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An exact Volkov state solution of the minimally coupled Dirac equation is used to calculate the
transition rate dR of an electron scattering via a stationary ion in the presence of a very intense
laser field. A consistent picture of the scattering is presented in which the electrons' initial and final
states are quasifree states. Accordingly, a modified transition rate dR and a modified Maxwell-
Boltzmann distribution are developed. They are used to calculate the heating rate Wof the isotro-
pic part of a quasifree neutral plasma in the presence of very intense laser light. In order to simplify
the expression for the heating rate W, an important transformation, which changes an infinite sum
over Bessel functions into a finite integral, is introduced. It is then shown that the leading term of
the heating rate W is similar to the expression of Osborn (with corrections) for intensity I & 10'
W/cm' and k&T& 1 keV. A new correction factor is defined to show the effect of a very intense
laser field when the intensity I ) 10' W/cm'. For k&T ) 1 keV, a spin-dependent term of order
k& T/mc' is also discovered. This represents a new term not previously known. We show that the
effect of this term on the heating rate is substantial and it would be possible to measure its effect
with present-day laser systems.

I. INTRODUCTION

In the 1960s, the possibility of high-intensity lasers led
first to speculation and then to realization' of laser-
induced thermonuclear reactions within a plasma. When
the laser intensity I is increased beyond 10' W/cm, a
host of nonlinear processes comes into play. So far as
the optimization of the heating rate is concerned, the
most relevant process is the multiphoton absorption by
the electrons. ' It is characterized by the parameter
X =Eq/Ezh, where Eq is the average electron energy in
the radiation field and E h

——Acu is the energy of one pho-
ton. When X ) 1, multiphoton absorption can take place.

In a recent paper Schlesinger and Wright' have re-
viewed different methods to calculate the heating rate 8'.
They start from a Volkov-like solution to the minimally
coupled Klein-Gordon equation. Using the Born approx-
imation, the transition rate dR in momentum space is ob-
tained. Taking nonrelativistic limits, the transition rate
dR then reduces to a form easily obtained by using the
solution of the minimally coupled Schrodinger equa-
tion. ' '" Assuming the electrons in the plasma form a
Maxwellian gas, the heating rate of the plasma W is then
calculated. Their calculation shows that the quantum-
mechanical corrections are small for intensity I &10'
W/cm . To bring out the effect of multiphoton absorp-
tion on the heating rate 8', the final result is presented as
a correction factor F defined as the ratio of 8' and the
first term of 8' which is the one-photon absorption rate.

Although other researchers have studied this problem
using different approaches, ' ' ' the correction factor F is
plotted as a function of the parameter z =2EqlksT,
where k~T is the mean thermal energy of the electron.
Results presented are meager, mostly because F turns out

to be a double infinite sum and it is diScult to compute
large number of terms. Schlesinger and Wright use
analytical methods to compute F term by term, where the
sum over l, the number of photons absorbed, is converted
into an integral. Again the plot is only for z ( 10.

Brysk ' showed that if only the leading term in the
series expansion of the modified Bessel function is
retained in the double infinite sum, then F reduces to the
generalized hypergeometric series 2F2. But the argument
of 2F2 was obtained as z/4, which is wrong and hence
Brysk's result could not be relied on. ' One advantage of
his result is the closed form of F which he obtains.

The main purpose of our paper is twofold. First, we
want to investigate the effect of the spin of the electron
on the heating rate 8'by using the Volkov solution of the
Dirac equation, which in second-order form differs
from the Klein-Gordon equation only by a spin term.
Basically, the Volkov solution has two terms, of which
one is directly proportional to the amplitude of the laser
field and hence important for high field cases. Second, we
intend to develop a consistent theory of the transition
rate when the intensity I of the laser beam is in the range
of 10' to 10' W/cm (only infrared lasers are considered
here).

The motivation behind our work has been the lack of
data for a large range of values of z and also for high in-
tensities of the laser beam, i.e., in the range of 10' to 10'
W/cm . Moreover, no computation has been done for a
hot plasma (1 keV & ks T & 100 keV) in high laser field.

In Sec. II the transition rate is derived using the Vol-
kov states for the incoming and outgoing states. Because
we are considering very high laser intensity and soft pho-
tons (where wavelength A. = 1 pm), we treat the coherent
laser field classically. The justification is that one can
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neglect radiative corrections. ' ' ' The question of
asymptotic decoupling of the electron from the laser
field' is avoided, the reason being that we assume the
electron is inside the laser field in both its initial and final
states. The Coulomb (shielded) interaction is treated as a
perturbation in the Born approximation. To be con-
sistent, a modified transition rate dR * is introduced to in-
corporate the time-averaged effect of the laser field. We
show that, under nonrelativistic approximation, all the
terms of dR ' are of the same order of magnitude and
hence all terms should be considered for further calcula-
tions.

In Sec. III we develop a modified Maxwellian distribu-
tion for the quasifree electrons whose Volkov states are
labeled by the time-aueraged quasi-4-momentum p'. The
heating rate 8' for the isotropic part of the plasma is ob-
tained by the standard method. ' An important transfor-
mation developed in the Appendix is utilized to put the
heating rate 8'in a form which allows us to drop terms
by direct comparison when the intensity I & 10's W/cmz.
It should be pointed out that although nonrelativistic ap-
proximation is used, our treatment tacitly retains relativ-
istic effects of the laser field.

In Sec. IV the final expression for 8'is obtained as the
sum of two major terms. The first term 8'& is a double
sum which, under low-intensity conditions, reduces to an
expression similar to that obtained by Osborn. ' Follow-
ing Brysk we reduce the high-intensity expression to a
single integral form which can be easily evaluated by a
computer. Results are presented for values of z from 0 to
350. We also present a new correction factor F' for in-
tensity range 10' &I &10' W/cm and 0&z &330. The
first term is dominant for ks T & 100 eV and the above re-
sults have been plotted for this range of temperature.
The other term of the heating rate represents a new term
previously unknown and becomes important in the tem-
perature range 100 eV&k&T g200 keV. Investigation
shows that the term arises solely due to the spin of the
electron. At the end of Sec. IV we present our results
showing the effect of the spin on the heating rate.

Section V ends our presentation with some general
conclusions and also mentions some calculations which
could be attempted in the near future. Throughout the
paper we consider wavelengths in the range of 0.1 to 10
pm because the most important and promising laser sys-
tems, e.g. , CO& gas lasers, are in this range.

II. TRANSITION RATE AND NONRELATIVISTIC
APPROXIMATION

When a laser beam is incident on a plasma, initially it
is mostly the electrons which absorb the laser energy by

A P —n
I
x

I bP
4m ixi

where

(2.1)

bP=(1,0,0, 0) . (2.2)

The laser beam is represented as a monochromatic field

A "=(0, A) =e"Ao cos(k x),
where

k"=(ko, k)=
~

k
~
(no, n)

(2.3)

(2.4)

and the gauge is k a=0. The Volkov state solution for
an electron in the radiation field A" is given by

4; =Qm/E; 1+ 8' 3 u, e ' ', (2.5)2n.p;

where u, is a spinor satisfying the normalization condi-
tion

and

u; ;u=~E;~/m (2.6)

S;=(2n p;) ' f [2e(p, A) —(eA} ]dy . (2.7)

The subscript i indicates the incident electron and the
caret notation implies a dot product between the 4-vector
and the y matrices. ' Hence e.g., 8'=n. y. The expres-
sion (2.5) is an exact solution to the minimally coupled
Dirac equation.

The transition matrix element for a quasifree electron
scattering off a Coulomb potential is given by (Ref. 31,
Chap. 7)

Sf; —— iefdx—%f Ac+;, (2.&)

where f indicates final state.
Doing a sum over the final spin states and an average

over the initial spin states for
~ Sf; ~, we can reduce it to

a trace given by

inverse bremsstrahlung and hence their temperature T,
becomes much higher than the ion's temperature T, .
The electrons are assumed to be scattered by a Coulomb
potential. Classically, the total Coulomb cross section for
an electron-ion encounter is infinite and to avoid this,
different cutoff schemes have been proposed. In our
analysis, we use Lorentz-Heaviside units ' and the metric
g""=(1,—1, —1, —1) together with fi= c = l.

A. Transition rate

The Coulomb (shielded} vector potential is (for electron
e= —/e [)

p;+m
2m

1+ A'8' A c 1+ — 8'A'
2n p;

' 2n.pf
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pf+m
X

2m
+ A & Ac 1+

2n pf 2n.p;
(2.9)

where

E =(pf —p, }.(x —x')+(Sf —S, ) —(Sf—S,') (2.10)

and the prime indicates x in the argument. After performing the S integrals of (2.10) as given by (2.9), the double ex-
ponentials of e' can be changed into single exponentials by means of the expansion

exp[Z0(t t —')]= g t~J~(2Z0), (2.11)

where J is the Bessel function.
Performing the integrals and the trace of (2.10) using the well-known trace theorems, ' we get

( 8~2e 2)2
~ Sf, ~

= g J„(eiM1}J„(ep2)J,(ej2, )J„(e)u2)
Sf,S ~ f r~, r2, r3yr4 cc

X[ 1 3 11+ 3( 1 + 1 )( 13+ 124)

+«1(~3 '+ ~3 ')(P3, 1+P24, 1}

+e2+0(2+0+++2++—2)p +e2+0(2+0+++2++—2)p

+ (~1 +~1 )(~3 +~3 3,3+ 3,24+ 24, 3+ 24, 24

+e ( 6+3 '+ b 3
' )(2b, 1+5+ +6 )(P3 q +P24 q )

+e'(&+, '+&-, ')(2&'3+~"+~ ')(P +P
+e'(2b, '+6+'+b, '}(25'+5+'+b, ')P ] (2.12)

where

and

iM1: A0[(e pf )/n pf —(e p, )ln p, ]

p2 ——[ A 0/(8k0)](1/n pf —1/n p; ) =iM0/(2k0)

5(Ef E;+e jJ,0n0+—(11 3+2r24+s)k0}

~ pf —p;+e p0n+(r13+2r24+ )ks~ +0

(2.13)

(2.14)

Moreover,

P; j ——A(Bjp j, Pl k
——(A;+Aj)BkPj k, Pi jk

——A;(B&+Bk)Pi'jk )

ij, kl ( Ai+ Aj }( k +BI ) ij, kl

where

A1 — Z/(4m), A2 ————A0A1/(4n p;)= A3/2, A4 ——A0A1/(2n pf),
A5= —A~A4/Ai B&=Ai~ B2= —A4/2, B3=A4, 84= A2& B5 A5

and

P',
1 2E;Ef—p; pf+m——, P124 ——(p, n)(pf e) (p, e)(pf n. )+—2Ef(.p; e),

P'1 3 E;(pf e)+(p;——e)Ef, .P1 & E, (pf n)+Ef(p, .n——}—p, pf+m

P2424=2(p; n)(pf n) —2Ef(p, n) 2E;(pf n)+2p—, pf+4(p, e)(pf . e) 2m-
P243 E;(pf.n) Ef(p; n——)+p; pf+2—(pf e)(p;.e) —m, P245 2(pf n)(p;——e), .

P3 3 =2(p; e)(pf e)+.p, pf m, P3 5
—(p; e)(pf n)+(p; .n}(pf.e) .

The rest is obtained by the following correspondence:

(2.15)

(2.16)

(2.17}
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I'„=p, , (] f), (2.18)

e.g. ,

p5, 24 p24, s('~f ) = (p

The transition rate is given by

dR =—
—, y iS, i2

1
. 2. dP

(2~)3
'

where T is a large time. By transformations of the suins in (2.12}over r„r2, r3, and r4 and using

5'(Ef E, +—e'1 ono+11 ko) =(T/2~)5(Ef E;+—e'Pono+11ko

we get the transition rate as

+" 5(Ef E;+e—hcpono+1]Ro]) d pf +~
dR =(2e ) g 2 2 2 2 g J 1 (el42)J ] (ep2)J(1„12,14),„(

~ pf —p; + e lion +1]k
~

+0 ) E Ef ]

(2.19)

(2.20)

(2.21)

where

J(1] 12 14 } [e J]2J]4p],] +e (J]2 +J]2 }J]4(p],3 +p],24 }+e J]2 (J]4 +J]4 )(p3, ] +p24, ] )

+e J]2(2J]4+J]4 +J]4 )(p],5+ps, ] }+e (J]2 +J]2 }(J]4 +J]4

2424+ 324+ 243+ 33

+e (J+,2' +J,2' )(2J,4 +J+,4 +J,4 )(Ps,24+ p5, 3 }

+e (2J]2+J]2 +J]2 }(J]4+J]4 )(p24, 5+p3, 5 }+e (2 ]2+J]2 +J]2

X(2J1.+J]4'+J]4')Ps, s] (2.22)

In (2.22) the J factors are defined as follows:

J]2 =J],+2],+,(el4]»

J 14 Jl +2 I + ( e]]41 }
(2.23)

Hence the transition rate with absorption of l photons
is given by dR ' (1 )0) and is the same as the term on the
right-hand side of (2.21) for which 1, = —l. We now dis-
cuss the concept of quasifree states for the electrons.

B. Quasifree states

The unsolved problem of decoupling the electron in the
Volkov state from the radiation field has been considered
elsewhere. ' ' ' The justification of applying Volkov
states in our analysis is that it can be assumed that the
electron does not leave the laser beam at all. As a first
approximation, this should be valid if (a) the pulse of the
laser beam is long enough and (b} the width of the laser
beam covers the whole scattering region. In reality, be-
fore the electron gets inside the pulse, it is acted on by a
nonlinear temporal change of the beam intensity.

It was pointed out by Fried et al. ' that the Volkov
solution cannot be normalized and hence Eq. (4) of Ref. 2
and Eq. (40.10) of Ref. 20 appear to be in error. In our
analysis, we introduce the time-averaged method. Hence,
for the a-matrices velocity operators [Ref. 31, Eqs. (1.22)
and (3.29)], we use

(2.24)

where the subscript t means averaging over one time
period of the plane wave and 4 is the Volkov solution
(2.5). One can easily show that

e A
(]p a%~ ),=(1/E) p'+ k' =(p')'/E .

4k p
(2.25)

(p
+ )P pP+ kP-

4k p

Also,

(p') =m + —,'(ego) =(m')

(2.27)

(2.28)

where we have defined an effective mass m * given by

m*=m [1+—,'(ego/m) ]'i

We can define the Kibble parameter as

e„=[E /(mc )]'i =ego/(2m),

(2.29)

(2.30)

We have defined the quasi-3-moinentum p" in (2.25) and
the spinor used here is normalized as in (2.6). Doing
the averaging over the unit operator, we get

2/2 p

(I),=(]p 1% ),=1+ =(p') /p, (2.26)

where a quasi-energy (p') has been defined. Combining
(2.25) and (2.26) we get the quasi-4-momentum p' given
by
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which is relevant whenever the quiver energy of the elec-
tron becomes comparable or greater than the rest mass
energy of the electron. Hence we see from (2.27) and

(2.29) that the radiation field could give rise to relativistic
effects to a nonrelativistic electron.

If we consider the electrons to constitute a quasifree
gas, where the momentum can be expressed by (2.27),
then the final states in d pf of (2.19) should be changed to
d pf* so that the quasifree-to-quasifree transition can be
written as (for I photon absorption)

5(Ef E;"——Ilia) d pf' +"
(dR')'=(2e ), „2 z 2 E E g J

&
(e p2)J &

(e Ii2, )J( —I, li, l4),
(

~
pj' —p,

*—Iirik
~

+Q ) E;Ef (

(2.31)

where J(1,= —I, lz, 14) is defined in (2.22).

C. Nonrelativistic approximation

For nonrelativistic electron velocities the p coefficients of (2.13) become

eAO e (p,
' —pf)

ep1—
N mc

e p2 (eAO/m) (gA'k) 'n (pf —p,*)

Taking nonrelativistic approximations for the J coefficient of (2.22) and also using the relation

J„+,(x)+J„,(x)= (2n /x) J„(x)

(2.32)

(2.33)

for the Bessel functions, we get

eZJ(1„12,14)=
eAO 2(Ii+212)

2m J12J14+ J i2J, 4 [ —2e (p,'+ pf ) ]
2 ep1

'2
eAO 4(li +212)(li +214)

J12J14 l +
(ep&)'

n (p,
' —pf)

2mc

ep1

4 eAO 2(l, +2li )
+ J12 J14+J+14 J

ep1 2 ep1

'2 '3
eA0 0 2 2 0 +1 —1+ (I, +21~)J,2 (I, +214) J,4+ J+,4 —J,4

2 ep1

—e (pi'+pf) +
m

4
eA0 2(Ii+212)

J12+J12' —J12'
ep1

2(1, +21~)
J14+J14 —J14

ep1 2m
(2.34)

where J;2 and J', ~ are defined by (2.23) but with p, and p2
now given by approximations (2.32). Using (2.32) one can
readily check that each term of J(1&,lz, 14), as given in
(2.34), are of the same order in (eAO) and hence further
analysis should consider all terms of (2.34) simultaneous-
ly.

A. Modified Maxwellian distribution

If the electrons in the plasma are in states specified by
the quasi-4-momentum (p*)" as defined in (2.27) and
form a gas, then the Maxwellian distribution function is
given by

III. HEATING RATE OF A QUASIFREE PLASMA f(E*)=C' exp[ E'/(k~ T)], — (3.1)

In this section we introduce modifications in the
Juttner distribution for a relativistic electron gas due to
the presence of the laser radiation field.

where C' is the normalization constant obtained from
the requirement that
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Hence,

C' = 4m(m ') (k((T)Kq
B

(3.2)

(3.3)

becomes non-Maxwellian even for moderate intensi-
ties. ' Jones and I.ee have also shown that if we deal
only with the isotropic part of the distribution then the
self-similar solution is a Maxwellian. In our case we only
deal with the isotropic part of the electron distribution so
that the classical heating rate expression can be used.
The anisotropic part will be dealt with in a later paper.

where K2 is the modified Bessel function of the second
order (Ref. 24).

The modified Juttner distribution is obtained from (3.1)

B. Heating rate of a nonrelativistic plasma
in the high-intensity range

as

f(p') =C' exp

' 1/2—m'c3
~

p' (2
1+

(m'c)
(3.4)

The heating rate 8' of the isotropic electrons in the
plasma is given by'

W =N, N, g (I%a) )f d'p
l=1

and the nonrelativistic approximation of (3.4) gives us the
modijied Max(aellian distribution

[f ( p' )]N„=(2~m 'kt( T) ~ exp[( —p' ) /(2m 'kt( T)] .

(3.5)

X f (dRNR)

X I [f(pi }]NR [f pf )]NR]

(3.6)

It reduces to the usual Maxwellian distribution for low
intensity of the laser field, i.e., when e(( of (2.30) is « l.
When ez & 1, the intensity is in the range of 10' to 10'
W/cm . We call this the high-intensity range (HIR).

It has been shown earlier that the electron distribution

where N, (, ( is the density of the electrons (ions) in the
plasma and (dR N„)' is given by (2.31) but with
J( —l, l2, 14) defined by (2.34) and the (M coefficients by
(2.32). Performing some of the integrations by the stan-
dard models" ' and noting that in HIR
1 «[2m'/(Ik)]', we get WH, R as (letting Q~O}

HIR
4m * Net e2Z

2m (2nm 'kz T}' 4mm

+" . Itic
X g(loco) sinh

l=1 B

2

X f d(t(f +'dx f +"dQ exp
' —y'Q

p ( p Q3 Q2

X 4am'(S', }.2—
'2

eAo 4am'Ihcox, S, eAo

2 12+ 2 23
I~

eio+2m[(S'q) +2S(S3]+
'4

eAo

2
(S3) (3.7)

where x =cosg, Q=(p,. —pf), 8 is the angle between e and Q, 5& ——m (lk) /(2k((T), y =(Sm k&T) ', and the S;"s
are defined by

S, = g J( (A)J(+2( (B),
12

———oo

S~ = g J, ( A)[J, +2, +,(B)+J(+2(,(B)),
l~ ——oc

(3.8)

S', = g J, (A)[2J(+,( (B)+J(+2( +2(B)+J(+2(, 3(B)],
I2 ———oo

where
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A = —ag (1—x )' cosP,

8 =pgx,
a —(88k) '(eAolm), P=eAo(Akmc )

Using the transformation developed in the Appendix, we change (3.8) to

S, =Si, S2 ——(Si+i+Si i), S3 ——(2S(+Si+2+S( 2),

where

( 1}i' »/2
S = d 8[cos(ao sin28 —P 8—Po sin 8)+ ( —1 }i'cos( ao sin28 —P 8+Po sin8 }]

0

and

ao=ag(1 —x )' cos((), Po ——Pgx .

(3.9)

(3.10)

(3.11)

(3.12}

It is now possible to ignore the ao factor compared to po because in the HIR a & p for the intensity I & 10' W/cm and
also a «p for I « 10' W/cm . Under such approximations

S = f d8[cos(Posin8+P8)+( —I icos(Posin8 —P8)] .( —1}e ~n
0

(3.13)

Also, as (lfik) is very small, we can ignore the second term of (3.7). Moreover, because of the factor (eAo) /m, we can
ignore the last term of (3.7). One can then show that

, +" . loco
~HIR II o X (lfico) sinh

1=0 2k TB

P (g» / » )(k —i)/2I( (2(g»» )i/2)
„~, (2k+1)!

X f d8f d8'[Il, l+( 2 /2)( II +l, l +1 +41!,I +211,l+2 +II—l, l —1+2II+1,l —i+2II, I —2))
0 0

where
(3.14)

and

8m * e~Z

(2n m 'kii T}' 4~

eR I
e

I
Ao/(2mc ),

'2

(3.15)

(3.16}

I'' =cos(l'8+l"8')[sin8+sin8'} "+(—1)'(sin8 —sin8'} "]
+cos(1'8—l "8')[(sin8 —sin8') "+(—1)' (sin8+sin8') "] . (3.17)

To check the validity of the many approximations we
have introduced in our analysis, we derive the heating
rate F for the low-intensity region and compare with ex-
pressions for 8'obtained by other authors. ' ' ' This is
done in Sec. IV.

IV. NUMERICAL RESULTS

We can do the 8 integrations and then comparison
shows that the second term in the square bracket of (3.14)
contributes through its l = 1 term significantly. Retain-
ing only this term for it, we can reduce 8'H,„to the form

%CO 2 k8 T
WHiR ——Wi + Wo (fico) sinh p2k' T

(4.1)

where

locoII'i =8irWo g (lfico) sinh
l=1 2k~ T

( — )" (2m lfico)

k! (2k + 1)

(2k —1)!
X

(k —1 }!(k—l)!(k +I)!

IAce

2k T
(4.2)

We define a new correction factor F(z') as WHiR,
given by (4.1), divided by the first term of W„given by
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(4.2). Following the treatment given by Brysk, ' one

can easily show that

F'(z'}=F(z')+3k~T{2m'c in[2ksT/(Aa))]I

(4.3)

In (4.3) the second term is a completely new term and
F

c «

3 e —3/2 e eF(z') =—,'(z') dz'+z' exp( —z'/2)

X [10(z'/2) —I,(z'/2)], (4.4)

where Io and I& are the modified Bessel functions. We
consider three cases.

Case 1: cz ~& 1, kz T & 1 keV. Under such approxima-
tions m ' =m and z'=z and the second term of (4.3) be-
comes negligible. Hence F'(z' }=F'(z)is given by

F(z)= ', z I d—z&z exp( —z/2)

2x10 3

10 3

X [10(z/2) —I, (z/2)], (4.5)

which is similar to the correction factor obtained by
Brysk ' and hence our approximations introduced in our
analysis are correct. But our z is four times larger than
Brysk's x because Brysk's result is in error. ' Figures 1

and 2 are plots of F(z) versus z where z is ranging from 0
to 320 obtained by a computer (IBM 3033). The comput-
er handled the singularities successfully for z ~ 330, and
the result is presented in Table I.

In Fig. 1 we compare our results with that of Schles-
inger and Wright. ' One must note that our z is the same

3x10-4

100
I

200 300

FIG. 2. Plot of correction factor F for z between 50 and 350.

1.0

k T & 1keV
B

TABI.E I. Correction factor I' for different values of z. Dash
denotes where the computer failed to handle the singularities.
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0
l

4

FIG. 1. Plot of correction factor F for z between 0 and 20.
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as their vl(2T) and hence their curve is for the range
0 &z &4. Our curve is close to their estimate, the nomi-
nal diff'erence between the two curves being around 0.05.

Case 2: k&T&1 keV, 0. 1&cz &1. The latter condi-
tion implies that the intensity I lies in the range
10' —10' W/cm . In that case, we can ignore the second
term of (4.3) so that F'(z')-F(z')=F'(z). We have
defined a new correction factor F'(z) given by [see (4.4)]

Hxlo 3-

k T & 1keV

—m z
2m

Fg

m'z m'z
2m ' 2m

(4.6)

10 3

Figure 3 shows a plot of F' versus z for difFerent values
of the parameter s„[see (3.16)]. The argument z ranges
from 0 to 20 and we note that for c„&0.1 the curve for
F' is practically the same as F in Fig. 1. This is also true
for Fig. 4 compared to Fig. 2, where the former is a plot
of F'(z) for z lying in the range 50—300. We note that for
a fixed value of z, F" decreases as the intensity I is in-
creased.

Case 3: c.„«1, Ace = 1 eV, k~ T & 100 eV, i.e., we con-
sider a hot but nonrelativistic plasma. Then F'(z '

) of
(4.3) reduces to

3x10-4

50 I100 I

150
I
200

I

250
1

300

FIG. 4. Plot of F for z between 50 and 350 and cz between
0.1 and 0.8.
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FIG. 3. Plot of correction factor F for z between 0 and 25
and c& between 0.1 and 0.8.

FIG. 5. Plot of correction factor F' for 50&z &350 and 100
eV & k& T & 10 keV.
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3k' T
F'(z) =F(z)+

2mc ln[2ks TI(fico)]
(4.7)

Wright's treatment of the problem using the Volkov solu-
tion of minimally coupled Klein-Gordon equation, is ob-
tained as [see (2.19) of Ref. 12)

where F(z) is given by (4.5).
Figure 5 shows a plot of F' versus z for kz T values

ranging from 100 eV to 10 keV. Although higher values
of ksT (up to -200 keV) can be plotted, Fig. 5 is
suScient to bring out the fact that F' increases substan-
tially with increase of the mean thermal energy k&T of
the plasma. This makes it easier to observe the efFect of
the second term in (4.7) experimentally. Moreover, it
does not need very high powered lasers to observe the
effect.

(e.p;In.p; e.—pfln pf)2, (5.3)

which is negligible under nonrelativistic approximation.
This shows conclusively that the second term of (4.7) is
specifically due to the interaction of the electron's spin
with the electromagnetic field of the laser beam. Because
of this term, we discover a new contribution to the heat-
ing rate of a nonrelativistic plasma which is comparably
high. Hence, a future project to analyze the physics of
the mechanism involved would be important.
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[Jl +2I + I ( e tu I ) +Jl +21 —I ( en I ) )
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APPENDIX
X [Jl +2l ~ l(eel }+JI +2l l(ep»l—

as given by [see (2.17) and (2.18)]

1+—,'(n p; In pf npf—/n p;)

+(Ef E;)(1/n p—; —1/n pf)

+(p; pf+2E p;e pf . m')I—[(n p;)(n pf )] .

(5.1)

(5.2)

The sum in (3.8) is of the type

JI2( A )J212 —l(8}
l2

——oo

Two cases arise.
Case 1: I is even, i.e.,

(A 1)

Our second term in (4.7) arises from the term unity in
(5.2}. The coefficient of (5.1}, given in Schlesinger and

I =21' ( I' = 1,2, . . . , oo ) .

Hence

(A2)

m/2 + oo + oo

M2I. ( A, B)=(2/m )f d8 cos( A sin28) g cos(2128)J2II I.I(8)+sin( A sin28) g sin(2128)J2II I I(B)
0 = —oo

2 12 ———oo

(A3)

where 9.1.21 of Ref. 22 has been used. Changing 12 sums by 12 —I'= n and noting

+ oo COS cos
'[2(1'+n)8]J2„(8)= ' '(21'8) cos(8 sin8), (A4)

we get [using (A2)]

MI( A, B)=(I/m) f d8I cos( A sin28 —18—8 sin8+cos( A sin28 —18+8 sin8) I .
0

Case 2: I is odd, i.e.,

I =(21'—1) (I'= 1,2, . . . , ~ ) .

Again using the transformation I2 —I'= n, we get

n/2 + oo

M2I, , (A, B)=(2/n)f d8 cos(A sin.28) g cos[2(1'+n)8]J2„+,(8)
0

ff = —oo

(A5)

(A6)

+sin( A sin28} g sin[2(1'+ n }8]J2„+,(8) (A7)
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Noting

COS
'[2(l'+n)8]J2„+, (B)= '

—sin
[(21'—l )8]sin(B sin8) (A8)

and using (A6), we obtain

Mt(A, B)=(I/m) f d8[cos(A sin28 —18 Bs—in8) —cos(A sin28 —18+Bsin8)] .
0

Combining (AS) and (A6), we finally get for general 1

+ oo
7T/2

Jt ( A)Jzt t(B)=(1/sr) f 18[cos(A sin28 —18—B sin8)+( —1)'cos( A sin28 —18+Bsin8] .
l2

(A9)

(A 10)
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