracies. Presumably an analysis near the
lo~er broken dotted line of Fig. 4 reveals that the Szz
branch in the diagrain IIb for I & lk (Fig. 3) returns back
to the S~ branch, thereby producing again an unstable
Sz, whereas for l ~1k the Szz branch connects Sx and
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S~ as in the case IIa. Similar scenarios are expected in

the regions Ib, III, and Vb of Fig. 4.
More complex phenomena appear if the salt diffusion is

stabilizing and heat diffuses faster than salt, i.e., if Rz ~ 0
and ~& 1. To the left of the line C in Fig. 4 overturning
convection advances the stationary instabihties which
was not the subject of our investigations. Between C and
TC both primary bifurcations are subcritical, leading to
unstable single-inode and mixed-mode solutions (dia-
grams IV, Va, and Vb of Fig. 3). To the right of the tri-
critical line TC we find for very small cr oddly the dia-
grams Ia, but for o &o, also the diagrams Ib and III
occur, both having unbounded Sx~ branches. It is im-

portant to note that both cubic coefficients A and D van-
ish simultaneously along TC so that this line is actually a
line of a double tricritical point. This fact excludes
simultaneous super- and subcritical bifurcations of the
two single-mode branches and, therefore, tertiary Hopf
bifurcations from Szz. The impossibility of Hopfbifur-
cations was already demonstrated in Ref. g and has re-
cently @iso been mentioned in Ref. 9. We regard the
simultaneous vanishing of both cubic coefticients A and
D as ungeneric and consider it as an artifact of the Bous-
sinesq approximation. Generically the line TC should be
split into two lines and between these lines Hopf bifurca-
tions from Szz can be expected. We hope to be able to
achieve this splitting by including non-Boussinesq terms,
but this deserves further study.

Of special interest in Figs. 4(b) —4(d) are the two triple
intersections where the three cubic coefficients A, D, and
C vanish simultaneously. Near these points the system
(7) has to be expanded to at least fifth order. Quintic
pure-mode coefficients (corresponding to X, I' ) have al-
ready been computed, ' but mixed-mode coefficients of
this order (e.g. , for X F ) did not yet appear in the litera-
ture. When o approaches 0 &, the two triple intersections
merge which constitute the highest degeneracy following
from our study. A bifurcation analysis near this point
should provide a lot of information about the dynamical
behavior of (1) in the regions Ia, Ib, IV, Va, and Vb of
Fig. 4. Specifically we expect that such an analysis will
show that the single-mode branches of the diagrams IV,
Va, and Vb of Fig. 3 bend back to the forward direction
by means of a saddle-node bifurcation as in the single tri-
critical case' and that also oscillatory behavior can be
present.
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APPENDIX A

The first step in the derivation of (7) is to expand the
fields Q, O, 1 into a finite number of modes which are
relevant for the linear and cubic terms. Setting /=ax /1k
and f '=0, f =I, the modes that contribute to this or-
der are given by
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g(t x,z)= [ Ak(t}sin(kg)+ Ak+, (t)sin[(k+1)g]sin(vrz)+ [ A &(t)sin(g)+ A2k+, (t)sin[(2k +1)(])sin(2mz),
(A 1)fJ(t, x,z) = [BIIJ'(t)cos(kg)+Bk'+, (t)cos[(k + 1 g]sin(mz)+ [ C'1'(t}+8IJ'(t)cos(g)+82J&+, (t)cos[(2k +1)g]sin(2nz),

where j =1,2. Substituting the expressions (Al) into Eqs. (1), representing products of trigonometric functions by
sums, and neglecting modes which are not contained in (Al), we obtain the following system of 14 ordinary differential
equations for the modal amplitudes Ak, Ak+„Bkj', . . . (dots denote time derivatives):

(I/m) (n +I )A„+tr(n +I ) A„+on(l/. m) (R,B„' ' RB—„'")+A,A p„(2k+1)(1—m +31 )I/4

—Azk+& A p„[(2k+ I) —m +31 ]I/4=0, (A2a)

(I/n) (r +41 )A„+cr(r +41 ) A„+o(l/n) (R,B„' ' RB„'—")+Al, Ak+~p, E„(2k+1)1/4=0,

(I/m)B '„.~'+r, (n +I )8„'1' (I/m —)n A„n—l A„C'J' (2—k +1)(A BI I'+p„A, B'~')I/4

(A2b)

—p„(A2k+, B~'+ A~Bzk+, )I/4=0, (A2c)

(I/m ) 8 P'+r~(r +41 )8,'J' (I/n —)r A„+e„(Ak+&Bkj'+p„AkBk~+& )I/4=0,

(I/m) C'J'+4r I C'J'+ AkBkj'kl/2+ Ak+)81'~+')(k+1)I/2=0,

where

r& ——1~ r2 r~ p&
————k~ p2k+& ———1 ~ ek=Ezk~)=1~ Ek+(=E)=2k+1 ~

Pl Pk Pk+1 P2k+1

(A2d)

(A2e)

(A3)

X=aX+N~,

Y=PY+N„,

Z =y, Z. +N (1&j&12), (A4)

Here, (n, m)=(k, k +1),(k +l, k) in (A2a) and (A2c),
r = 1,2k + 1 in (A2b) and (A2d), and j= 1,2 in
(A2c) —(A2e). By construction, when I =II„R =Rk, the
linearized problem of (A2) has two zero eigenvalues, the
remainder having negative real parts. It follows that in a
vicinity of the bifurcation point there exist a two-
dimensional center manifold to which the dynamics of
(A2) will contract. Due to the Z(2)XZ(2) symmetry,
the vector field on the center manifold has the form of (7)
with X, Y being coordinates in the null space of the linear-
ization of (A2) for R =Rk, I =1k. To compute the
coefficients A, B,C,D and a,P one first performs a linear
transformation such that the linear part of (A2} becomes
diagonal and contains two zeros if R =Rk and I =lk.
Schematically the resulting system can be written in the
form

where a, P, and yj depend on (R, I) and the N's denote
the nonlinear terms. The coefficients a,P vanish for
R =Rk, I =1k, whereas Re(yj ) &0, i.e., a and P are the
unfolding parameters occurring in (7). It remains to com-
pute the nonlinear coefficients A, B,C,D. This is accom-
plished by setting R =Rk, I =1k (a=P=O) in (A4), sub-
stituting the ansatz Z =P X +Q XY+S Y into the Z&

equations with X, Y replaced by N„,N, and then truncat-
ing the resulting equations at quadratic order. When
comparing the quadratic terms in these equations one ob-
tains a linear algebraic system of equations for the
coefficients P,Q,S, which can be solved in virtue of
Re(yj) &0. In this way the center manifold has been
determined up to second order. If now the Z (X, Y) are
inserted into the (X, Y) equations of (A4) with terms of
higher order than three neglected, ones finds the cubic
coefficients A, B,C,D. The details of the computation
have been pursued with the aid of the computer algebra
system SMP. Sample calculations for the case of ordi-
nary convection (here a nine-mode system is sufficient)
can be found in Ref. 1.

APPENDIX B

Setting lk =1 and defining

a =aj, ——k +I, b =a&+, ——(k+1) +I, c =1+412, d2=(2k+1)2+412, p=a6 —k~c, q =(2k+1) a —k d

the analytic expressions for B „C &, etc. are given by

k 2k 18,= [—c (2k+1) (2k+k 31 )/p+d (2k+3—k +31 )/q),
16a

k 2k 1C, = [c (2k+1) ( —1+k —31 )/p —d (1+4k+3k +31 )/q],
16a
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2k+1
Bo —— I[a (k+1)(2k+3k +31 ) b—k( —1+3k +3l )

16b

+d k(k+1)]/q —(2k+1)[a (k+1)(2k+k —31 )

+b~k (1+4k +k —31 )+c k (k +1)(2k + 1)]/p ],
a2

Co —— [ —[a (k+1)(2+6k+3k +3l ) —b k(1+4k+3k +31 )
16b

+d k(k+1)]/q —(2k+1)[a (k+1)(2+2k —k2+31 )

bk—( —1+k —31 ) —c k(k+1)(2k+1)]/pI,

11 1 2 ]5y ]2 2 ]y ]3 —2B)~, B)4——W) + 8'2+2B)5

B» ——Ia [a (k+1)—b k][b (2k+1)+d ( @+1)](2@+1)m 2) /(16 bd kq)

—[a [a (k+1)+b k][c (k+1)+b ](2k+1) n I l(16b c kp),

C) (
——WI —W3+ C]5y C]P —W3 W] y C/3 ——2C)5, C(4 ——W) + W3+2C)q,

C&5
———[b [a (k+1)+b k]( —c k+a )(2k+1) n I/[16c (k+1)p]

—[b~[a2(k+1)—b~k][a~(2k+1)+d k)(2k+1)tr ] l[16d (k+1)q],
where

W, =[a (k+1) tr ]/(8b l ),
Wz ——I[a (@+1)—b k]n I /(16b d k) —I[a (@ +1)+b k](2k +1) n I /(16b c k),
W3= —Ib [a (k+1)—b k]tr ] l[16a d (k+1)]—[b [a (k+1)+b k](2k+1) m I l[16a c (k+1)] .

Numerical values of these coefficients and of lj, and Rok are summarized in Table II for 1 (k & 10.
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