
PHYSICAL REVIE%' A VOLUME 38, NUMBER 5 SEPTEMBER 1, 1988

Capillary waves on the surface of simple liquids measured by x-ray reflectivity
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The properties of the hquid-vapor interface for three simple liquids (water, carbon tetrachloride,
and methanol) have been measured using x-ray re6ectivity. The measured surface roughness is in-

terpreted using a model that combines the effects of thermally induced capillary waves and the di-

mensions of the constituent molecules.

I. INTRODUCTION

The structural properties of liquid surfaces are of great
interest, but techniques commonly used for the study of
solid surfaces (scattering, electron tunneling, and micros-
copy} are technically difficult or even impossible to apply
to liquids. Recently, however, the technique of x-ray
reflectivity has been applied to the study of liquid sur-
faces with considerable success. ' The reflectivity tech-
nique is sensitive not only to the local surface density
profile, but also to height fluctuations from thermally in-
duced surface capillary waves.

This paper presents a detailed theoretical treatment of
the x-ray reflectivity technique, with particular emphasis
on its application to capillary waves. The measured x-ray
reflectivity from a liquid surface is modeled by the
Fresnel reflectivity for a perfectly flat step interface rnul-

tiplied by a Gaussian factor of the form exp( —Q, o T),
where cTT ——o p+crc(Q, ). The first width, denoted o p,
corresponds to the local surface profile. The other,
o'c(Q, ), is the effective capillary-wave surface roughness
averaged over the spectrometer coherence area. The data
are fit to the single parameter o z, whereas o c is calculat-
ed exactly.

For the water surface, o.z is in good agreement with
the molecular size of water as previously reported, and
reaffirms the continuum capillary-wave model. ' The
essential elements of the model were presented with that
result. We also report x-ray reflectivity measurements on
two other simple liquids, methanol and carbon tetra-
chloride. For carbon tetrachloride, the fitted surface-
profile width is also in reasonable agreement with the
molecular size. In addition, the predicted effect on o & of
the x-ray spectrometer resolution function on the mea-
sured reflectivity is confirmed. The fitted surface-profile
width of methanol is significantly smaller than the molec-
ular size. Interpretations of this discrepancy, discussed

in the experimental results section, include the possibility
the effective surface tension for short-wavelength capil-
lary waves may be larger than the nominal value.
Theoretical expressions for the nonspecular diffuse
scattering by surface roughness are presented in the Ap-
pendix.

II. THEORY OF X-RAY REFLECTIVITY

A. Fresnel equation

e „PA,
2 7

mc 2&

where p, is the electron density, A. is the x-ray wave-

The index of refraction for x rays in matter is less than
unity, and thus they are totally externally reflected from a
surface at sufficiently low angles of incidence. For a per-
fectly flat surface with a sharp interface to the vapor, x
rays obey the Fresnel law of optics. However, for a
diffuse or rough interface, the reflectivity falls off faster
than the Fresnel law, with the difference being a measure
of the characteristic length of the electron-density ter-
mination. ' The Fresnel law of specular reflection is
similar to the Darwin theory for the line shape associated
with Bragg reflection from a sharply terminated crystal
lattice. ' '" If the crystal lattice terminates smoothly, the
tails of the scattering fall off more rapidly than the
Darwin theory. Measurements of both the specular and
Bragg reflectivity allow determination of the characteris-
tic termination lengths of both the total electron density
and the electron density associated with the crystal lat-
tice.

The reflectivity of x rays from a flat, ideal surface can
be calculated from the standard expressions of classical
optics by substituting the following expressions for the
real and imaginary parts of the dielectric constant,

pe~
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length, and P is the absorption length. For simplicity
we will always use the small-angle approximation
[sin(8)=8] where the angle of incidence 8 is measured
from the plane of the surface. With this approximation,
the Fresnel equations for the reflectivity' reduce to

8—(8' —8,' —u")'/2 '
R~(8)=

8+ (8' 82—+i E")'/2 (2)

where 8, =(1—e')' =(p, e A, /mme )' is the critical
angle for total externa1 reflection. The critical wave vec-
tor, Q, =(4n. /A, )8, is independent of wavelength. Nu-
merically, Q, =(3.75X10 '

)p,
' A ', where p, is in

electrons/cm .
If absorption is neglected, the Fresnel law can be writ-

ten as
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For 8»8, Eq. (3) reduces to RF(8)=(8, /28) . This ap-
proximation and Eq. (3) are plotted in Fig. 1 for
8/8, &15. For 8/8, &5 the two forms agree to within
4%.

The effect of absorption (e" & 0) is only important close
to the critical angle, as demonstrated in Fig. 2, which is a
plot of Eq. (2) for various values of the absorption
coeScient. Table I lists values of the absorption lengths
and other parameters for the materials studied.

0
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e/e,

1.5 2.0

FIG. 2. Effect of absorption on the Fresnel reAectivity near
the critical angle. The solid line neglects absorption, the short-
dashed line is for an absorption length of 1 mm (water), and the
dot-dashed line is for an absorption length of 0.1 mm (carbon
tetrachloride).

B. Born approximation

The reflectivity from a real surface departs from the
Fresnel law RF(8) when the surface is not ideally fiat or
the transition to the vapor is not ideally sharp. If scatter-
ing is at angles suf5ciently greater than the critical angle,
the expected reflectivity from nonideal surfaces can be
calculated using the classical equivalent of the "first Born
approximation. "'

10

10

In this approximation, multiple scattering of x rays is
neglected. The differential scattering cross section is
given by

e' A,.I

'
dQ /Do f

(4)

l 10'
where e ' is the unit vector along the polarization direc-
tion of the scattered radiation and
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TABLE I. Absorption coefficient and other parameters for
materials studied. Listed are the electron density p„the mass
density p, the critical wave vector Q„and the absorption length

P ' at X=1.54 A.

e ec

FIG. 1. Calculated x-ray reflectivity at small angles of in-

cidence from an ideal surface of water. The x-ray wavelength is
A, =1.54 A. The solid line is the Fresnel law of classical optics
and the dashed line is the approximation for 8)&0, :
R (0)=(g, /28); 0, =0.0217A

Sample

H20
CC14

CH3OH

Pe
(electrons/cm )

3.34' 10"
4.60x 10"
2.68 x 10

P
(g/cm )

1.000
0.7914
1.587

.Q.
(A-')

0.0217
0.0254
0.0194

p
—I

(cm)

0.10
0.010
0.14
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d'r e '"'[V X (V X4~P)]
4m

If the polarization density in the material is

g, k
=20

4~ 3 Z» g3k2

e' A„
I
Do I

2
3

—i( k —ko) r
k dre

mcu

Xe [nx(nxeo)]p, (r), (6)

where n and e0 are, respectively, the unit vectors along
the direction of the incident wave vector and the incident
E field. The wave vectors k0 and k correspond to the in-
cident and scattered fields. For small angles of incidence,
polarization effects can also be neglected to obtain

Ok . 2f d re 'q'p, (r)
4mp,

do
dQ

(7)

where Q =k —ko.
Figure 3(a) illustrates the coordinate system to be used.

The surface lies in the x-y plane, and the direction of z is
from the material into the vacuum or vapor phase. The
incident wave vector k0 lies in the y-z plane.

For a perfectly flat surface, the integrals over x and y
yield 4n 5' '(Q„~)AO/8O, where Ao is the cross-sectional
area of the incident beam, L90 is the angle the beam makes
with the surface, and 5( ' is the two-dimensional 5 func-
tion. The quantity Ao/80 is the area of the surface inter-
cepted by the incident beam. When the electron-density
profile along the surface normal is a step function, the in-
tegration over z yields 1/Q, =1/(28k) . The differential
cross section becomes

(c)

kate

P= —(e /maP)p, (r)EO(r),

where p, (r) is the local electron density, co is the x-ray
frequency, and Eo(r)=Doexp( ik—o r) is the incident
Geld when absorption and refraction are neglected, then

, I@(g,)I', (10)

where p ( oo ) is the average electron density in the bulk ofe
2the material far from the surface. Thus

I
4(g, )

I

pro-
vides a measure of the sharpness of the interface profile.
The predicted reflectivity is thus given by

R(, )

R„(g,)
=

I
+(Q, )

This expression has been derived by Beckmann and Spiz-
zichino' for the general problem of reflection of elec-
tromagnetic radiation from rough surfaces and has been
invoked by others in relation to optical reflectivity from
the diffuse interface between two fluids near a critical
point.

A more realistic approximation to the nonideal surface
is to assume that it has the same local, gradual surface
profile everywhere, but that its height varies in the x-y
plane as some function h(r„). Interchanging the order
of the x-y and z integrations in Eq. (7) results in

O, k
I@(g ) I'

dQ 4mg,

With d0=d8dg=d Q„/(k 8), the integral over d0
yields the total cross section

a=A 0,
'

(9)0 2g

Note that this calculation of the reflected intensity agrees
with Eq. (2) in the limit of 8»8„with
RF(8)=e/Ao =(8, /28) .

Consider a flat surface that has a gradual density
profile instead of a sharp boundary. The factor
1/Q, =1/(28k) resulting from the integration over dz is
now replaced with (integrating by parts)
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FIG. 3. Kinematics and resolution volume for a two-slit
spectrometer. (a) Scattering kinematics, (b) wave-vector
transfer, and (c) resolution volume.

do
dQ

02k 2
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where

X(Q„,Q, )—: 0

0
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—i .r ig h(r )

r»e e

iQ r iQ, [h(r„)—h(—0)]
)r„e ' 'e

2—Q .rx —Q h(rx )

X fd r~e "~ "e

The differential cross section can be reexpressed as

(12)

(13)

(14)
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C. Gaussian approximation R (Q)= fd'Q'S(Q'):-g (Q —Q'), (20)

The integral in Eq. (12) can be evaluated in terms of
the height-height correlation function' in the limit that
the Hamiltonian is harmonic. This assumption is clearly
valid for simple liquids where the coeScient of the quad-
ratic term contains only the effects of gravity and of sur-
face tension. In this approximation,

—ig [h(r„)—h(0)] —()/2)Q2([h(r„)—h(0)] }

where Q is the nominal position of the spectrometer and
S(Q') is the scattering function. If g(80)d80 represents
the angular distribution of the incident beam, normalized
as fg(80)d80=1, and G(8, $}d8dg is the acceptance
distribution of the detector, normalized as G(80, 0)=1,
the measured reflectivity can be written as

—&z'~'~ "y ]
R(Q)= f f fd8d8dgg(8 )G(8, $)

„ p

(21)

where r„—:
~
r„~and r» (r„»)= —,'([h (r„»)—h (0)] &. If

the height-height correlation function (h (r„)h(0) & only
has short-range correlations, X(Q„,Q, ) can be expressed
as the sum of two terms

If we write Q„=Q=0, Q, =2k80 and Q„'=kg,
Q» =k 80(80—8), and Q,

' =k (280+8—80), and define
(I}—:8—80, then close to the specular condition where

=0,

x(Q„„g,}=(x(Q„„g,}&+5x(Q„„g,),
where

&X(Q„„Q) & =4~'5")(Q„,)&e
"[ '"

(16)
d Q'=28()k dfd80dg=280k dit)d80d8 .

We can thus define

(22)

S(Q'):"g (Q —Q') =— g (8 )G (8,P), (23)
d 8()d 0

z d Q z40 dQ

with

and (T ( ao ) = (h (0) &. The two-dimensional 5 function
5' '(Q„») makes the incident and reflected angles equal
and in the same plane —the conditions for specular
reflection. The second term 5X(Q„,Q, ) gives rise to
diffuse scattering associated with surface roughness. The
relationship between this term and the diffuse scattering
intensity is presented in the Appendix.

The final result for the specular term is obtained by in-
tegrating R (8)= 30 'drr/dQ over the solid angle ac-
cepted by the detector b,Q. Taking d Q„/d 0=k 8,

~
~(g, )

~

'
—,f, ' (X(Q„„g,) &

8k 1 dQ»

C

4

, iWg, )~'f d'Q„,&x(Q„„g,)&.

For 8 &&8„using the expression in Eq. (17) for

(X(Q„»,Q, ) &, the preceding equation becomes'

RF(g )
=e 'i4(g, )(

A more complicated situation arises when h (r„)and
h (0}are correlated over large distances. The extreme ex-
ample is a "rough surface" for which ([h (r„») —h (0)] &

diverges as r ~~. ' Under these circumstances one19,20

cannot make an objective distinction between specular
reflection and diffuse scattering at angles close to the
specular condition. The apparent specular reflectivity
then varies with the resolution of the spectrometer.

The most general way to describe the measured
reflectivity at a particular Q = (0,0, Q, ) is to define a reso-
lution function =& (Q —Q') such that the measured

2

reflectivity is the convolution

4
8,S(Q')—: , ~

(I)(g,')
~

'X(Q„',Q,')
2~p 4m'

(24)

and

g (8())G (8,$)
2k

(25)

S(Q'):-g (Q —Q')=, RF(Q, )
~
@(Q,)

~

'

xx(Q„'»,g, ):"&(Q —Q') . (26)

Substitution of Eqs. (14) and (26) into Eq. (20) yields

R(Q)=, R (Q, )
~
@(Q,) ~'

4m

x fdg, 'fd2Q' f
ig, [h(r ) —h(0)]

&X(e

x=(2 (Q —Q') . (27}

The experimental geometry is illustrated schematically
in Fig. 3. In Fig. 4, the Q„'—Q,

' cross section of the reso-
lution function =& (Q —Q') is shown for an incident

z

beam with intensity uniformly distributed throughout a
range of angles 68p and for a detector with uniform sensi-

tivity over a range 661, i.e., an open slit in front of a broad
detector. ' [The detector-limited resolution function in
Fig. 4(b) is typical of the geometries used in the present
experimental studies. See Table II.] If the spectrometer
is tuned to the specular condition, then $=0 and 8=80
at the center of the resolution volume.

Since nonvanishing values of:-& (Q —Q') are restricted
2

to g, —Q,
' «Q„and since both 4(g, ) and X(Q„»,g, )

are slowly varying functions of Q„



38 CAPILLARY WAVES ON THE SURFACE OF SIMPLE LIQUIDS. . .

hi

(a)

J[
I

I

l
I

II

l

rr
r I

Sg
I

I

I

4( Wg- Wl)ifL

r

Ji

—Q fJ~ ] 2
—Q 0 (r„)-2 2 2 2

e ' =
2 r„~e ' " =& r „,z=O
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Alternatively, if the order of integration and statistical
averaging can be interchanged,

—g ac 1 z (
ig [h(r„)—h(0 1-

)e =
2 r~y e g r~y, z =

4a Z

(32)

and if:-& (r„,z =0) can be approximated by a Gaussian
Z

distribution, we obtain

Using Eqs. (19) and (20), the roughness iyc is defined by
the relation

—g a& 1 z I ig [h(r„„)—h(0)]&-
e * =

z r~y(e ' "" ):-g re z=
4~ 2

(30)

Using the identity (exp(iP)) =exp( ——,'(i)[) )) and the
previous definition for o (r„y), the roughness is just the
weighted average given by

k( w&+ w~)/L

Q o& —— f d r„([h(r„)—h (0)] ):-g (r„,z =0) .
8~' Z

Defining the Fourier transform,

(33)

FIG. 4. Spectrometer geometry and resolution cross section.
(a) Two-slit experimental geometry. (b) Trapezoidal resolution
function.

We define
y

:"g(r„,z =0)—= fdQ,
' fd Q„' e "' "'=g (Q —Q'),

(2S)

h(r„)—: fd Q„' h(Q„' )e

it follows that

—,
' ( [h ( „)—& (0)]')

z f d Q„'y(
~

h(Q„'y)
~

)[I—cos(Q„' r„)]
4n

X-=g (r„y,z =0) .

(34)

(35)

so that

R(Q)= RF(Q, )
i 4(Q, ) i

4m

ig [h(r„)—h(0)]
)

If the order of integration is interchanged and the in-
tegral over r„~ is done first, and we make use of the
definition

:-g (Q„'y,z =0):— f d r„„=g(r„,z =0)
4m Z

X:-g (r„y,z =0) . (29)
IiO I

X xy xy (36)

TABLE II. Parameters characterizing the various spectrometers used in this work.
EQ, =(4m'. )(hd/L) is the full width at half maximum of the resolution function =& (Q —Q ) in the

plane of incidence, where I. is the distance from sample to detector slit. The height-by-width dimen-
sions of the incident slit and the detector slit define the resolution of the spectrometer. The x-ray wave-
length is A,. Different spectrometer configurations were used for CC14 measurements in order to demon-
strate the resolution dependence of the capillary-wave model.

Sample

H20
CC14
CCl~
CC14

CH3OH

Spectrometer
resolution

low
high
high
low
low

Monochromator
crystal

Ge(111)
Si(111)
Ge(111)
Ge(111)
Ge(111)

0.0124
0.0025
0.0025
0.0124
0.0247

h;xw,
(mm)

0.5 x 0.6
0.04 X0.7
0.04x0.7
0.2x0.7
0.3x6

hd xwd
(mm)

1X2
0.2X 1

0.2x 1

1x1
2x18

(A)

1.529
1.529
1.529
1.529
1.695
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then

', =f d'Q„',(
~
h(Q.', )

~

')

X [:-g (Q„'»=0, z =0)—:-g(Q„'»,z =0)] .

)i Qy

I ~ I ~ 2
ox) (~y) = kmax

(37)

However, since

:-g (Q,'» ——0, z =0)=f dg,':-g (Q —Q')

g (&o)G (&, lt )
2k dOO

8=Ho, /=0

(38)

Qx

(39)

is normalized to unity, the final result for the roughness is

c ——f d Q„' (
~

h(Q„'
~

)[1—:-g(Q„'„=0)].

III. CAPILLARY-WAVE MODEL

The two-dimensional energy density for surface waves
is made up of a surface tension term (y/2)[V„»h (r„»)]
and a gravitational term (important only at long wave-
lengths)

U= f d r,
~
V„h(r„)

~

2+ pg f d2r, h(r, )~ .
2

(40)

With the definition

h(r„)—= fd Q, h(Q )e
2~

the total energy can also be written as

d'
xy X xy '+Pa ~

(41)

(42)

Taking into account the density of states and applying
the equipartition theorem,

Since 1 —:-g(Q„',z =0)=0 for
~

Q„'
~

contained within

the resolution volume as illustrated in Fig. 5, this result
says that long-wavelength Fourier components of the sur-
face roughness do not affect the measured reflectivity.
One way to understand this is to note that when the sur-
face is not flat, the decrease of reflectivity in the specular
direction can be viewed as the sum of the destructive in-
terference between waves reflected from different points.
With a spectrometer of finite resolution, interference
effects cannot be observed between points that are too far
apart. Thus the measured 0.

& is the square average of the
height differences between points that are separated by
less than the appropriate coherence length of the radia-
tion. With increasingly coarser resolution, the region in

~
Q„'»

~

over which 1 —:-g(Q„'»,z =0)=0 becomes larger

and larger, and the integral yields smaller and smaller
values of ec.

FIG. 5. Interception of the resolution volume with the Q„'»
plane for a small incident beam slit and a large detector slit.
The measured roughness arises from capillary-wave modes that
scatter the reflected beam outside of the resolution volume of
the detector. The integration in Eq. (46) is over the shaded area.

squared roughness of the free surface due to capillary
waves,

kqT(h(o)')= ' d'Q
4~'y ' ~Q„,~'+k,' (44)

where k =pg/y.
The upper limit of this integral k,

„

is on the order of
n/re, where rsvp is the molecular radius. Without the
gravity term pg/y, the integral would have an "infrared"
divergence since as Q„»~0the energy associated with
Fourier components h (Q„») vanishes. Using these limits,
integration of Eq. (44) results in the following equation
for the "intrinsic" roughness of a liquid surface,

k~7
(h(0) ) = 1n (45)

4~~ k2
g

For water (h(0) )'~ =3.98 A at room temperature.
We will presently show that the gravitational length scale
(1/k ) is inaccessible with realistic resolution volumes,
and the measured or effective roughness is larger than the
intrinsic roughness.

Substitution of Eq. (43) into Eq. (39) yields

kaT
2 1oc — d Q4~'y "'

~ Q„,~

'+k,'
= —,'(y

~ Q„~ +pg)4m (h(Q„») ), (43) X [1—:-g(Q, , z =0)], (46)

one obtains the following expression for the mean- where o.c is the effective root-mean-squared roughness
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k, T
(h(0}2)= ',

2~'r
max

Q„'+k,'
dg„

due to capillary waves. Since 1 —:-&(Q„»,z =0)=0 for

any Q„small enough for the gravity term to make a con-
tribution, the k term can be neglected.

The two-slit resolution function =& (Q, , z =0) ap-

propriate to the experiments discussed below is illustrat-
ed in Fig. 4. A uniformly illuminated rectangular slit just
before the sample fixes the dimensions of the incident
beam. In this geometry, the detector follows a second slit
located a distance L from the sample. The two slits have
dimensions h; )& w; and hd )& wd, respectively. The resul-
tant resolution function has trapezoidal cross sections.
Figure 4(b) shows =& (Q —Q') along the Q„direction.

z

The flat top has a length along Q, of
2k„&——k ( wd w—; ) /L and a base of length
2k„2——k(wd+w;}/L. From Fig. 3(c), one can see that
the trapezoidal cross section in the Q direction would
have a top of length 2k», =k8(hd —h; )/L and a base of
length 2k 2 k8(h——d+h;)/L Alt. hough the algebra is
straightforward for this trapezoidal resolution function,
for purposes of illustration it is easier to consider the case
where the incident beam is much smaller than the detec-
tor slit. Then the trapezoid reduces to a rectangle as il-
lustrated in Fig. 5. Since the measured (h(0} ) arises
from all of the modes which scatter the beam outside of
the resolution volume, the integration is over the shaded
area in Fig. 5. One of the two integrations in Eq. (46) can
be done analytically, yielding the contribution to the
measured roughness due to capillary waves,

k~T k,
„(h(0) ) = log

y

(49)

k~ T
2 2~

Q, ln
2n.y g, rM(68~ )

(51)

and rsvp is the molecular radius and b, 8d hd /L——is the full
width of the angular resolution in the plane of incidence.
It is particularly important to note the logarithmic
dependence on Q, . As mentioned above, the quantity

~
4(g, )

~

describes the local diffuse character of the
liquid-vapor interface. Although various forms have
been proposed for the profile of this interface, ' the data
do not justify anything beyond the simplest Gaussian
form,

~
4(g, )

~

=exp( —
—,'Q, o p). The final form for the

reflectivity is thus

R (Q, ) -~', (g, )g,'

RF(g, }

where

(52)

Note that neither the gravity term k nor the width of
the detector k appears in this final result.

In this approximation, the reflectivity R (Q, ), obtained
by replacing the value of o in Eq. (19) by o c is

R (Q, )=
~
@(Q, )

~

'e (50)

where

8nks T8
c Qz Qz 2 28(g8

+k 1
dg

(Q +k )'n &'r(Q, }Q,'= [~p+&c(Q, }]Q' (53}

Xtan-'
( g 2+ k 2)1/2

combines the effect of the profile (o p) with the effects of
capillary waves [crc(Q, )].

(47) IV. EXPERIMENTAL METHOD

Thus the roughness is approximately given by

k~T (k,„+k)'
(h (0)2)=,'

7Tr g

k +(k +k )'
—log

k

k~T (k,„+k)'

2ny k +(k +k }~

log

(48)

Finally, since kmzz))ky))kg, the preceding expression
reduces to

The first term is the integral over the entire circle in Fig.
5, i.e., the intrinsic roughness. The second term subtracts
contributions from capillary modes that fall within the
resolution volume. The second integral can be simplified
by observing that k„»k &Q for all Q (and k„»k ),
with the result

tan
—'[k„/(Q,'+ k,')'"]=~/2 .

The data were obtained at two locations. Measure-
ments of water and carbon tetrachloride were performed
at synchrotron beam line D4 at HASYLAB (Ref. 23} in

Hamburg, West Germany, while the methanol experi-
ments were done at beam line X22B at the National Syn-
chrotron Light Source (NSLS) at Brookhaven National
Laboratory.

The major technical challenge in building an x-ray
spectrometer for the study of the free surface of liquids is
the limitation that the sample must be kept horizontal.
At synchrotrons, this requires a means of bending the
horizontal beam downward. The spectrometer used at
HASYLAB functions by tilting the monochromator crys-
tal to direct the x-ray beam down at varying incident an-
gles to the liquid surface. ' Because the rnonochroma-
tor crystal at beam line D4 is illuminated by the "white"
synchrotron beam, the bending is accomplished by a sim-
ple tilt of the monochromator goniometer. The size of
the incident beam is determined by a slit located before
the monochromator crystal. The slight shift in the x-ray
wavelength selected by the monochromator due to the
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small change in angle from this tilt is not important be-
cause the reflected intensity is normalized to the incident
intensity using a beam monitor located after the mono-
chromator. The liquid sample is mounted on an elevator
that is lowered as the monochromator is tilted. Since the
sample is centered between the monochromator and the
detector, the x-ray beam is specularly reflected into a
detector that is at the same height as the monochroma-
tor. A slit before the detector determines the outgoing
resolution.

The spectrometer used at NSLS differs from previous
synchrotron liquid-surface spectrometers in the method
of tilting the horizontal x-ray beam. After Bragg
reflection from a monochromator crystal, the beam is
bent down onto the liquid sample by a second matched
perfec't crystal that is rotated about the beam incident on
this crystal. The rotation of the second crystal causes the
beam to sweep out a cone with a vertical deflection of
a = (2v/A, )sin8&sinX and a horizontal shift of
b, 8=(2n /A. )sin8&(1 —cosX), where 8& is the Bragg angle
of the crystal reflection and 7 is the rotation angle. A ro-
tation about the axis of the incoming beam has the ad-
vantage of eliminating the small shift in the x-ray energy
produced in the other spectrometers when the monochro-
mator is tilted about an axis perpendicular to its recipro-
cal lattice vector. This rotation is necessary in a spec-
trorneter using two "monochromator" crystals, but can
also be employed in a design using a single crystal. At
bean line X22B, the second, matched crystal is mounted
in the center of a standard, horizontally scattering,
Huber 4-circle diffractometer. The entire liquid free-
surface spectrometer is mounted on the "28" arm of the
Huber diffractometer. The liquid sample cell is located
on an elevator centered 600 mm from the 28 axis. Sym-
metric input and output arms hold vacuum flight paths
and de6ning slits. Other than the preceding differences,
for the purposes of the experiments reported here, the
spectrometer was similar to the instrument used at
HASYLAB. A detailed description of the spectrometer
and its use will appear elsewhere.

In all of these experiments, the liquid sample is spread
on a Pyrex disk placed inside a sealed cell. The Pyrex
disk is thoroughly cleaned at a temperature of —100'C
either in chromic-sulfuric acid or, preferably, in an equal
mixture of sulfuric acid with concentrated (30%) hydro-
gen peroxide, so that the liquid completely wets the
glass surface. The disks had a diameter of 57 mm in our
first cells; a second design permitted the use of a larger
area sample with 76-mm-diam. Pyrex disks. In the larger
cell, about 1.4 ml of liquid is used to form a uniform layer
about 300 pm high. The use of a sample this thin is criti-
cal in order to damp out the long-wavelength vibrations
that would otherwise obscure the measurements. Howev-
er, the samples were thick enough to avoid reflection
from the glass substrate as absorption limits beam
penetration to depths to less than 25 pm at the angles of
incidence used. The x-ray windows of the sample cell
were made on Kapton. A 1000 A gold layer was deposit-
ed on the windows to improve their thermal homogeneity
with the rest of the oven. The gold coating reduces con-
densation on the windows —important when using vola-

tile liquids such as carbon tetrachloride and methanol.
The experiments reported here were all performed at
room temperature.

V. EXPERIMENTAL RESULTS

A. Water

10'
(a)

I
I I

I

(b)

I
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FIG. 6. Measured x-ray reflectivity of the free surface of wa-

ter. (a) X-ray refiectivity as a function of the longitudinal
wave-vector transfer. The solid line is the calculated Fresnel
reAectivity for the ideal step-function interface. (b) Logarithm
of the measured reflectivity normalized to the Fresnel
reflectivity plotted vs the square of the wave-vector transfer.
The solid line is the best fit to the form
R (Q, )/RF exp( —oMQ,'), where a——~ =3.3+0. 1 A.

X-ray reflectivity measurements of the free surface of
water (surface tension of 73 dyne/cm) have been previ-
ously reported. These results are reproduced in Fig. 6.
The measured reilectivity is plotted versus Q, as closed
circles in Fig. 6(a). The solid line is the rellectivity given
by the Fresnel law of optics. At small wave vectors the
agreement between the Fresnel law and the data is excel-
lent. However, at the largest wave vectors the difference
becomes significant. It is the deviation from the Fresnel
law which allows us to measure the actual roughness of
the interface.

The capillary-wave model, Eq. (52), predicts that the
ratio of the measured reflectivity divided by the Fresnel
reflectivity R/RF should be nearly Gaussian. Figure 7 is
a semilog plot of this ratio versus Q, . The data points
fall on a straight line. The solid line is the theoretical
prediction given by Eq. (53) with cree=0, that is, includ-

ing only the contribution from capillary waves. The
slight upward curvature results from the logarithmic
term in Eq. (51). The effective roughness from capillary
waves o c depends weakly on Q, as predicted by Eq. (51)
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FIG. 7. Experimental results and the capillary-wave model
for water. Measured reflectivity from the water-free surface
normalized to the Fresnel re6ectivity is plotted vs the square of
the wave-vector transfer. The solid line is the prediction of the
capillary-wave model for the spectrometer configuration used in
the experiment. The dashed line is the best fit to Eq. (53) giving

O

a surface profile width of harp
——1.8+0.2 A, approximately equal

to the expected radius of the water molecule (1.93 A).

B. Carbon tetrachloride

The surface tension of carbon tetrachloride (CC14),

y =27 dyne/cm, is nearly three times smaller than that of
water. Therefore the root-mean-squared amplitude for

and shown in Table III. A fit to Eq. (53) where only the
profile width is allowed to vary gives o.z ——1.8+0.2 A
(Ref. 27) as shown by the dashed line in Fig. 7. The fitted
profile width is reasonably close to the average radius of
the water molecule of 1.93 A. We have also fit the data
to a simple Gaussian form, exp( —o sr Q, ), where the re-
sult O.

M ——3.30 A includes the effects of both the profile
and capillary waves.

thermal capillary waves should be larger by approximate-
ly a factor of 1.6. In Fig. 8, the ratio R /RF is shown for
CC14 (see Table II for the spectrometer configurations)
and for water. The reflectivity for CC14 is considerably
smaller than that of water, as shown in the figure. At the
largest q vectors the ratio of the reflectivity for these two
liquids is consistent with the ratio of the two surface ten-
sions. This is somewhat fortuitous since the ratio is only
applicable to O.c and not o.T.

In order to determine the resolution dependence of the
capillary-wave model, different spectrometer
configurations were used for the CC14 measurements.
Reflectivity data for the "high" and "low" resolution
configurations (see Table II) as shown in Fig. 9 as closed
circles and triangles. The capillary-wave model predicts
that as the resolution is coarsened, for example, by en-
larging the detector slit, there should be an increase in
the number of capillary-wave modes which are accepted
by the detector. The reflectivity data with the coarser
resolution are higher, as predicted by the capillary-wave
model. Since the resolution enters logarithmically into
cr& the resolution must be changed dramatically to ob-
serve this effect. For the measurements of interest this
amounts to about a 20% decrease in the roughness for a
factor of 5 increase in the resolution (see Tables II and
III).

The results of the capillary-wave model with o p
——0 for

the two different spectrometer configurations are shown
in Fig. 9 as solid lines. The capillary-wave contribution
O.c varies from 4.5 to 5.0 A for CC14 and depends on the
resolution and the q vector as shown in Table III. As is
the case for water, for CC14 the capillary-wave model is
not sufficient to explain the reflectivity data. It is neces-
sary to add a profile width 0.

& to model the observed
reflectivity. We have fit the deviation from the Fresnel
law to the form exp[ —o T(Q, )Q, ), where o T

——ac+o~
and only 0~ is allowed to vary. The fitted profile width
depends on the spectrometer and varies from 3.9+0.1 to
2.5+0. 1 for the different configurations. The values of
the measured profile width 0 z are close to the molecular
radius of 3.88 A for CC14. The spread in the measured
values of 0.~ may be related to systematic uncertainties.

We have also fit the data to a simple exponential form
exp( crsrQ, ) Th—e fitted w. idth crier varies from 5.13 to
6.04 A. The results are summarized in Table III.

TABLE III. Theoretical and experimental results for the roughness of the studied liquids. o c(Q, ) is the value calculated from Eq.
(51) for various values of Q, . The measured quantity crM is obtained by the best fit of the data to the form exp( —oIQ,'), while op is
from the best fit to the general form, Eq. (51), using the listed values of the molecular radius r, and the surface tension y. The spec-
trometer configuration used for each of the measurements is given in Table II. Different spectrometer configurations were used for
CC14 measurements in order to demonstrate the resolution dependence of the capillary-wave model.

Sample
fp
(A)

r
(dyne/cm) Q, =0.2 A

oc(Q, )

(A)
Q, =0.3 A Q, =0.4 A (Measured)

H20
CC14
CC14
CC14

CH3OH

1.93

3.38

2.52

73

27

23

2.88
5.00
5.00
4.59
4.85

2.82
4.90
4.90
4.48
4.73

2.77
4.83
4.83
4.41
4.65

3.3 +0. 1

5.93+0.06
6.04+0.07
5.13+0.06
4.80+0.06

1.8+0.2
3.9+0.1

3.3+0. 1

2.5+0. 1

0.7+0.4
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FIG. 8. Measured x-ray reflectivities. The measured
reflectivities normalized to the Fresnel reflectivities are plotted
vs Q,~. The closed triangles (closed squares) are data for carbon
tetrachloride from a high (low)-resolution spectrometer. The
closed circles are the water data repeated from a previous
figure. The inverted closed triangles are data for the free sur-

face of methanol. The solid line is the best fit to the form
R (Q, )/RF exp( —v——MQ, ).

C. Methanol

The surface tension of methanol (CH3OH), y=23
dyne/cm, is 15% smaller than that of CC14, and we ex-
pected that the reflectivity would also be slightly lower.
In Fig. 10, the reflectivity R/RF is plotted versus Q, .
Although the data look rather similar to the CC14 data a
quantitative analysis reveals a fundamental difference.
The solid line in Fig. 10 displays the theoretical
reflectivity using the form exp( —Ocg, ) that only in-

cludes the contribution from capillary waves. Over the
range from Q, =0.2 to 0.4 A ', vc varies from 4.85 to
4.65 A as shown in Table III. In contrast to the other
two liquids, the capillary-wave model with 0~ =0 is very
close to the measured value. If we allow o.z to vary, the
best fit is achieved with o+ ——0.7+0.4. This value is con-

0

siderably smaller than the molecular radius rM ——2. 52 A,
suggesting the molecular radius may be an inappropriate
measure of the surface-profile width. Since the electron
density tensor is rather anisotropic for methanol, surface
ordering of the methanol molecule could significantly
reduce 0.~ from rM. However, we do not believe that this
effect alone can explain the methanol data.

Another possibility is that the capillary-wave model,
which incorporates a sharp cutoff of the modes at m/rM,
may be incorrect at small length scales. The
justification of the cutoff is that capillary waves cannot
propagate on length scales smaller than the molecular
size. However, our capillary model, which uses a step
function cutoff, assumes the

FIG. 9. Reflectivity of carbon tetrachloride. The measured
reflectivity of carbon tetrachloride normalized to the Fresnel
reflectivity is shown. The closed squares are data from a "high"
resolution spectrometer and a Si(111) monochromator crystal.
The closed circles are for a "high" resolution spectrometer and
a Ge(111) monochromator crystal. The closed triangles are for
a "low" resolution spectrometer and a Ge(111) monochromator
crystal. The straight lines are the predictions of the capillary-
wave model for the two resolutions. The dashed lines are the
best fit to a surface-profile width which is added in quadrature
to the capillary roughness. The results of the fits are sumrna-

rized in Table III.

(y/2)[V„»h (r„»)]'
term is constant at all length scales. If, for instance,
there is an enhancement in the surface tension at large
values of Q„»,the capillary-wave contribution would be
smaller. This enhancement seems plausible since the
methanol molecule is anisotropic relative to both water
and CC14. If, for instance, the cutoff was raised from

0

n/rl to 2n/rM, o c is reduced by approximately 0.2 A,
which in turn increases ep to approximately 1.5 A.
Therefore the possibility exists that the deduced value of
clap is wrong because we have incorrectly estimated the
proper way to sum over the thermal capillary modes.

VI. CONCLUSION

For the measurements presented above for water, car-
bon tetrachloride, and methanol, the continuum model
for thermally induced capillary waves on the free surface
is a reasonable description of the roughness. The data
clearly show that there is an additional contribution to
the roughness due to the finite size of the molecules. In
the case of water, and also for carbon tetrachloride, this
length is identified as the radius of the molecule. Howev-
er, for methanol, which is rather anisotropic relative to
both water and to carbon tetrachloride, this length is
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APPENDIX: DIFFUSE SCATTERING

0.1

The diffuse x-ray scattering from a rough surface can
be treated as a perturbation on the solutions for a smooth
surface. We model the polarizability of our rough sur-
face by a surface that is ideally flat and smooth, coated
with an infinitesimally thin surface layer having an x-ray
polarizability given by

I I I

0 025 0 050 0 075 0, 100 0.125

Q ' (a-'j
a(r„)= f~k, P8 h(r„)=

4m.

g2
h (r„), (54)

FIG. 10. Reflectivity of methanol. The measured x-ray
reflectivity normalized to the Fresnel reflectivity from methanol
is plotted as a function of Q, . The solid line is the prediction of
the capillary-wave model with no adjustable parameters. The
dashed line is the result of a least-squares fit to a profile width
which is added in quadrature to the capillary-wave roughness.

0
The resulting width o =0.7+0. 1 A suggests that the anisotropy
of the methanol molecule must be considered. The spectrome-
ter configuration is given in Table II.

where h (r„)is the height of the surface at r„.This ex-
pression is only valid in the limit that qh « l. For a
plane wave E'(8o) incident at an angle 8o with respect to
the surface plane, the surface electric field E'(8o) is the
sum of the incident field E'(8o) and the reflected field
E"(8o) that are determined by solutions to the boundary
value problem for the ideal flat surface. The surface elec-
tric field E (8o) acts on the inhomogeneous polarizability
to induce a surface current distribution,

—'jc'

J(r„») = i (co/c)a(r„)E'(8o)e (55)

smaller than the mean radius of the molecule suggesting
that the profile width is smaller than the incan molecular
radius. This could possibly be due to some degree of
molecular orientation at the surface. Alternatively, it is
also possible that the capillary-wave model is not valid at
the smallest length scales and that the preceding calcula-
tion overestimates the thermal contribution to the rough-
ness.

This work demonstrates that the technique of x-ray
reflectivity is well suited for the study of the roughness of
the liquid-vapor interface. However, the present work
only includes measurements of diffuse scattering near the
specular condition. Measurement of diffuse scattering
away from the specular condition remains an interesting
and challenging problem.
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where J and E are polarized in the plane of the surface
and k' is the incident wave vector. If a(r„») and J(q,» )

are defined in terms of their Fourier integrals in the plane
of the surface, with

a(r„)= f d q„a(q„)e'"""' (56)

and

J(q„)= fd r„J(r„»)e
2m'

(57)

then

J(q„)=i(to/c)a(q„+k')E'(8o) . (58)

The surface current J(q„)induces transmitted and
reflected fields that modulate the incoming and outgoing
fields at the surface, respectively. We will refer to these
induced fields as diffuse transmitted (dt) and diffuse
reflected (dr). The diffuse transmitted wave goes as

E 'exp[i(q„r„+k'.z)],
and the diffuse reflected wave goes as

E "exp[i(q„.r„»—k "z)],
where k ' z= —(co/c)8 and k " z=(co/c)(8 —8, )' are
wave-vector components along the surface normal. As-
suming a thin surface transition layer, the amplitudes of
the surface fields can be obtained from the continuity
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and

E„"(q„)=E„'(q„») (59)

k,d"Ed"(q„)+k,"'E„'(q„») = J„(q„»),c
(60)

equations for the tangential components of E and H. For
simplicity, we consider only the case where the electric
field is polarized parallel to the surface and normal to the
plane of incidence, since for small angles the general re-
sult is independent of the incident polarization. For a
thin current layer normal to the plane of incidence
J(q„»),the continuity of E and H= VX E gives

near to the specular reflection

d r' VG(r;r'}=d r' 670

2 ITC

—lcoplc + /k dr

e xy

(68)

X( A "( „)A""(0)&. (69)

Since the illuminated sample area is given by Ap/Oo, the
integral can be evaluated in the far field to obtain

r

go 277cr

where the solution to these equations yields

(4mi co/c)a(q„»+k')E'(go)
E""(q„)=~» g+(g2 g2)I/2

(6l) ~dr (E. dr(r )Edr(0) &

I

E'( go) I

'

It is straightforward to obtain

do' ~0 c08

The autocorrelation function for the scattered field is
given by

(E""( „)E"(0)&=

waxy

g+(g2 82)1/2

kl
X ( a(r„)a(0)&e

(70)

On substitution of the electric field correlation function,
Eq. (65),

I (488o)'[RF( 8}RF(go) ]'"1
p 4~'

x
I
E'(go)

I
(62) [k""—k') ~

x fd r„»e' '"(h(r„»)h(0)&, (71)
or in terms of the height-height correlation function as

(g, co)/c
(Ed"(r„,)E'"(0)& =

g+ ( g2 g2 )
1/2

kl
X(h( „)h(0)&

x IE'(go)
I

'.
Since the electric field is enhanced at the surface by

(63)

26Io
E'(go)=, , E'(go) .

g + ( g2 8Z) & /2
(64)

the autocorrelation function can be expressed in terms of
the incident field

(E "(r„)E"(0)& = (28ocu/c) [RF(8)RF(go)]'/

X(h( „)h(0)&
x

I

E'(go) I', (65)

A(r)= I d r„' .V'G(r;r')A(r')
r'=r

xy

using a Green's function that vanishes on the surface, '

(66)

G (r;r') = 1

4m

e
—i coR /c —i coR'/ce

(67)

where RF is the Fresnel expression given by Eq. (3).
It is straightforward to calculate the far-field pattern

corresponding to these surface fields from the KirchofF
integral

is the "surface scattering enhancement factor. " It is in-
teresting to note that 8 and go appear symmetrically. For
angles 8»8, and go»8, the surface enhancement fac-
tor is unity. This is clearly not the case when 9 or 6Io ap-
proach the critical angle. For instance, if both 8 and go
are exactly equaI to the critical angle then the scattering
is enhanced by exactly 16. Although other general
derivations of this result have been published and applied
to radar and optical regions of the electromagnetic spec-
trum, we believe the relative simplicity of the
present derivation for the small angles appropriate to the
x-ray problem is advantageous.

Although the existence of the surface scattering
enhancement factor should prove usefu1 in distinguishing
surface scattering from bulk scattering, for simplicity we
will only consider the region where the enhancement fac-
tor is unity. For capillary waves, the cross section for
diffuse scattering becomes

do ~o (co/c) ka T
dQ go 4~2 y I Q„ I

2+pg

where Q„=(k""—k') r„.In the limit that 8 and

L9o y) 0„

(72}

the differential cross section is given in terms of the
height-height correlation function. We note that this
form is also applicable to scattering from solids. The
term

(498o) [RF(8)RF(go)]'

where R' is the mirror image of R =
I

r r'
I

in the—plane
of the surface. Noting that k, "=(co/c)8, in the direction

do-, ~o
dn '"" 8,

k~T

r I Q., I
'+pg

(73)
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It is interesting to note that the final form of the
differential cross section does not depend on Q, .

The diffuse scattering intensity

10 -1.0 -0.5 0 0.5 1.0 -1.0 -0.5 0 0.5 1.0
10 Qy/Qz l0 Qy/Qz

FIG. 11. Calculated diffuse x-ray scattering of the free sur-
face of water. The scattering is calculated from Eq. (77) using
the spectrometer parameters given in Table II. The transverse
wave vector, Q», is normalized to Q, and the intensity is nor-
malized to R+. The dot-dashed line is the total intensity that
would be observed as the spectrometer is scanned through the
specular condition. (a) Q, =0.03A '. (h) Q, =0.10A

2O'D = kit T
4m.y

b,g»+ k»

IQ —k
(78)

of Q, in Fig. 11. As discussed in the text, the total signal
observed at the specular condition (Q =0) is the sum of
the intrinsic specular reilectivity (due to the long-
wavelength gravitational cutoff) and the diffuse scattering
that falls within the resolution function. The dashed line
in Fig. 11 illustrates the predicted level for the total in-
tensity observed as the spectrometer is scanned through
the specular condition. Although the solid line in Fig. 11
depends on the gravitational cutoff, the total intensity, as
indicated by the dashed line, is independent of the cutoff.

For short wave vectors (Q, tr r & 1), the diffuse scatter-
ing predicted by Eq. (75) increases with Q„both from the
explicit dependence on Q, and from the implicit depen-
dence associated with the increase of the projected height
of the resolution function k with Q, . On the other hand,
for the resolution shown in Fig. 5 and the parameters in
Table II, one can demonstrate (and the numerical results
in Fig. 5 illustrate}, that when ID(0, Q„,Q, ) is written as a
function of Q»/Q„ the functional form is independent of

z'
In the limit k» «k„,the integral is approximately

equal to

ID —— dQ
A o resolution d 0 (74)

involves an integration over the resolution volume. By
converting to reciprocal space and normalizing ID to RF
the integration reduces to a simple integral over the q,
and q resolution which is centered at Q„and Q»,

ID(g„,g», Q, )

F
(75)

where

k2t T (2„+k„,Q»+k» dq„dq
4~' ~ -""~.-".

7 I Q.,+q., I +W

(77)

where cr z- contains the effects of the profile and capillary
waves as described in the text. The results of the calcu-
lated diffuse scattering for water, using the resolution
given in Table II, are shown for Q, =0 and for two values

and the integral is over a region in q„—q like that shown
in Fig. 5. Note that the width of the rectangle along Q
is linearly proportional to Q„ that is,
2k»=28k(hD/L)=g, (hD/L) This result . is only valid
in the limit that Q, t»D «1 and does not contain a
Debye-%aller Gaussian term since only single scattering
events are considered in the analysis. At larger q vectors,
the correct result must contain a Debye-Wailer term so
that the scattering sum rule is satisfied. This is analogous
to one-phonon process in three dimensions

ID(0, », 0, } 2k» i 33g i2= (0.66Q, ) e
RF *

IQ» I

(79)

where Q, is in A '. For constant 2k /Q, ID/R» is
maximized at 0.2 A '. At 0.2 A ' and 2k /Q =1,
ID/R» =0.01, which corresponds to about 1 count/sec at
an incident Aux of 10 counts/sec and is clearly measur-
able at existing synchrotron sources.

A second practical issue associated with measuring
weak diffuse scattering at angles close to the specular
condition is whether or not the tails of the resolution
function obscure the weak diffuse signal. For the condi-
tions just described, the predicted ratio of the diffuse in-
tensity to the specular signal is approximately 1.5%.
Spectrometers can be designed to detect this level.

A more serious technical challenge will be separating
the surface scattering from the total scattering consisting
of both surface and bulk scattering. For scattering angles
close to the critical angle, the angular dependence associ-
ated with the surface enhancement factor may provide
the means for separating the two signals. Another possi-
bility is to use the wavelength dependence of the scatter-
ing, as the x-ray penetration into the bulk varies as the
third power of the wavelength.

Ifk « Ig I, then

c»D (kit T/4tr——y )(25Q /
I Q I

) .

If the spectrometer is tuned off the specular condition,
then for water at room temperature and k» « I Q» I, the
expression for the ratio of the scattering to the Fresnel
reflectivity is given by
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