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Nonlinear transport processes and fluid dynamics: Cylindrical Couette flow of Lennard-Jones fluids
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In this paper we report on calculations of flow profiles for cylindrical Couette flow of a Lennard-
Jones fluid. The flow is subjected to a temperature gradient and thermoviscous effects are taken into
consideration. We apply the generalized fluid dynamic equations which are provided by the
modified moment method for the Boltzmann equation reported previously. The results of calcula-
tions are in good agreement with the Monte Carlo direct simulation method by K. Nanbu [Phys.
Fluids 27, 2632 (1984)] for most of Knudsen numbers for which the simulation data are available.

I. INTRODUCTION

We have studied in a previous paper' the effects of non-
linear viscosity and heat conduction on velocity and tem-
perature profiles in pjane Couette flow of a Lennard-
Jones fluid. Since flow profiles are not measured in prac-
tice in plane Couette flow geometry, the lack of experi-
mental data prevented us from making experimental
comparison of the theoretically computed profiles. In
this work we report on calculations of flow profiles for
cylindrical Couette flow of a Lennard-Jones fluid and
comparison of the results with experiment. As in the pre-
vious works' we apply the generalized fluid dynamic
equations which are provided by the modified moment
method for the Boltzmann equation and the generalized
Boltzmann equation reported previously. The profiles
calculated with the generalized hydrodynamic equations
are compared with experimental ones, those by Navier-
Stokes theory with slip boundary conditions, and those
by Nanbu who used a direct simulation method for the
Boltzmann equation. The comparison with numerical re-
sults and the Navier-Stokes results with slip boundary
conditions are generally good for most of Knudsen num-
bers considered by Nanbu, but in the case of experimen-
tal comparison there occur, as in the case of Nanbu's
simulation results, significant deviations as the Knudsen
number gets large. The present numerical results there-
fore indicate that the particular forms of generalized hy-
drodynamic equations used here are applicable in the
domain of relatively low Knudsen numbers as is the
direct simulation method used by Nanbu. The fact that
the results are comparable with those by the direct simu-
lation method and the Navier-Stokes theory with slip
boundary conditions renders support for the use of the
stick boundary conditions together with the nonlinear
constitutive equations for stress tensors and heat fluxes
which the particular generalized hydrodynamic equations
taken for this work imply.

The generalized hydrodynamic equations used are pro-
vided by the modified moment method and conform to
the thermodynamic laws since they are within the frame-
work of extended irreversible thermodynamics. As will
be shown, they reduce to the classical Navier-Stokes and
Fourier equations as the product of the Mach and Knud-

sen numbers tends to zero. Since the Knudsen number is
inversely proportional to the density of the fluid, as the
fluid density decreases, the Knudsen number increases
and the generalized hydrodynamic equations increasingly
deviate from those of classical forms. Such deviations are
generally represented by terms which are nonlinear in
stress tensors, heat fluxes, or thermodynamic gradients.
The presence of such terms makes the generalized hydro-
dynamic equations highly nonlinear.

In the conventional theory of rarefied gas dynamics
the deviations of flow profiles from those predicted by the
Navier-Stokes and Fourier equations are accounted for
by modifying the boundary conditions from stick to slip
boundary conditions or by solving the kinetic equation in
terms of half-range velocity distribution functions with
diffuse and specular boundary conditions which lead to
slip boundary conditions. In the present approach a simi-
lar effect is achieved, as will be shown, with combination
of stick boundary conditions and nonlinear transport
coefficients or nonlinear constitutive equations for stress
tensors and heat fluxes associated with various flow pro-
cesses. This represents a significant departure from the
conventional approach, but the calculated profiles agree
with those by Nanbu's direct simulation method and the
Navier-Stokes theory with slip boundary conditions,
confirming the validity of the method and the boundary
conditions taken. This validity test was not possible to
make in the previous works' for the lack of available
data as mentioned earlier.

In Sec. II we present the basic equations provided by
the modified moment method. Then these equations are
cast in reduced form in which the product of Mach and
Knudsen number appears as an order parameter. On the
basis of the order parameter, we obtain an approximate
set of generalized hydrodynamic equations which are
then solved by a numerical method in cylindrical Couette
flow geometry. Since the boundary conditions occupy an
important place in gas dynamics, they are discussed in
some detai1 in Sec. II. Comparison with the results by a
direct simulation method, the Navier-Stokes theory and
experiment is made in Sec. III where we will also discuss
some aspects of the direct simulation method in an effort
to understand the relative merits of the present method.
This discussion will also shed light on the range of appli-
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A. General forms of evolution equations

The modified moment method of solution for the
Boltzmann and generalized Boltzmann equation provides
the following set of hydrodynamic equations within the
framework of 13 moments:

—p(r, t)= —V pu(r, t), (2.1)

p u(r, t)= VP(r—, t),
t,

(2.2}

p 8(—r, t)= VQ(r—, t) P:V u—, (2.3)

p P(r, t)=2py+2p[P. y]' ' —p[co, P]

ppp sinhK

'gp K
(2.4)

p — Q(r, t)=(V P) P+Q y CrP VT—p[ri), Q]—

TqppQ sinh~
(2.5)

p
— Z(r, t) = 'pP:y 23p—ZV u —p—- -ln(pu—' )

ppA sinhK
7

'gbo K
(2.6)

where the flux evolution equations are in the Jaumann
derivative form whose kinetic theory basis is discussed in
Refs. 8 and 9. The symbols in (2.1)—(2.6) are defined
below:

—=—+u.V
dt Bt

p is the mass density (u =1/p, specific volume), u is the
fluid velocity, 8 is the internal energy, 'Cr is the specific-
heat density at constant pressure, P is the stress tensor, Q
is the heat flux, p is the hydrostatic pressure,

y= ——,'[V u+(V u)']+-,'UtrP,

cability of the direct simulation method used by Nanbu.
Section IV is for general discussion and concluding re-
marks.

II. GENERALIZED HYDRODYNAMIC EQUATIONS

cr,„t=kBg
'

K sinhK,

where

g =(m„/2k~ T)'~ /(n e )

(2.7}

If the fluxes are small in magnitude, then K is accordingly
small and the entropy production (2.7) may be approxi-
mated by

a=p[(~ /2go) P:P+(rblrtbu) 6

+(~, /A, ,)'Q Q]'",
r~ = [2go(m„k~T/2)' ]' Ink& To, .

vb
——[g&o(m„kzT/2)' ]' Ink+ To,

r = [Ao(m, k& T/2)' ]' /nk& To

m„is the reduced mass, n is the number density, o is the
size parameter of the molecule, kB is the Boltzmann con-
stant, and U is the unit second rank tensor.

The first three equations (2.1)-(2.3) are mass, momen-
tum, and energy conservation equations, and the last
three equations are the evolution equations for the trace-
less symmetric part pP and the excess trace ph of the
stress tensor P and for the heat flux Q. These evolution
equations are the constitutive equations for the substance
of interest. We have cast them in the Jaumann derivative
form which is required of constitutive equations corota-
tional with the frame of reference. The difference be-
tween the corotational and fixed frame constitutive equa-
tions is in the sign of the rotational terms p[to, P] and
p[tu, Q] which take on a negative sign in the case of the
corotational formulation. The kinetic theory foundation
of corotational formulation is given for constitutive equa-
tions in Ref. 9. This sign change has an important
significance since otherwise the constitutive equations do
not behave correctly as will be pointed out later at a more
appropriate point. The kinetic equations such as the
Boltzmann equation for dilute gases and the generalized
Boltzmann equation for dense fluids yield constitutive
equations containing higher-order moments. The latter
are neglected in (2.4)-(2.6) since the number of moments
is limited to 13 in the present theory. Moreover, because
of the nature of the problem the rotational terms p[co, P]
and p[co, Q] do not appear in the evolution equations (1)
and (2) in Ref. l.

The last terms in (2.4)-(2.6) involving the hyperbolic
sine function are intimately associated with the entropy
production which arises because there are present various
fluxes such as heat flux and stress tensor (momentum
flux). In fact, we have the entropy production

co= —,'[V u —(V u }'], —1 2
ent kBg (2.8}

P=[—,'(P+P') ——,
' U trP]lp=[P]' 'Ip,

go is the Newtonian (Chapman-Enskog) viscosity, Ao is
the Fourier (Chapman-Enskog} thermal conductivity, g&0
is the bulk viscosity,

which is simply equal to the Rayleigh-Onsager dissipa-
tion function. In the sense that the Rayleigh-Onsager
dissipation function holds for linear irreversible processes
and the latter occur near equilibrium, the irreversible
processes represented by (2.4)—(2.6) may then be said to
occur far from equilibrium since the Rayleigh-Onsager
dissipation function in (2.8) is a small flux approximation
of the entropy production in (2.7).
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In the case of a fluid with no bulk viscosity we may set
b, =0. It is then necessary to consider only (2.4) and (2.5)
for the constitutive equations for the system since it is
possible to replace' (2.6) with the ideal-gas equation of
state especially for steady-state problems. Since we are
considering such a case the set of hydrodynamic equa-
tions consists of (2.1)—(2.5) in the present study. Since in
the present work we are interested in the steady-state
problem, we will set the time derivatives of the macro-
scopic variables in (2.1)—(2.5) equal to zero.

The system of interest here is a Lennard-Jones fluid
contained between two infinite concentric cylinders with
radius R; and R0, respectively; see Fig. 1. The tempera-
tures of the inner and outer cylinders are, respectively, T;
and T0. The inner cylinder rotates at an angular velocity
0 while the outer cylinder is at rest. In some experi-
ments the outer cylinder is also made to rotate in the op-
posite direction, but it does not basically change the
analysis. The most convenient coordinates for the
geometry of the system in hand are the cylindrical coor-
dinates.

(rpu, ) =0,d (2.9)

du~
P

d (p+H )—
dr

0„,—IIgg

(2.10a)

where 5„5g,and 5, are the orthogonal unit vectors in
the cylindrical coordinate system, and the tensor com-
ponents II„„etc.are functions of r, 0, and z.

Because of the assumption of infinite cylinders, there is
translational symmetry along the z axis. Consequently,
the fluid properties are translationally invariant in z and
the macroscopic variables would not depend on z. Since
there is also rotational symmetry with respect to the az-
imuthal angle 8, they are also independent of 8 as well.
In other words, the macroscopic variables are functions
of r only. Taking the symmetry properties into account,
we find the steady-state equations for (2.1)—(2.5) in cylin-
drical coordinates as follows:

B. Steady evolution equations in cylindrical coordinates

The macroscopic variables are then generally functions
of r, 8 and z. We write various macroscopic variables in
components,

p=p(r, 8,z), 8=6'(r, 8,z),
u =u„(r,8,z)5„+ug(r,8,z)5g+u, (r, 8,z)5, ,

pP=II=H„„5„5„+H,P,5,+H 5„5,

dug u„ug
p u„+

dr r

GQpu„=—— (rH
GT T 8T

d, ~.e—~e.
(r II„g)+

r2 dr T

(2.10b)

(2.10c)

+H„5P,+H„5P,+H„5P,
+H,„5,5, +H,P,5,+H„5,5, ,

Q= Q„(r,8,z)5„+Qg(r, 8,z)5g+ Q, (r, 8,z)5, ,

d8
pur d„

] j 6fQ grQ„—H
„r dr " " df

II„gug
—(p + Hgg)u„

+ r

dQ
ZP

(2.11)

pH„„
q, = —( —',yH„g+~4pHg, ),

90
(2.12a)

Ro
pH, O

q, = 2py —(2yIIg—g+pIIg, ),
gp

(2.12b)

p Hgg 4y
q, = II„g——', PII,„,

Q0

(2.12c)

prr
q, = —2yHg, —2PII„,

90
{2.12d)

pHg,
q, =0,

90
(2.12e)

X

FIG. 1. Coordinates in the cylindrical Couette flow

geometry.

pH„
q, =—', yII„g+—', PII,„,

90
(2.12f)
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Q„q,= —&OX —(A,o/a) (2y+a))Qg
rpu, =const . (2.15)

+ TCpX

2

11„„+3PQ,

(2.13a)
u„=Oeverywhere . (2.16)

Since u„=Oat the boundaries, the integration constant
must be equal to zero and we conclude

2
ug

Qgq, = —(ko/a) TC'~X —IIg„+(A,o/a)~Q

(2.13b)

This makes all the terms containing u„ in the set
(2.9)—(2.14) vanish. This condition also makes (du, /dr)
indeterminate, but at the steady state there should not be
nonvanishing u, on physical grounds. Thus we take

Q, q, = —(A,o/a) TAX
u ' rr. u, =0, du, /dr =0 everywhere . (2.17)

—(ko/a)(Q„—2Q, )P, (2.13c)
That is, P=O everywhere T.he conditions (2.17) and
(2.12e) lead to

where 11„=11„=11=11„=0,Q, =O. (2.18)
duz r dP= — ', y= — (uglr),

2 dr
'

2 dr

co=(2r) (rug), X= lnT,d d
df d1'

a= TC&p, q, =(sinha. )/a. .

(2.14}
N) ——Hgg —H,„,N2 ——H„„—II (2.19)

It is also convenient to define the normal stress
differences N& and Nz as follows:

The symbol y represents the shear rate and co the rota-
tion frequency. It is useful to note the following identity:

ug

so that, for example,

1
ug-x+~— =-r4

3

We will work in terms of normal stress differences instead
of the normal stresses themselves.

C. Reduced hydrodynamic equations

It is useful to cast the equations in reduced form by in-
troducing suitable reduced variables. We therefore define
the following reduced variables scaled by a suitably
chosen set of reference variables. With the definitions

o
—~ D=~o —~

—p —co+I

3
2= ——y

etc. These identities appear in the evolution equations
for II,„,etc. and Q„,etc. It is also useful to remark that if
the heat flux were absent, the constitutive equations
(2.12a)—(2.12f) would not involve the rotation frequency
co as is required by the principle" due to Stokes on the
form of stress tensors for isotropic systems; that is, the
stress tensor must be a function of y only, if the system is
isotropic. In this connection it is important to observe
that if the Jaumann derivative were not used, i.e., if the
sign of the rotational term p[co, P] in (2.4} were not nega-
tive, then the constitutive equations would have involved
co in contradiction to the Stokes principle, and this fact
appears to reinforce the plausibility of the constitutive
equation (2.4). We, however, notice that since (2.13b) for
Qg includes a term depending on co and the heat flux is
coupled to the stress tensor, if the heat flux is present as
would be in a more general situation, then the stress ten-
sor components would eventually depend on ~ as well
through heat fluxes appearing in q, . Nevertheless, in the
absence of the thermoviscous effects the stress tensor evo-
lution equations conform to the Stokes principle. Note
that there is no question of isotropy if there is a vectorial
process involved, and a heat flux is a vector.

Equation (2.9) integrates trivially to give

and denoting the reference set of variables by T„,p„p„,
U„,ri„,and A,

„

for temperature, pressure, mass density,
velocity, viscosity, and heat conductivity, respectively, we
define the reduced variables

u'=ug/U„p"=pip„, g=r/D,
h"=TCg/T„C (T„),a'=pTC /p„T„C'(T„),
q'=rio/r]„, A, '=A,o/A, ,

y' = y/( U„/D), X"=XD,
~'=~/(U„/D}, 11"=11„,/(2g„U„/D),
Q' =Q„/(A.„&/DT„),
N, .' =N,. /(2r)„U„/D) (i = 1,2),
Qg' Qgl(A, „A/DT„). ——

We will specify more explicitly the reference set of vari-
ables later when we perform numerical analysis. It is
convenient to introduce the following dimensionless num-
bers well known in fluid dynamics:
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5= (2yo—/n. )' MK„,a=b /4T„EP, . (2.20)

It will be occasionally useful to recall that the normal
stresses are second-order quantities.

By collecting the various results above and using the
reduced variables defined, we finally obtain the following
reduced generalized hydrodynamic equations:

42

yoM = [p'+ —'5(N2 N', ) j—2—5NI Ig,

M = U„I(yoRT„)'

yo=C&/C'„, 8 = gas constant per unit mass,

R, =p„U,D/g„,
E = U„I8 b, , C' =C' ( T„)
P„=C'g„T„/A,„,
K„=I /D, 1 =mean-free path .

Here M is the Mach number, R, is the Reynolds number,
E is the Eckert number, P, is the Prandtl number, and I(

„

is the Knudsen number. Since the dimensionless num-
bers above appear in a product form, we will find it can-
venient to define the following composite reduced num-
bers:

K=5K

»
( 3/2/ )I/2( T« I/4/ «I/2 «)Vo

II'= —g y*, Ni =O, N2 ——0,
Q'= —A, 'X', Qg ——0 .

(2.24a')

In fact, this set is exactly the set we obtain from the
Navier-Stokes and Fourier equations. We will see that
this limit is indeed attained by the numerical result ob-
tained for the density profile; see Fig. 2. Here we note
that the Reynolds number R, is related to the Mach and
Knudsen number as follows:

)([Il* + '(N +N* +N N )

+«( ~» /g» )( Q «2+ Q
«2

) ] I
/2

The parameter 5 tends to zero as the fluid density in-
creases since in that case I(}.

„

tends to zero. Thus in the
limit of 5~0 the set of equations (2.21)—(2.24) reduces to
the following set:

«»2
y~2P & dp d

(g211») ()
dg

'
dg

(2.23a')
(gQ' }+4P„Ey'II*=0,

(g'll') =0,

42

+—', P„h'X*—E (N2 NI )—
Qsq, = (5/P„)(A.'Ia')—

42
2P„h'7*—E

((Q«)+4P„Ey'II'=0,

II"q, = n*r' —', 5(n"—r-'Ip')(2NI +N2»

NI q, =4 (5r'1y"/p')ll',

N2q, = —45(g'y /p')II',

Q «q

—(5/P„)(&'/~' )

X (2y*+~')QII

(2.21a)

(2.2 lb)

(2.22)

(2.23a)

(2.23b)

(2.23c)

(2.24a)

R, =(myo/2)' M/JC„.

D. Reduced governing equations for the problem

It is known that transport coefficients are density
dependent even in the low-density regime. There is evi-
dence that they also depend on thermodynamic gradients.
To reflect these facts in the theory, it is necessary to use
effective transport coefficients which have such features
incorporated into them. This means that we abandon the
Chapman-Enskog first approximation formulas for the
transport coefficients. This aim can be achieved if we
modify the constitutive equations (2.23a') and (2.24a') so
that the viscosity and thermal conductivity depend on
density and thermodynamic gradients. Attempts' have
been made in the past to include the higher-order
Chapman-Enskog solutions, i.e., the Burnett solutions, in
the transport coefficients. However, in such approaches
there are some difficult problems since additional bound-
ary conditions are required which are not known, and the
constitutive equations are not assured to satisfy the
second law of thermodynamics owing to the fact that
some Burnett terms make the fluxes inconsistent with the
H theorem. We therefore avoid such approaches. In the
present study we propose to use the following hydro-
dynamic equations with such effective transport
coefficients:

(2.24b}
~2p I4 dp

dg
(2.25a)

where

q, =sinha/~,

with

(g 11')=0,
d

()Q')+4P„Ey"II'=0,
4dk

(2.25b)

(2.26)
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Q*q, = —A. 'X',

N1 =N2 =Qt'3 =0,

with

q, =sinh«/«(«=5«'),

e
( 3/2/ )1/2(Te1/4/ el/2 e

)3'0

X [II+2+e(ri*/ge )Q e2]1/2

(2.27)

(2.28)

(2.29)

(2.30}

kinetic theory, irreversible thermodynamics, and fluid dy-
namic measurements. We look for the validity of the ap-
proach a posteriori.

E. Solution procedure

II*= C, /g', (2.32)

Since the governing equations (2.25)—(2.28) are highly
nonlinear, it is not possible to solve them analytically.
They, however, can be fairly easily solved by a numerical
method. Here we use the shooting method together with
the sixth-order Runge-Kutta method. We describe the
solution procedure below.

Equations (2.25b) and (2.26) are easily integrated to
yield the pair of equations

The constitutive equations (2.27) and (2.28) are then sim-

ply the non-Newtonian stress equation and the non-
Fourier heat flux equation which we have used in the pre-
vious studies. ' These equations, and also (2.21)—(2.24),
not only do not require more boundary conditions than
those required for the classical Navier-Stokes and Fourier
equations but also are fully in conformation to the ther-
modynamic laws as any macroscopic equations should be.
We investigate the utility of this set of equations in this
work.

The time-dependent flux evolution equations corre-
sponding to (2.27) and (2.28) are nonlinearized versions of
the Maxwell equation' and the Cattaneo-Vernotte equa-
tion, ' respectively„

Q'=2P„E(C2( ' —C, u'g 2), (2.33)

8(~3/2 / ) 1/2( T e 1/4/ri e 1/2p e
)3 0

X +4e(2)'/A, ')(P„E)2
2 1/2

C1Q
2

(2.34)

where C, and C2 are integration constants. When these
are substituted into ~*, we find

'dt*

d h*
p*r2 Q'= —h*p*X' — Q*q, ,dt*

(2.31a}

(2.31b)

Therefore q, now may be regarded as a function of T',
p', C1, C2, u", and g. Then Eqs. (2.27) and (2.28) can be
regarded as differential equations for u* and T* which,
on substitution of (2.32)—(2.34), take the forms

where ~, and ~2 are nondirnensional parameters charac-
terizing relaxation times for II' and Q', respectively.
Since they do not appear in the present theory, there is
no need to dwell on them here. Clearly, (2.31a) and
(2.31b) reduce to (2.27) and (2.28), respectively, in the
case of steady states. They also become the Maxwell
equation and the Cattaneo-Vernotte equation when

q, =l. Equation (2.31a) has been tested' in comparison
with experiment and shown to account for available ex-
perimental data quite well. Mathematically, retaining the
q, factor in the constitutive equations is equivalent to ex-
panding the evolution equations for fluxes in series of 6
and then resumming partially the resulting series to ob-
tain the constitutive equations with the factor q, . This
procedure is not systematic from the rigorous mathemati-
cal standpoint, but in view of the fact that the series in 6
may not be convergent but merely asymptotic in its na-
ture, the so-called systematic (Chapman-Enskog' type)
expansion method employing a truncation at an arbitrary
order, usually at the leading order, may not be regarded
as mathematically rigorous as generally thought by many
kinetic theorists. We therefore believe that a semiempiri-
cal procedure as we take here is a more effective way of
establishing practical constitutive equations by blending

d u 2C1 sinh«(g)

«(g)
(2.35)

2P„ET* C2 C, u

g2

sinh«( g)
«(g)

(2.36)

X ( exp[7 02[1 0.2(.F/k~ T)' ]x )
——1)]

X(me)' o (k21T/e)

Ao= [0.642+0.36[ exp(3. 76x ) —1])

X o (F/m)' (k23 T/e) k23 T,

(2.37)

(2.38)

where «(g) is given by (2.34). There now remains the
specification of go and A.o. For these quantities we take
the forms provided by Ashurst and Hoover' for the
Lennard-Jones fluid. These forms were obtained by
fitting the molecular dynamics results to analytic forms.
They are

go ——[0.171+0.0152[1—0.5(e/k23T)' +2e/kaT]
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where

x = n o' (F/ks T)'

e is the well depth, and m is the mass of the fluid mole-
cule. o. is the Lennard-Jones potential size parameter.
At the normal density or below, the exponential factors
are practically equal to unity and we have

and

u& ——R;0 and T=T, at r =R,.

ue ——0 and T = Tp at r =Rp .

(2.40a)

(2.40b)

rl =0.171(mF)' cr (k T/e)

Ao ——0.642cr (F/m)'~ (k&T/e) ~ k&T .

(2.37')

(2.38')

With these transport coefficients, we now solve (2.25a),
(2.35), and (2.36) numerically subject to suitable boundary
conditions.

F. Boundary conditions

Ro
po=(p(r)) —= [2n(Ro R, )] '2m f—dr rp(r),

I

(2.39)

where po is the initial uniform mass density and p(r) is

the steady-state mass density. Once the initial density pp
is given, the density profile can be determined subject to
(2.39) in a way consistent with all other boundary condi-
tions. Equation (2.39) constitutes the desired fifth condi-
tion which makes the problem well posed.

For the velocities and temperatures at the boundaries
we impose the boundary conditions:

In addition to the integration constants C& and Cz
there are three more integration constants associated
with Eqs. (2.25a), (2.35), and (2.36); that is, there are five

in all. These are determined by the boundary conditions.
The specification of the velocity and temperature at the
inner and outer cylinders takes care of four boundary
conditions. The choice of the fifth condition is not obvi-
ous for the experimental condition of the present problem
since neither the pressure nor the density of the fluid is
measured at either one of the boundaries (i.e., cylinders).
This difficulty arising from the lack of the clear cut
boundary value for pressure or density is not inherent to
the present theory only, but to other theories such as the
Navier-Stokes theory. However, it must be stressed that
since such a boundary value must be provided by experi-
ment, the burden must be placed on experiment rather
than theory. We note in passing that Lin and Street'
take the pressure at the inner boundary equal to the mean
pressure of the gas. We find this boundary condition un-

satisfactory since at the boundary the pressure at the
steady state must be different from the mean pressure. It,
however, is simple to overcome such a deficiency of the
boundary value. Instead of specifying the value of the
density (or pressure) at one of the boundaries, we look for
another condition which will allow us to determine the
fifth integration constant and thus play the role of the
boundary condition. To this end we take advantage of
the fact that the mass of the fluid between the two
cylinders is conserved in time. Therefore the initial (uni-
form) experimental density value must be equal to the
average steady-state density:

These are the stick boundary conditions which are tradi-
tionally considered applicable to gases at or above the
normal density. It is a common practice in gas dynamics
to take slip boundary conditions as the gas density dimin-
ishes. The notion of slip boundary conditions historically
stems from the observation that the gas flow appears to
slip over the wall over which the gas moves. In this work
we show by explicit calculation that the slip boundary
conditions are not necessary. To put the notion of slip in
a proper perspective and thereby our method indirectly,
we would like to briefly go over how the notion of slip
has historically evolved.

After Clausius advanced the mean-free-path theory of
transport phenomena and Maxwell proposed his kinetic
theory of gases, Kundt apd Warburg' did a set of experi-
ments on viscosity and thermal conductivity of air, hy-
drogen, and carbon dioxide and discovered that the
transport coefficients did not obey the laws predicted by
the kinetic theory, and in fact the gases appeared to be
slipping over the wall over which they were flowing. This
phenomenon did not agree with the kinetic theory then
available to them. They therefore proposed formulas for
the transport coefficients which are decreasing functions
of pressure in contrast to the Clausius-Maxwell predic-
tion' that transport coefficients must be independent of
pressure or the density of the gas. In an attempt to re-
move this discrepancy with experiment Maxwell' ad-
vanced the idea of diffuse and reflective (specular) scatter-
ing of gas molecules off the wall and, with an ingenious
but debatable method of calculating the velocity in series
of the mean-free path, showed that the velocity slips at
the wall in proportion to the mean-free path, which is in-
versely proportional to the density of the gas. Since his
work appeared, numerous theorists elaborated on the
idea. But since exact results are generally not possible in
such theories, one usually ends up with some plausible
approximate results which are further saddled with basi-
cally unknown parameters in the form of accommodation
coefficients. ' The latter play a role of adjustable parame-
ters because of lack of information on gas-solid interac-
tions and scattering cross sections which researchers have
only recently begun to investigate. As mentioned ear-
lier, transport coefficients are generally density and ther-
modynamic gradient dependent, and the notion of slip
seems to be an outcome of an attempt at making a basi-
cally limited theoretical result work beyond its limit of
validity. The empirical formula for transport coefficients
by Kundt and Warburg' has already indicated that the
first-order Chapman-Enskog formulas are not adequate
for the transport coefficients if the density is sufficiently
low and the Navier-Stokes equations therefore are not ap-
propriate for description of flow phenomena in such a
fluid. The proposition we would like to make in this
work is that the transport processes in low-density gases
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are basically nonlinear, and slip phenomena observed in

the laboratory are a manifestation and consequence of
nonlinear transport processes, but the slip boundary con-
ditions are not necessary. It appears sufficient to use the
stick boundary conditions, provided the transport pro-
cesses are appropriately nonlinear. The proposition is
substantiated with explicit numerical calculation and
comparison with independent results by Nanbu and the
Navier-Stokes theory with slip boundary conditions and
with experiment.

III. SOLUTION OF THE EQUATIONS AND FLOW
PRQFILES

Alofs and Springer reported on density profiles of ar-
gon in cylindrical Couette flow. To make a comparison
of our results with theirs we take the initial density ob-
tained from the reported chamber pressure and tempera-
ture in their experiment. The reference temperature is
taken to correspond to the mean value of the wall tern-
peratures. Other reference values are also taken to corre-
spond to the experimental condition. Given these refer-
ence quantities, various dimensionless parameters such as
M, E„,P„,E, and the aspect ratio can be determined.
The reference transport coefficients il„and A,„areiso and
A,o calculated in terms of the reference temperature and
density chosen. The solution to (2.25a), (2.35), and (2.36)
is obtained, subject to the five reduced boundary condi-
tions

u'=0, T'=To/T„at (=Ro/D,
u'=1, r'=T, /r, at g=R;/D,

and

&p'(g)) =1,
by using the sixth-order Runge-Kutta numerical scheme
and the shooting method. The values of C, and Cz are
first guessed together with a value of the pressure (or den-

1.08—

sity) at one of the cylinder walls, and the governing equa-
tions are solved in an attempt to satisfy the four bound-
ary conditions and reach an average reduced density
equal to unity. This procedure is repeated until an im-
posed tolerance is satisfied. Since this technique is rather
tedious, we have devised a modified Newton-Raphson
iterative scheme that would automatically determine the
appropriate values of the two constants and pressure (or
density) at the boundary.

In order to compare our results with those obtained ex-
perimentally we have to use the same values for the di-
mensionless parameters involved. There is, however,
some ambiguity in the way some of the parameters were
defined on one hand and in the choice of some reference
quantities on the other. The wall temperatures were ini-
tially identical, but the wall temperatures at steady state,
however, were found to be different by 8'C. We there-
fore defined our Mach number on the basis of the mean
value of the two steady-state wall temperatures. This
latter is then our reference temperature. The Mach num-
ber thus calculated turns out to be comparable to that
used by Alofs and Springer, i.e., 0.9908 for ours com-
pared to 0.9917. The aspect ratio A, the Eckert and
Prandtl numbers are set equal to the experimental condi-
tions, i.e., A =—,', E =25. 115, and P„=0.666. Note that
the specification of the Eckert number fixes that of the
temperature ratio T, /To. The Chapinan-Enskog trans-
port coeScients are those for a Lennard-Jones gas, while
the ones used in the experiment are based on the
Maxwellian model for the intermolecular force. For this
reason, the K„values in the present investigation are
slightly higher than the values quoted in the paper by
Alofs and Springer and by Nanbu although they are
both based on the same value of the initial density.

Although the present calculations cover all the flow
properties, only the density profiles can be compared
with the experimental results since others are experimen-
tally unavailable. In the experiment by Alofs and
Springer the initial chamber pressures varied from 0.050
to 0.0020 mm Hg with corresponding Knudsea number
ranging from 0.0426 to 1.065. When converted to the

1,06—

1.04—

1.02
1.08—

1 06

0.98

0.96 -'

1.04

1 02—

0,94
0.98—

0.9
X

~ I I ~ f t I f I T C T

0.1 0.2 0.3 0 4 0.5 0 6 0.7 0.8 0.9 0.94

FIG. 2. Reduced density vs reduced distance for K„=0.0544
and po ——0.05 mm Hg. +, experimental value by Alofs and

Springer; 0, simulation value by Nanbu (Ref. 5); X, Navier-

Stokes theory with slip boundary conditions;, the present
theory. The reduced distance in this figure and others is defined

by g'=(r —R;)/D.
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FKx. 3. Reduced density vs distance for E„=0.1046 and

po ——0.026 mm Hg. +, experiment; 0, simulation; &( Navier-
Stokes theory;, the present theory.
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FIG. 4. Reduced density vs reduced distance for E„=O.1388
and po ——0.00196 mm Hg. +, experiment; 0, simulation; X,
Navier-Stokes theory;, the present theory.

FIG. 6. Reduced density vs reduced distance for E„=0.5184
and po ——0.00525 mm Hg. +, experiment; G, simulation; )(,
Navier-Stokes theory;, the present theory.

present choice of reference variables, the Knudsen num-
bers range from 0.0544 to 1.3962.

The density profiles for different initial chamber pres-
sures are shown in Figs. 2-7 where the + symbols
represent the experimental data, the squares the simula-
tion results by Nanbu, the symbols )& the results by the
Navier-Stokes theory with slip boundary conditions, and
the solid curve the solutions by the present theory. They
are of particular interest since density measurements
were mainly the object of attention in the experiment.
The corresponding velocity, temperature, and pressure
distributions are also plotted in Figs. 8-10 on which we
will comment shortly. The profiles obtained by other
models are also available in Refs. 4 and 5 to which the
reader is referred. For EC„=0.0544, 0.1388, and 0.3201
the present solutions are virtually identical with the simu-
lation results by Nanbu and the results by the Navier-
Stokes equations with slip boundary conditions. Howev-
er, three sets begin to show a qualitative difterence from
the experimental results as the Knudsem. number in-
creases although absolute numerical difkrcnces from the
experimental values are invariably less than a few percent

at most. From K„=0.5184 up, the simulation profiles
show a noticeable minimum in density in the vicinity of
the inner-cylinder wall whereas the results by the present
theory, i.e., generalized hydrodynamic equations
(2.25) —(2.28}, show only a rather weak minimum at the
Knudsen numbers in question. However, such a
minimum appears noticeably at higher Knudsen numbers
as is shown in Fig. 11, where density profiles are shown
for K„=1.362, 9.459, and 212.8. The Navier-Stokes re-
sults do not show such a minimum at all. Because of lim-
itations on measurements the experiment is not able to
determine the presence of such a minimum. The fact that
there appears a minimum in the high Knudsen number
density profiles by both Monte Carlo and present
methods seems to suggest that the two methods share a
common physical mechanism of causing the gas to accu-
mulate near the inner wall. A more recent calculation
shows that a minimum does not appear if the normal
stresses are included. In any case, the numerical
differences between the three sets generally do not exceed
5%%uo to 6%. Here we also note that the Navier-Stokes
theory results with slip boundary conditions coincide
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FIG. 5. Reduced density vs reduced distance for K„=0.3201
and po ——0.0085 mm Hg. +, experiment; 0, simulation:
Navier-Stokes theory;, the present theory.

FIG. 7. Reduced density vs reduced distance for I( „=1.362
and po ——0.009 mm Hg. +, experiment; 0, simulation;
Navier-Stokes theory;, the present theory.
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FIG. 8. Reduced velocity profiles for various values of K„:0.0544, 0.1046, 0.1388, 0.3201, 0.5184, 1.362. The Knudsen numbers
are not indicated for curves between the first and the last for lack of space.

with the Navier-Stokes theory results with stick bound-
ary conditions as the Knudsen number vanishes. Thus
the Navier-Stokes theory density profile in Fig. 2 may be
regarded as practically the no-slip Navier-Stokes density
profile. Since the simulation method itself is by no means
exact, it is reasonable to state that the present nonlinear
hydrodynamic equations with stick boundary conditions
are able to reproduce the density proftles comparable with

the simulation results in most of the range of Knudsen
numbers so far studied. Moreover, it is also possible to
conclude that even though there are absent in the present
theory the accommodation coefticients which are basical-
ly adjustable parameters, the present result's are compara-
ble to the results of the Navier-Stokes theory with slip
boundary conditions. Therefore the present theory is not
only as accurate as the usual hydrodynamic theory ern-
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FIG. 9. Reduced temperature profiles for various values of K„.The values of the Knudsen numbers are the same as in Fig. 8. The
reduced temperature T in this and later figures is defined by T =k~ T/F, where e/kz ——119.8 K (see Ref. 26).
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FIG. 10. Reduced pressure profiles for various values of E„.The reduced pressure p in this and later figures is defined by

p =po'/e, where cr =3.405X10 ' m (see Ref. 26).

ploying slip boundary conditions, but also simpler than
the latter.

The velocity, temperature, and pressure profiles
presented in Figs. 8-10 do not exhibit slips as the corre-
sponding profiles obtained by Nanbu do even at the
lowest Knudsen number studied. In the present work we
instead observe a gradual formation of boundary layer
near the inner boundary as K„increases. The presence of
a boundary layer is consistent with the picture provided
by kinetic boundary layer theory with which the experi-
ment and simulation density profiles appear to be con-
sistent. In the present theory the boundary layers are due

to the nonlinear terms in the constitutive equations for
the stress tensor components and heat flux components.
The evidence for this view is also supported by the
boundary layer calculation reported previously. Since
there is no experimental measurement available at
present to sort out these conflicting numerical results re-

garding slips in velocity and temperature, we are not able
to draw a definite conclusion at the present time. Ac-
cording to the calculations that include normal stresses
which will be reported elsewhere, the lack of slip in the
present results is due in part to the neglect of normal
stresses. In any case, a thin boundary layer may be easily
mistaken for a slip within experimental errors, and we
will have to leave the question unresolved for now and
reserve it for future study.

In the case of the simulation method it is diScult to
have a qualitative guess for the flow behavior on the basis
of the governing (in this case the Boltzmann) equation
since the Boltzmann equation does not readily reveal the
flow characteristics that one can intuitively deduce as in
the case of the present generalized hydrodynamic equa-
tions or Navier-Stokes equations for that matter. For ex-

ample, by examining certain limiting flow regimes, one
can often be in a position to anticipate the flow behavior
without actually having to solve the governing equations,
such as the case here in hand where it is possible to pre-
dict the flow behavior in the limit of a large Knudsen
number. In this limit it is easy to see from (2.30) that the
shear stress vanishes with increasing E„andtherefore the
equation is reduced to the form

since q, vanishes exponentially with increasing E„at
first glance. As a matter of fact, the above equation
arises since the shear stress decays at large E„like
EC„'lnÃ„according to more elaborate analysis. ' From
(2.28) an exactly analogous argument can be established
for the behavior of the heat Ilux Q' in the limit of a large
Knudsen number. In this case the flow does not manifest
any ability for momentum transfer or heat conduction; it
in fact behaves like an ideal flow. As was mentioned be-
fore, (2.25b) and (2.26) are identically satisfied to
O(K„ InK„),and the only surviving equation is (2.25a)
which is nothing but Euler's equation for the present
geometry.

Since the density is inversely proportional to K„the in-
ertia terms, which are proportional to the density, behave
like K„',and therefore decay faster than the shear stress
or heat flux as I( „getslarge. In this case the inertia term
in (2.25b) becomes small and the pressure gradient van-
ishes except near the inner wall. This is clearly indicated
in Fig. 10, where the pressure is practically constant for
high-K„values. We then conclude that since inertia
effects become insignificant at a large Knudsen number,
the fluid will not be entrained by the rotating cylinder



38 NONLINEAR TRANSPORT PROCESSES AND FLUID DYNAMICS: 2503

and tend to stagnate at the inner cylinder. Moreover, the
gas will tend to accumulate near, and hence acquire the
properties of the outer, stationary wall as is clear from
the fact that the density value in the vicinity of the outer
wall tends to remain larger than near the inner wall, if
one examines the density profiles for I( „=0.3201, 0.5184,
and 1.362. This is expected owing to the presence of cen-
trifugal forces inducing a pressure gradient which in turn
acts on the Quid and "crowds" the gas near the outer
wall. On the other hand, although the difference in wall
temperatures is not high, viscous energy dissipation is
sufficiently generated to cause a tangible temperature
rise. This is particularly visible in the vicinity of the
inner cylinder where the shear stress is highest, thus in-
ducing a steep temperature rise there; see Fig. 9. Note
also that the temperature maximum tends to shift to-
wards the inner cylinder as K„increases. This indicates
that the How is limited to the neighborhood of the inner
cylinder as the gas becomes more and more rarefied. In
the cases of relatively large Knudsen numbers (particular-
ly in the case of the initial chamber pressures of 0.00525
and 0.002 mm Hg), the experimental results show a flat-
tening tendency of the density profile.

In Figs. 11—14 are plotted the density, velocity, tem-
perature, and pressure profiles for I( „=1.362, 9.459, and
212.8. As the Knudsen number increases, the boundary
layers become more pronounced in the velocity and tem-
perature profiles while the pressure profiles become Aat.
This feature is compatible with kinetic boundary layer
predictions. The density profile in particular becomes
gradually flattened with increasing Knudsen number but
not as much as the experimental data indicate. More re-
cent calculations indicate that the generalized hydro-
dynamic equations (2.25)—(2.28) used here are not
sufficient and require the normal stress terms which have
been left out to get the set of equations (2.25) —(2.28) from

the general set (2.21)—(2.24). The results of the studies
indicate that the normal stresses neglected in the present
calculation play a very important role in understanding
the Aow profiles experimentally observed. The results of
the studies will be reported in the near future.

IV. DISCUSSION AND CONCLUDING REMARKS

Hydrodynamic equations such as Euler's and Navier-
Stokes equations are accorded kinetic theory foundations
principally by the Boltzmann kinetic equation and the
Chapman-Enskog solution' method or Grad's moment
method. '"' It is now well known that the first-order
solution to the Boltzmann kinetic equation or its variants
by the Chapman-Enskog or the Grad method yields the
Navier-Stokes and Fourier equations, and the transport
coefficients (i.e., viscosity and thermal conductivity) ap-
pearing therein are density independent as was originally
predicted by Maxwell. The density independence of
transport coefficients, however, is a rather confining re-
striction. Therefore, if the Chapman-Enskog first-order
forms for the transport coefficients are used in the classi-
cal hydrodynamic equations, the latter are, as is well
known, applicable to gases of normal density and rela-
tively close to equilibrium. (It must be stressed that this
statement is not applicable to the case of Navier-Stokes
and Fourier equations in which density-dependent trans-
port coefficients are empirically used as in many applica-
tions). From the standpoint of deriving hydrodynamic
equations from kinetic (molecular) theory of fluids the
classical hydrodynamic (i.e., Navier-Stokes and Fourier)
equations are subject to another limitation: That is, they
apply to the bulk of a Quid sufficiently far away from the
walls of the container, since the kinetic equations used for
such a derivation have no provision for the wall effect
since they do not generally take the presence of walls into
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FIG. 12. Reduced velocity profiles for K„=1.362, 9.459, 212.8.

account. Therefore when we use the hydrodynamic equa-
tions without wall effects explicitly built into them, we
are making an implicit assumption that the bulk proper-
ties of the fluid can be extended all the way to the walls
(boundaries). confining the fiuid, and the walls do not
affect the fluid properties significantly. This assumption
is justifiable if the solid-fluid molecule interactions are
insignificant for the kind of experimental data in ques-
tion. At least, it removes in practice a rather difficult,
and often intractable, question of interfacial phenomena

occurring in the interface between the solid wall and the
fluid.

The wall effects are often taken into account by impos-
ing a suitable boundary condition on the distribution
functions obeying a kinetic equation, e.g. , the Boltzmann
equation or its variants. The boundary condition usually
consists of a diffusive scattering component made up with
an equilibrium distribution function at the temperature of
the wall and a specularly reflective scattering component
for which the distribution functions are of nonequilibri-
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FIG. 14. Reduced pressure profiles for K„=1.362, 9.459, 212.8.

um and of the bulk gas. The absolute magnitudes of both
diffuse and specular contributions are not possible to
determine, but their ratio is determined within parame-
ters known as accommodation coefficients which cannot
be determined within the framework of the theory. They
are basically adjustable parameters that must be suitably
chosen to fit experimental data. Instead of using the
boundary conditions on the distribution functions at the
wall to account for the wall effects, one can include the
wall-gas collision effect in the Boltzmann collision in-

tegral as in the work by Dorfman and van Beijren.
But because of basically the same nature of the collision
integral as in the boundary-condition approach, the final
results of their theory are not basically different from
those by the boundary-condition approach, although
there can be some advantages in the theory of Dorfman
and van Beijren. Both approaches indicate the boundary
conditions on velocity and temperature showing a slip. It
is, however, not known if the slip predicted by their
theory yields profiles that agree with experiment.

It must be noted that even smooth and clean surfaces
attract gas molecules according to an approximate force
law: ' f = br, where —b is a positive constant related
to the van der Waals force constant, and often the gas
molecules get adsorbed or even chemisorbed on the sur-
face. They then acquire the temperature of the surface
and then get desorbed into the bulk. Even a rarefied gas
goes into thermal and mechanical equilibrium with the
walls, and heat and momentum transfers between the
walls and the gas however rarefied, necessary for such
equilibrium, cannot be accounted for without taking into
account such intimate interactions causing the gas mole-
cules to equilibrate with the walls. From this molecular
viewpoint the slip-boundary-condition approach merely
parametrizes such surface phenomena in terms of accom-

modation coefficients with no gain in molecular picture,
on one hand, and ignores the important aspects of non-
linear transport processes which play an important role
in determining flow profiles near the boundaries, on the
other hand. The present method, by taking stick bound-
ary conditions, presumes equilibrium of the fluid at the
boundary with the surface and recognizes the importance
of nonlinear transport processes which we believe are im-
portant for understanding flow properties of rarefied
gases.

As the density decreases, the transport coefficients be-
gin to depend on the density of the gas, but when such
density dependence is ignored and the classical hydro-
dynamic equations are applied to gas-flow problems, glar-
ing discrepancies begin to show up as was observed by
Kundt and Warburg' for the first time. Maxwell'
repaired the theory by including the gas-solid interaction
in the form of empirical parameters which have now
come to be known as accommodation coefficients, but he
retained the density-independent transport coefficients.
This is an ad hoc procedure which later, more refined
theories in rarefied gas dynamics have retained in one
form or another. A completely satisfactory kinetic
theory of rarefied gas dynamics that yields hydrodynam-
ics equations without ad hoc parameters such as accom-
modation coefficients is yet to materialize.

In this work as in the previous papers we have taken
the approach in which the transport coefficients are made
not only density dependent but also thermodynamic gra-
dient dependent, and the hydrodynamic equations with
such coefficients are assumed to be valid all the way to
the boundaries where stick boundary conditions are ap-
plicable for velocity and temperature. This approach,
therefore, is opposite to the one that uses linear density-
and gradient-independent transport coefficients together
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with slip boundary conditions. With explicit numerical
solution of generalized hydrodynamic equations we have
shown in this work that the present approach yields sen-

sible results when compared with experiment, the results

by the Navier-Stokes theory with slip boundary condi-
tions, and direct simulation results; see Figs. 2—7. Espe-
cially, comparison with the simulation results is quite
good, thereby rendering support for the approach taken;
it is as good as the simulation method as far as compar-
ison with experiment is concerned. Nevertheless, there is
consid'erable room for improvement since there are
significant deviations from experiment in the high-
Knudsen-number regime.

The present calculations in effect point out the impor-
tance of nonlinear constitutive equations for flow proper-
ties of a fluid. In this connection it is useful to remark
that the transport coefficients depend on shear rate and
also on density, such as n ln(n '), where n is the number

density of the gas. Therefore the viscosity diminishes
with density as the gas rarefies. Such viscosity formula is
shown to give a correct behavior of the boundary layer in

a previous work and also account for nonequilibrium
molecular dynamics results' """on Ar.

The direct simulation method used by Nanbu is based
on the simulation method by Bird and is believed to
give exact results since it is claimed to solve by a Monte
Carlo method the Boltzmann equation without an ap-
proximation. If so, the good agreement with the results

by the present theory, particularly the minimum in the
density profiles in both methods (see Figs. 7 and 11), and
the deviations of both results from the experimental
values in the high Knudsen numbers raise a question as
to why the direct simulation gives results deviating from
experiment while agreeing with the results obtained from
approximate equations which the generalized hydro-
dynamic equations in the present paper are. While the
particular experiment that has provided the data used for
comparison may require refinement, it is also reasonable

to think that the direct simulation method itself is more

approximate than its practitioners would like to believe.

We have made some careful studies of various steps taken
in the direct simulation method and have noticed that the

so-called decoupling approximation is used which consid-
ers the streaming motion of particles as being indepen-
dent of collision and thus decoupled from the collisional
processes involved in evolution of particle motions.
There is also a step which locally linearizes the
Boltzrnann collision integral which is quadratically non-
linear in distribution functions. It appears that the com-
bination of these two approximations makes the evolu-
tion equation —the Boltzmann equation —locally linear
or quasilinear at best, and the two approximations might
be effectively preventing the method from describing the
high-Knudsen-number regime of fluid behavior. This
view seems to make sense if it is recalled that
(2.25)—(2.28) are obtained by neglecting some terms
which are not negligible as the Knudsen number in-
creases, and therefore they become increasingly more ap-
proximate. We therefore believe that the direct simula-
tion method itself might need refinement with removal of
the local linearization of the Boltzmann collision integral
first of all.

In conclusion, we have shown in comparison with ex-
periment and the results by a direct simulation method
that the nonlinear constitutive equations (2.27) and (2.28)
give rise to generalized hydrodynamic equations which,
with stick boundary conditions, yield density profiles
comparable to those by the direct simulation method in
particular although there are significant deviations from
the experimental data at high Knudsen numbers. Fur-
ther improvements in the quality of generalized hydro-
dynamic equations appear to be necessary. Nevertheless,
the present theory shows that studies in gas dynamics
and rarefied gas behavior in particular can be made with
nonlinear transport coefficients and the conventional
stick boundary conditions for the generalized hydro-
dynamic equations.
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