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Quantum-tunneling rates and stationary solutions in dispersive optical bistability
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For the model of Drummond and Walls describing dispersive optical bistability, stationary solu-

tions as well as quantum-tunneling rates are calculated by solving a pseudo-Fokker-Planck equation
(PFPE), i.e., a Fokker-Planck-like equation with a non-positive-definite diffusion matrix, in terms of
matrix continued fractions. Due to the quantum nature of the model, an interesting oscillating vari-

ation of the decay rates of the PFPE as a function of the scaling factor for the photon number is

found for small cavity damping.

I. INTRODUCTION

In the past decade optical bistability has become an im-
portant field in quantum optics (see, for instance, Refs.
1 —4 for reviews). In optical bistability, as in every bi-
stable system, there are two stable states. Without any
fluctuations the system stays in one of these two stable
states. If fluctuations are taken into account, one has a
certain probability that the system jumps from one state
to the other. Obviously, an appreciable jumping pate
would destroy the usefulness of an optical bistable device.
Therefore one tries to eliminate these fluctuations. In
principle this is possible for external as well as for
thermal fluctuations. Quantum fluctuations, however,
cannot be eliminated. These quantum fluctuations also
lead to transitions from one state to the other. In this
case one talks of quantum tunneling in analogy to the
quantum motion of a particle in a double-well potential.
Because a potential does not exist for dispersive optical
bistability this is, however, only a formal analogy. In the
present paper our main objective is the determination of
these quantum-tunneling rates for the model of Drum-
mond and Walls describing dispersive optical bistability.
These quantum-tunneling rates are very important be-
cause they determine the ultimate stability of the two
stable states, i.e., they determine the ultimate limits of
working conditions for such a device. (For absorptive
optical bistability Savage and Walls suggested to reduce
the tunneling rate by using a squeezed vacuum field as
cavity input. )

In the model of Drummond and Walls a single quan-
tized field mode inside the cavity is driven by an external
coherent classical field. The nonlinear material inside the
cavity is described by a nonlinear polarization. Dissipa-
tion due to cavity losses is taken into account by a cou-
pling to a heat bath, as usually done in quantum optics.
The model has the advantage that only the operator for
the cavity light mode enter in the equation of motion for
the density operator. Besides this simplicity it is a non-
linear and nontrivial quantum model fully capable of
describing the quantum fluctuations. In addition to
quantum fluctuations, thermal fluctuations are also in-
cluded in the model. Solutions of this master equation
have been derived for the following two cases. (1)

Analytical results for stationary expectation values of the
field operator in the absence of thermal fluctuations have
been derived in Ref. 5 by using the complex P function of
Gardiner. In addition to these solutions, nonstation-
ary solutions have been obtained in Ref. 5 by a lineariza-
tion procedure. (Such a linearization, however, does not
lead to the tunneling rate. ) (2) In the low-damping limit
tunneling rates, i.e., the lowest nonzero eigenvalues of the
master equation for the density operator, have been ob-
tained numerically in Ref. 10 by solving an appropriate
Pauli-type master equation. Stationary Q functions as
well as expectation values are also calculated in that
reference.

In order to solve the equation of motion for the density
operator we derive an equation of motion for the
Glauber-Sudarshan P function"' and for the Q func-
tion, i.e., for the expectation value of the density operator
with respect to a coherent state. An equation of motion
for the Wigner distribution' is also obtained. (For a re-
view of different representations of the density operator
see Ref. 14.} It turns out that the equations of motion for
the P and the Q function have the form of a Fokker-
Planck equation, but the diffusion matrix is not positive
definite or semidefinite. Therefore it is not an ordinary
Fokker-Planck equation (FPE) and it cannot be interpret-
ed as describing the Brownian motion of a particle under
the influence of a suitable force. For this reason we
termed such an equation a pseudo-Fokker-Planck equa-
tion (PFPE). (Fokker-Planck equations with non-
positive-definite diffusion matrices are also treated in
Refs. 15 and 16. These PFPE's have linear drift
coefficients and are therefore much easier to handle than
the present one. }

By doubling the phase space and introducing the posi-
tive I' function, it is possible to derive a Fokker-Planck
equation with a positive definite or positive semidefinite
diffusion matrix. (For a discussion of generalized repre-
sentations of the density operator the reader is referred to
Refs. 7 —9 and 17.) The Langevin equations correspond-
ing to the Fokker-Planck equation can then be simulat-
ed, ' but one has to handle twice as many variables as in
the original problem.

For a non-positive-definite diffusion matrix we may
still have a stable stationary and time-dependent solution.
A simple illustrative example is given in the Appendix.
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II. MODEL AND BASIC EQUATIONS

In their model for dispersive optical bistability, Drum-
mond and Walls consider a single-mode field inside a
cavity which contains a nonlinear dispersive medium.
The mode is driven by an external classical coherent driv-
ing field. In their derivation of the master equation the
polarization is introduced phenomenologically and it is
expanded up to third order. By neglecting the second-
order term in this expansion and using the rotating-wave
approximation they obtained a single-mode Hamiltonian
of the form

H/%=co a a+pa~ a (2.1)

where cu, is the frequency of the cavity mode and P is the
anharmonicity parameter. Adding the Hamiltonian for
the coherent driving field with frequency coL and includ-
ing a loss mechanism, which takes into account the cavi-
ty damping, they derived a master equation for the densi-
ty operator of the cavity field mode. In a reference frame
rotating at frequency coL and in a slightly different nota-
tion this master equation can be written as

p = i [H /A, p]+—aL;,[p], (2.2)

Therefore we use for our calculations the equations of
motion for the P and Q function with their non-positive-
definite diffusion matrices instead of the Fokker-Planck
equation for the positive P function. By applying the ma-
trix continued-fraction (MCF) method, which was
developed in Ref. 19 (see also Ref. 20 for a review) for
solving two-variable FPE's, we obtain the stationary solu-
tion as well as the lowest nonzero eigenvalue and some of
the low real eigenvalues of the PFPE for the Q function.
It turns out that in the bistable region the lowest nonzero
eigenvalue is well separated from the higher ones and
therefore determines the decay rate of the stable states,
i.e., the tunneling rate. Additionally, we show that, due
to the quantum nature of the problem, the tunneling rates
show an interesting oscillating variation as a function of a
system parameter by which the photon number inside the
cavity scales. The main idea of this procedure and pre-
liminary results are reported in Refs. 21-23.

The present paper is organized as follows. In Sec. II
we present the model and the basic equations. In Sec. III
the pseudo-Fokker-Planck equation is given. Next, in
Sec. IV we show by a suitable expansion of the P and Q
function how the PFPE can be reduced to a tridiagonal
vector recurrence relation. In Sec. V we explain the rna-
trix continued fraction (MCF) method for solving the tri-
diagonal vector recurrence relation. Finally, in Sec. UI
the results for the stationary solution as well as for the ei-
genvalues are presented.

suitable units, which can be chosen to be real; ~ is the
cavity damping constant; n, h is the number of thermal
photons inside the cavity; and a and a are the creation
and annihilation operators for the light field inside the
cavity.

In Ref. 24 a microscopic model of optical bistability,
taking into account the microscopic nature of the rnedi-
um inside the cavity, was investigated. The medium was
treated as a two-level system and it was assumed that a
large number of atoms are present. After deriving an
equation of motion for the positive P function containing
both the field variables and the atomic variables and after
adiabatically eliminating the atomic variables, Drum-
mond and Walls obtained an equation of motion for the
positive P function containing only the field variables. In
the dispersive limit and if our notation is used this equa-
tion agrees with the equation of motion for the P func-
tion, which we will obtain from (2.2) in Sec. III. By per-
forming the adiabatic elimination and taking the disper-
sive limit, the model based on the Hamiltonian (2.1) can
then be put on a microscopic basis. In contrast to Ref. 24
where a large number of atoms was considered, Savage
and Carmichael have shown that absorptive optical bi-
stability may exist even for a single two-level-atom sys-
tern.

a=Tr(ap), a'=Tr(a p),
the following equation:

(2.5)

(2.6)a=iQa aa 2iX—Tr(a—a p)+iF .

By factorizing the term Tr(a a p) we arrive at the "clas-
sical" equation without fluctuations (see also Refs. 5 and
10),

(2.7)

It should be mentioned that the factorization is a good
approximation in the limit Q/X~ oo, i.e., for a large
number of photons inside the cavity; see below. Only in
this limit can the factorization be performed uniquely.
Introducing the normalized quantities (Q&0, otherwise
the system is not bistable for any value of the driving field
F)

Xt =Qt, a=&X/Qn, I=—a*a,
(2.8)

1
K =~/Q, F= &X/QF, —

0

A. Classical limit

From (2.2) one obtains for the expectation value of the
operators a and a t,

where H/A' and L;,[p] are given by

H /fi = —Qa ta +Xa t a F(a +a— (2.3)

Eq. (2.7) is transformed into the normalized form

=[i (1—2
~

a
~

) R]a.+iF .— (2.9)

L;,[p]=2apa —pa a —a ap+2n, h[[a,p],a ] . (2.4)

Here Q is the difference between the frequency of the
driving field and the frequency of the cavity mode, i.e.,
Q=coL —co„' I' is the amplitude of the driving field in

The unnormalized intensity I =a'a=Tr( aap) is the
photon number inside the cavity. Because I scales with
0/7, this parameter essentially describes the number of
photons inside the cavity (I is of the order 1; see Fig. 1).
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(a a ")= f a a""Q(a)d a . (3.1 1)

For squeezed states the P function does not exist in gen-
eral. (For a discussion of squeezed states see, for in-

stance, Ref. 30.) Nevertheless, the expansion coefficients
of the P function into a complete set of functions do exist
because they are connected with the expectation values.

I

Therefore the equations of motion for the coefficients of
the P function may also be used for calculating expecta-
tion values and eigenvalues, see Secs. IV and V.

By standard techniques (see, for instance, Refs. 9, 28,
and 29) the operator master equation (2.2) is transformed
into an equation of motion for the P function, the Q func-
tion, and the %igner distribution. These partial
differential equations read

"r}P

r}t
[ 1ra—+i Qa+2i(1+ 1)Xa 2i—Xa a"+iF]P*

Ba

[—aa" i Q—a' 2—i (1+1)Xa'+ 2iXa' a iF]—Pa*

+iX a P +2'(n, h+ —,'+ —,') +iX a' P
aa2 '" ' ' aa'aa aa" (3.12)

ae a 2
( ma+—i Qa+2iXa 2iX—a a'+iF) W

r}t Ba
( —1ra" i Q—a' 2i—Xa'+2iXa' a iF) W—a'

(3W i 8, 8
+2~(n,„+—,') + —X,2

a' —
2
a W .

Ba'Ba 2 Ba Ba' Ba'Ba
(3.13}

In (3.12) the upper signs are valid for the P function,
while the lower signs are valid for the Q function. The
equation of motion for the P function is also easily ob-
tained from the equation of motion for the generalized P
representation derived in Ref. 5 by setting a =a' and us-

ing our notation. Comparing (3.12) and (3.13} one real-
izes that the terms containing first-order derivatives differ

only by the terms 2iXa and 2iXa', whereas the second-
order-derivative terms in (3.12) are replaced by second-
and third-order derivatives. It should be noted that in

(3.13) the third-order-derivative terms are due to the non-

linearity in the Hamiltonian (2.1). Because of the special
form of the Hamiltonian (2.1), Eq. (3.12) does not contain
higher than second-order derivatives. Other nonlineari-
ties such as a or a~ a would yield higher-order deriva-
tives. The terms stemming from the loss mechanism are
quite similar for all three functions P, Q, and W,

a+, a'+2(n, „+f)Ba' Ba'Ba

0 for the P function

f= . —,
' for the signer distribution

1 for the Q function .

(3.14)

Although third-order or higher-order derivatives can also
be handled by the MCF method, we investigate in the
present paper only the pseudo-Fokker-Planck equation
for the P and the Q function because it has a simpler
form than the equation of motion for the %'igner distri-
bution. It should be noted, however, that the results ob-
tained from the Wigner distribution should agree with
the results obtained via the P and Q function because the
representations (3.12) and (3.13} of the master equation
(2.2) are equivalent and no further simplification or ap-
proximation will be made. As shown in Sec. VI the re-

a=a)+lap

a . a
Ba 2 Ba 1 1)a2

8 1 8 . 8+lBa' 2 Ba, Ba2

(3.15)

(3.12) takes the form (summation convention for repeated
indices)

BP 8
D P 3 ()

gg ga ' ga ga J

where the drift and diffusion coeScients are given by

(3.16)

D 1 +a1 ~a2 2( 1 + }X 2+ 2Xa2(a1+ a2

1ra2+ IIa1+2( 1 + 1 )Xa1 2Xa1(a1+a2)+F
KD11=+Xa1a2+ (noh+ 2

+
p ) . (3.17)

2 2
12 21 ( 1 2)

2

D22=+Xa1a2+ 2(n h+-,'+-,') .

l

suits obtained from either the P or the Q function do
agree. This is in contrast to the problem of
representation-dependent tunneling times discussed in
Ref. 31, where a model for absorptive optical bistability
was investigated. In this reference equations of motions
for different representations have been derived. Each of
these representations contains higher than second-order
derivatives. If phase diffusion is neglected and the equa-
tions are truncated after the second-order derivatives, ap-
proximate results for the tunneling times can be obtained.
These results depend on the representation and can differ
by orders of magnitude, as shown in Ref. 31.

In the real notation
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for a a=a&+a2) —(n,h+ z
+ —,') .2 2 K

(3.18)

Because the diffusion matrix is not positive definite or
positive semidefinite everywhere, (3.16) and (3.17) cannot
be interpreted as a Fokker-Planck equation describing
the Brownian motion under the influence of a suitable
force. For this reason we termed (3.16) and (3.17) a
pseudo-Fokker-Planck equation. One may argue that
equations of this type are unphysical and cannot be
solved because the solution will become singular due to
the non-positive-definite diffusion matrix. In the Appen-
dix, however, we show for a simple equation with a non-
positive-definite diffusion matrix that such an equation
can have nonsingular solutions. As we will see in Sec. VI,
nonsingular solutions of (3.12}can be obtained for the Q
function.

A Fokker-Planck equation derived from an arbitrary
Langevin equation always has a positive or positive
semidefinite diffusion matrix. Therefore a Lang evin
equation leading to (3.16) and (3.17) does not exist and
thus (3.16) and (3.17) cannot be investigated by digital or
analog simulation methods. However, by doubling the
phase space it is possible to introduce a generalized P

I

It is easily derived from (3.17) that the diffusion matrix
D;—is not positive definite or semidefinite if the intensity
is large enough, i.e.,

DiiD22 —(Diq) (0

representation —the positive P representation . ' The
equation of motion for this positive P representation is a
Fokker-Planck equation with a positive or positive
semidefinite diffusion matrix. From this Fokker-Planck
equation one may then obtain a Langevin equation which
can be solved by simulations. ' Instead of two real vari-
ables one now has to handle four real variables. Further-
more, the tunneling times, which we calculate with the
MCF method, may become very small (see Sec. VI) and it
is diScult to determine them by simulations. Therefore
the complex P representation used in Ref. 5 and the posi-
tive P representation seems to be useful for analytical cal-
culations, while the positive P representation must be
used for simulations. For a direct numerical solution,
however, the Q function is more useful because only ttoo
real variables have to be taken into account. For simula-
tion methods another problem arises if the equation of
motion for the P function contains higher than second-
order derivatives. Then the equation of motion for the
positive P representation also contains higher-order
derivatives and does not have the form of a Fokker-
Planck equation. In this case no simulations are possible
because a Langevin equation does not exist. As already
mentioned in principle, the MCF method can still be ap-
plied to such problems.

A. Classical limit of the pseudo-Fokker-Planck equation

Using the normalized quantities (2.8), Eq. (3.12) can be
written as

Ka+ia—+2i (1%1—)a 2ia —a +iF P0
—Ra' ia' —2i——(1+1)a'+2ia' a iF P—0

(3.19)

( —Ra ' i a '+—2i a ' a iF)P-Ba'
dP+4D

Ba 'aa (3.20)

Because the equations for both the P and the Q function
agree in the preceding limit the distinction between the P
and the Q function is no longer necessary. [By perform-
ing the same procedure for the Wigner distribution we
also obtain (3.20).] Equation (3.20) is just the Fokker-
Planck equation which is obtained by adding complex
Gaussian white noise I (t}of the form

(r(t)) =(r*(t))
=(r(t}r(t )) =(r'(t)r'(t'}) =0,

(3.21)(r(t)r'(t )) =(r*(t)r(t')) =4D5(t t'), —

In the limit XIQ~O, n,hXIQ~const=2DIR, (3.19)
reduces to

8
( Ra+ia——2ia a +iF)P

Ba
IV. EXPANSION IN COMPLETE SET

AND DERIVATION OF VECTOR RECURRENCE
RELATIONS

For numerical calculations it seems to be more ap-
propriate to use the intensity I and the phase P defined by

a=&I e'& (4.1)

instead of the complex amplitude a. Equation (3.12) is
then transformed to the following pseudo-Fokker-Planck
equation in the variables I and P,

aP*
dt

a
[—2aI +~(2n, h+ 1+ I )+2F&I sing]

II 2X(I —1)+7+ ——cosP
F

ay v'I

+~(2n,„+1+1) I + 2X Ia2 a2

aI' aI ay

I

by starting from classical equations and adding white
noise.

to (2.9). Graham and Schenzle and Haug et al. al-
ready obtained a Fokker-Planck equation similar to (3.20)

a2
+ (2n,h+1+1) P* .

ay'
(4.2)
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For treating (4.2) numerically P* is expanded into two
complete sets of functions. Since P (I—,g, t) is periodic in

P with period 2n and the variable I is defined only for
I)0, we expand P* into a Fourier series with respect to
P and into Laguerre functions with respect to I according
to

P*(I,P, t)= g a e 'L (I/I, )

m=0

such a way that~ood numerical convergence is achieved.
The factor 1/&n! was added in order to reduce the nu-
merical errors for the matrix inversions which occur in
the MCF's in Sec. V. The terms (I/I, )" follow from
the asymptotic behavior for I~O. An expansion of this
type was already used in Refs. 33 and 35. Substituting
the series (4.3) into (4.2), using some recurrence relations
for Laguerre polynomials, and using the orthogonality
relation

+ g [a "cos(n 1)) ) —b" sin( n p) ]
, &n! f e "x"L"(x)L" (x)dx =5I' n+m+1 o

(4.4)

Xe '(I /I, )"
—I/I

XL"(I/I, ) (4.3)

Here L" are the generalized Laguerre polynomials and

I, is an arbitrary scaling intensity which can be chosen in
I

a = b, — (n,„+TW , I ) ma——
1 2ama. p 2Fm ) 2K ) i p p

Itl ~ ttl — I 1 p i s Itl—

the following expression for the time-dependent expan-
sion coefficients a" (t) and b" (t) can be derived after
some algebra (n & 1, m &0, and coefficients with a nega-
tive lower index formally occurring for m =0 can be
omitted because of the prefactor m),

a" = b" +', +F}/n /I, b" ' — (n,h+ —,
' + —,

' —I, )ma"
Q(n +1)I, S

—ir(2m +n)a" n[(2I—,+1)(2m +n +1)X—2X —Q]b" +2nmX(I, +1)b",+ 2XI,n (n +m +1)b"+, , n & 1

Q(n + 1 )I,
s m I t g p s m—

—a(2m +n)b" +n[(2I, +1)( 2m +n+1)X—2X—Q]a~ —2nmX(I, +1)a"
1 2XI,n (—n +rn +1)a"+1, n & 1 .

(4.5)

The normalization

fP(a, , t)d a= fQ(a, t)d a.=fP (a, t)d a= 1

requires

(4.6)

I

In the last equation the upper sign is valid for the expan-
sion coeScients of the P function and the lower sign is
valid for the expansion coefficient of the Q function.
Defining the vectors c by

a 11(t)= 1 lmI, (4.7)

for the expansion of the P and the Q function. Higher-
order expansion coeScients are connected with the mo-
ments. We have, for instance,

(a ) =nI, (ao ibo), —
(4.8)

(ata ) =1rI, (ao —a 1 ) ——,
'+—,

' .

P 1 1 2 2
cm ( ma, ma& mb, ma& m&' ' ') (4.9)

C~ —Q~em +1+Qmem +Qm m —1

where the matrices Q+, Q, and Q are defined by

(4.10)

the recurrence relation (4.5) can be written in the tridiag-
onal form

(Q+)„„,= I,Xn m+ ——+1 5„„+1 (n even),
n

(4.1 la)

(Q+ )„„,=+I,X(n + 1) m + + 1
2

(Q )„o= —2~m 5„o F/")/I, 5„~, —

(Q )„„=—n+I (2I +1) 2m+ +1n+1
2

' 1/2n+1 5„„.+1 (n odd, n'&1),
2I,

0 n+1
)
—K 2m+

(4.11b)



38 QUANTUM-TUNNELING RATES AND STATIONARY SOLUTIONS. . . 2415

(Q )„„=—~ 2m+ —5„„+—1 (2I,+1) 2m+ —+1 ———2 5„„+, —Fn n n 0 n

S

' 1/2

5+3(neven, n'&1)

(Q„—), „,= —2&I,
—'m(n, „+,'+—,' —I—, )5„.,+2mF/QI, 5„, ,

(Q )„„,= 2a—I, 'm (n,& ~ —,'+ ,' l—,—)5„„+.Xm (n + l)(I, 1)5„„&+Fm
S

1/2

5„„, 3 (n odd},

1/2

(Q
—)„„,= —ymn(I, 1)5„„,

&

2—aI, 'm(n, &+ —,'+ ,' I,—)5—„„, Fm— 5„„& (n even, n &2) .

(4.11c)

c (t)=c e (4.12)

For the time-dependent equation (4.10) we make the an-
satz

l

tions. Due to the truncation (5.1) the size of the matrices
Q* and Q is (2N+1)X(2N+1) and only the vectors
cp c1 ~ ~ ~ c~ are taken into account. In order to solve
(4.13) we introduce the "ratio" matrices S defined by

which reduces (4.10) to the eigenvalue equation

Q+c + +(Q +XI)c +Q c,=O, (4.13)

A A.
Cm —SmCm (5.2)

where I denotes the identity matrix. This eigenvalue
equation can then be solved by the matrix continued-
fraction method (MCF method) described in Sec. V.

In solid-state physics similar matrices occur and are usu-
ally called transfer matrices; see, for instance, Chap. 8.5
of Ref. 36. The matrices S are used to eliminate the
vectors c in (4.13) iteratively. For m & 1 we obtain

V. MATRIX CONTINUED-FRACTION METHOD

In order to handle (4.13) numerically the expansion
(4.3) has to be truncated, i.e.,

[Q+S,S +(Q +AI}S +Q Jc,=O . (5.3)

By choosing the matrices S such that the recurrence re-
lationa"=O, b"=O for n&N, m&M . (5.1)

Here N and M have to be chosen large enough so that the
final results do not change within the required accuracy if
N and M are increased. For Q/7= 10 (a typical value for
this parameter in Sec. VI) N =20 and M = 120 is
sufticient to obtain results which are accurate within the
width of the lines in the figures. Higher 0/g values re-
quire higher N's and M's, whereas for smaller 0/P values
smaller Ãs and M's can be used. Moreover, we used
double-precision arithmetic for our numerical calcula-

I

= —(Q +AI+Q+S, )-'Q- (5.4)

A
I
A

this MCF reads explicitly

holds, (5.3) is fulfilled for m & l. Iteration of (5.4) leads to
a matrix continued fraction. If the matrix inversions are
written by fraction lines

S

Q +AI —Q+
I

+~+~I—Q +~ ~I Q +2
Qm+2+

m+1

m (5.5)

For m =0 (4.13) reduces to

K(X)c =[Q+S,+Q +XI]c =0. (5.6)

Equation (5.6) has only a nontrivial solution if the deter-
minant of K(A, ) vanishes, i.e.,

det(k) =det[K(A. )]=0 . (5.7)

This condition determines the eigenvalues of (4.13), or
equivalently (4.2), (3.12), and (2.2). It should be noted
that from the structure of the matrices Q

+— and Q one
can conclude that for A. =O the first line of the truncated
matrix K(0) only consists of zeros. Therefore the un-
truncated system (4.13) as well as the truncated system

have a stationary solution.
The procedure for solving the vector recurrence rela-

tion (4.13) now runs as follows: We start with SM+, ——0,
yielding c~+,——0 as required by (5.1), and calculate by
iterative use of (5.4) the matrix K(A, } and its determinant
det(A, ). By a proper root-finding technique we find one of
the eigenvalues A, . The eigenvalue X=0 is already known
and need not be determined in this way. With the known
eigenvalue we then calculate the matrices
SM, S~,, . . . , S2,S, according to (5.4} and solve (5.6) for
co. Then the vectors c1,c2, . . . , c~ are obtained by re-
peatedly using (5.2},i.e., by

c 1
—S1cp& c2—S2c 1 7 c3—S3c2& (5.8)
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The eigenfunctions and the stationary solution finally fol-
low by using (4.9) and performing the summation in (4.3)
truncated at m =M and n =N. The iteration according
to (5.8) is numerically stable, whereas the iteration of
(4.13) starting with co and c,=S,co is numerically unsta-
ble

VI. RESULTS

First we discuss some stationary Q functions. We have
chosen 0/X=10, i.e. , an integer value. For 0/X=9. 5

(not shown here) the situation is quite similar, except that
the transition field for small a is not as low as it is for
0/~=10. Because the number of thermal photons at
room temperature is negligible for optical frequencies, we

mainly restrict our calculations to n, h
——O. The cavity

damping constants are @=0.0010 (Fig. 2) and a.=0.1Q
(Fig. 3). Figures 2(a) and 3(a) show the Q functions for

small driving fields. They have only one maximum and
no bistability occurs. The lines Q =const have a circular
shape. In Figs. 2(b) and 3(b) the driving field is large
enough to allow two maxima for the Q function. From
the two maxima one can conclude that the system is bi-
stable for these driving fields. If the driving field is in-
creased further the left maximum of the Q function
disappears [see Figs. 2(c) and 3(c)] and only one ear-
shaped distribution remains, indicating that the system is
no longer bistable. Comparing Fig. 2 and Fig. 3 one real-
izes that the inAuence of ~ is twofold. For small cavity
damping (@=0.001Q) the Q functions are almost sym-
metric with respect to the real axis. For higher cavity
damping the Q functions seem to be rotated. Further-
more, the field at which the system is bistable is shifted to
lower driving fields if ir is decreased. (For II/7=9. 5 the
inhuence of ~ on the shifts of the driving fields is much

I I I I I I I I

Im(a) Im(a)

(a) (a)
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1 f I I
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(c) (c)
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0 Re(a)
I
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Re(a)

FIG. 2. Contour lines of the stationary Q function for
Q/7=10, n, h ——0, and ~/0=0. 001. The normalized driving
fields F are (a) 0.1, (b) 0.125, and (c) 0.25. The solid lines
represent Q =0.02, 0.04, 0.06, . . . , the dashed lines in (b)

Q =0.005, 0.010, and 0.015. The contour line through the sad-
dle point (dotted line) is at Q =0.0201.

FIG. 3. Contour lines of the stationary Q function for
0/7=10, n, h

——0, and a/0=0. 1. The normalized driving fields
F are (a) 0.1, (b) 0.195, and (c) 0.25. The solid lines represent
Q =0.02, 0.04, 0.06, . . . , the dashed lines in (b) Q =0.005,
0.010, and 0.015. The contour line through the saddle point
(dotted line) is at Q =0.0187.
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weaker; see the discussion of the tunneling rates below. )

Note that the Q functions do not get broader for higher
damping constants. We want to emphasize that the Q
functions have been obtained via a pseudo-Fokker-Planck
equation with a non-positive-definite diffusion matrix and
nonlinear drift coefficients. As one can clearly see in Fig.
2 and Fig. 3 the Q functions are well behaved and no
singularities occur.

Due to squeezing the P function does not exist in gen-
eral. The expansion coefficients, however, are connected
to the mean values [see (4.8)] and do exist. But if one
tries to evaluate the sum (4.3) for the P function the result
oscillates and depends on the scaling intensity I, as well

as on the truncation indices N and M. In order to
demonstrate this behavior we have plotted in Fig. 4 the
sum (4.3) for the stationary case (a) for the Q function
and (b) for the P function along the real axis for various
truncation indices N and M using the parameters of Fig.
3(b) (for these parameters bistability occurs). The scaling
intensity is I, =1.5 for the Q function and I, =0.5 for the
P function (which was a good choice for calculating mean

values and eigenvalues). As can be seen the sum (4.3)
converges for the Q function, whereas it does not con-
verge for the P function. For the P function the result os-
cillates and becomes larger if more terms are taken into
account. If the number of terms is further increased nu-
merical overAows occur and the sum cannot be evaluated
numerically anymore.

In Ref. 37 a nonlinear Kerr medium was investigated.
It is interesting to notice that our ear-shaped Q functions
in Figs. 2(c) and 3(c) and the right part of our Q functions
in Figs. 2(b) and 3(b) are similar to the Q functions gen-
erated by a nonlinear Mach-Zehnder interferometer,
which have been called crescent shaped. In Ref. 37 it is
shown that these Q functions describe number-phase
minimum-uncertainty states. The nonlinear Kerr medi-
um inside the interferometer is described by the operator
a a also occurring in our Hamiltonian (2.3).

In Fig. 5 the stationary mean value (a ) for n, h
——0 is

shown for diff'erent values of ~. (The variances of the
quadrature phases can also be calculated. As shown in
Ref. 22 slightly squeezed states exist for driving fields
above the bistable region. ) Our results agree with the re-
sult obtained by Drummond and Walls using the com-
plex P representation. In this representation detailed bal-
ance is valid for n, h

——0. Therefore an analytical expres-
sion (a "a ) could be derived. With the abbreviations

s & I a i i I

Re&a&

)(0/X'

0.1— (4)

I I
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-5000—
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FIG. 4. Cross section of the truncated sum (4.3) for (a) the Q
function and (b) the P function along the real axis for various
truncation indices. The parameters are those of Fig. 2(b). The
sum for the (a) Q function is truncated at (1) N =5, M = 10, (2)
N =10, M =20, and (3) N=14, M =50. Curve (4) shows the
limit N~oo, M~DO calculated with N=20, M=120. The
sum for the P function is truncated at (1) N =5, M =10, (2)
N =7, M =15, and (3) N =10, M =20. The inset shows curve
(1) and (2) in an enlarged scale. The limit N~ oo, M~ ao does
not exist.

I I f
l

I I l
l

I

0.2 — 0.4

FIG. 5. (a) Real part and (b) imaginary part of the stationary
expectation value (a ) as a function of the normalized driving
field F for 0/7=10 and n, h

——0. The cavity damping constants
a/0 are (1) 0.001, (2) 0.01, (3) 0.1, (4) 0.2, and (5) 0.4.
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—iir/I, z =2(F/X)c = —0/X —ia/X, (6.1)
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I ( c+m)Pc*+ n

1
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describe transitions between the two almost-stable states
of our bistable system, i.e., the tunneling rate is deter-
mined by the lowest nonzero eigenvalue. Because we
have neglected thermal fluctuations this eigenvalue deter-
mines the ultimate stability of our system, as already
mentioned in the Introduction.

For a=0. 1Q the results for Q/X=9. 5 and Q/X=10
do not differ very much (see Fig. 8). For a=0.001Q,
however, ripples occur for integer Q/X values, whereas
for noninteger Q/X values these ripples disappear.
Furthermore, the driving field F;„, where the lowest
nonzero eigenvalue has its minimum A, ;„,changes appre-
ciably if the parameter Q/X is slightly increased from 9.5
to 10.0 (see Fig. 7). In order to show this behavior more
clearly we plotted the driving field F;„and the corre-
sponding eigenvalue A, ;„as a function of the parameter
Q/X. The results are shown in Fig. 10. For small cavity
damping (~=0.001Q) one can clearly see that the field
F;„re ache svery low values at integer values of Q/X and
increases very sharply when moving away from integer
values. For large Q/X values this oscillating behavior is
less pronounced. The minimum eigenvalue correspond-
ing to F;„decreases roughly exponentially if Q/X is in-
creased. At integer values of Q/X, however, the eigen-
value has peaks leading to somewhat larger values at and
near integer values for Q/X. For small Q/X values the
first nonvanishing eigenvalue is no longer well separated

FIG. 8. Same as Fig. 7 but for ~=0.10.

For driving fields allowing bistability, the lowest
nonzero eigenvalue is well separated from the higher ei-
genvalues and therefore determines the long-time behav-
ior of the system. An eigenfunction (Q function) corre-
sponding to the lowest nonzero eigenvalue for a driving
field which allows bistability is shown in Fig. 9. By com-
paring this figure to Figs. 2(b) and 3(b) (note the positive
sign of the stationary Q function and the different signs of
the eigenfunction of Fig. 9) we conclude that the lowest
nonzero eigenvalue and the corresponding eigenfunction
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FIG. 9. Contour lines of the eigenfunction corresponding to
the lowest nonvanishing eigenvalue for the parameters of Fig.
3(b). The solid lines and the dashed lines indicate the difFerent
sign of the eigenfunction. The dotted line represents Q =0.

FIG. 10. (a) The normalized driving field I';„, where the
lowest eigenvalue has its minimum and (b) the corresponding
minimum eigenvalue (see Figs. 7 and &) as a function of 0/7 for
(1) K=0.001Q and (2) a =0.1Q.
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from the higher eigenvalues even in the bistable region
(the higher eigenvalues are of the order 2v). Therefore
we did not investigate 0/X & 2. For larger damping con-
stants the results for integer 0/X no longer differ appre-
ciably from the results for noninteger 0/X values. For
small cavity damping and 0/X values which are not too
large we have therefore the following result: At integer
0/7 values the bistable region is appreciably shifted to-
wards smaller driving fields and the tunneling rate itself
increases, i.e., the system becomes less stable. It can be
shown that this remarkable result for integer 0/X
values at small damping constants is due to the fact that
for integer 0/X values some of the lower eigenvalues of
the Hamiltonian (2.3) are exactly degenerate for F =0
and remain almost degenerate for finite driving fields. A
detai1ed investigation for small damping constants in-

cluding the differences between integer and noninteger
0/X values are discussed in Ref. 39, where an approxi-
mation for small cavity damping is presented. In con-
trast to the approximation made in Ref. 10, which was
not valid for integer or near-integer values of 0/X, it is

applicable for arbitrary parameters 0/X. (In addition to
the procedure in Ref. 10, where only diagonal elements of
the density operator have been taken into account, some
appropriate nondiagonal elements must be included for
integer or near-integer values of 0/X. )

VII. CONCLUSION

We have calculated quantum-tunneling rates and the
stationary Q functions for the model of Drummond and
Walls describing dispersive optical bistability by solving a
pseudo-Fokker-Planck equation with the matrix
continued-fraction method. We have shown that the sta-
tionary Q function is well behaved although the diffusion
matrix of the pseudo-Fokker-Planck equation is not posi-
tive definite. Generally, the P function does not exist.
Nevertheless, we have demonstrated that its equation of
motion can be used for calculating expectation values and
eigenvalues. The expectation values and eigenvalues ob-
tained from the P function agree very accurately with
those obtained from the Q function. The investigation of
tunneling rates was one important feature of our calcula-
tions. In the bistable region the lowest nonzero eigenval-
ue is well separated from the higher ones and therefore
describes the decay rate of the two almost-stable states.
Although it may become very small it can be calculated
with high precision by the matrix continued-fraction
method. We have found that for small cavity damping
constants the driving field, where the tunneling rate has
its minimum, varies appreciably in an oscillating fashion
as a function of the parameter 0/X. Due to the quantum
nature of the problem the system behaves different for in-
teger and noninteger 0/7 values if the cavity damping is
small enough. The main effect of integer 0/g values is
an appreciable shift of the bistable region towards lower
driving fields.

As an extension to the calculations presented here, we
hope that time-dependent correlation functions can also
be obtained by the matrix continued-fraction method.
An application of this method to more complicated prob-
lems seems also to be feasible. If, for instance, we consid-

APPENDIX: SIMPLE EXAMPLE
OF A FOKKER-PLANCK-LIKE EQUATION

WITH NONPOSITIVE DIFFUSION MATRIX

In this appendix we show that Fokker-Planck-like
equations with a non-positive-definite diffusion matrix
can have nonsingular solutions. Such equations are al-
ready discussed in Refs. 15 and 16, but no well-behaved
(quasi)distribution functions are obtained in these refer-
ences. A simple Fokker-Planck-like equation with a
non-positive-definite diffusion matrix is given in the fol-
lowing (q &0):

BP
Bt

B B 8 8
(x —coy)+ (y +cox)+ —q P .

Bx By Bx ~
By

(A 1)

The drift term describes a damped rotation according to
the deterministic equations

x= —x+coy, y= —y —&ox .

The Fourier transform of (A 1) reads

(A2)

aP (k, +cok2) — +(k2 —cok& )
dr

' ' &k 2

+k', —qk', P, (A3)

where P is defined by

P(k„k2, t)= fP(x,y, t)e ' ' dx dy . (A4)

If the initial distribution function P(x,y, t =0) is Gauss-
ian the Fourier transform P(k&, kz, t =0) is Gaussian,
too. Because of the form of (A3) we expect that P is
Gaussian for t & 0 and make the ansatz

P(k &, kz, t) =exp[ —iM& (t)k
&

iMz(t)k2—

)o(t)k (
—o )q(t)k, k2

——,o.~~(t)k~ j . (A5}

The prefactor 1 in the exponential function is a conse-
quence of the normalization

er a single light mode coupled to a two-level atom,
(Jaynes-Cummings model ) the density operator ele-
ments p,- of the two-level system, which are still opera-
tors with respect to the light mode, can also be
transformed to continuous functions with one complex
variable. An expansion of these functions as well as a
transformation to a tridiagonal vector recurrence relation
and a solution by MCF's seems to be possible.

Note added in proof. Recently the equation of motion
for the signer function (3.13}was also solved by the ma-
trix continued-fraction method. ' The work of Lugiato
and co-workers should also be mentioned. For optical
bistability they found a Fokker-Planck equation for the P
function with a non-positive-definite diffusion matrix. By
using a linearization procedure they also found a slight
amount of squeezing.
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JP(x,y, t)dx dy =1,
which requires

P(k, =0, kq ——0, t)=1 .

(A6)

(A7)
0.5—

I I I I I I I I I 1 I I I I I I I c l I I I I I I I I I I

Substituting the ansatz (A5) into (A3) yields the following
ordinary differential equations for M, and M2 and o.»,
0 ]2, and 0.22-.

M) ———M)+coM2& M2 ———AM) —M2 &

cT ) ) = —20 ) ) +2cocT )2+2,
cr is = —2a is+~(azz —cr i i)

22
———2022 —2a)cr )2

—2q .

Defining the matrices o and U by

(A8)

(A9)

+11 + 12
U=

0'~2 0 22

cos(cot) sin(mt)
—sin(cot) cos(cot) (A 10)

and the vector M by

M)
M= M2.

the time-dependent solution to (AS) and (A9) reads

M(t)=e 'U(t)M(0),

a(t)=a(~) —e 'U(t)[a(00) —a(0)]U (t),

(Al 1)

(A12)

(A13)

1 1+qa»(ac )=— 1 —q+ 1+cc)

co 1+q
ai2( ~ )=——

1+co
(A14)

where the vector M(0) and the matrix a(0) follows from
the special form of the initial Gaussian function and
where cr( 00 ) is the stationary solution of (A9) given by

/4

I
I
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/
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l l I I I I I 1 I

1
I I f I I I I I I

t
I I I I 1 I I I I
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FIG. 11. The upper eigenvalue (solid lines) and the lower ei-

genvalue (dashed lines) of the matrix cr(t) as a function of time
for q =0.5 and (1) co=2, (2) co=3.5, and (3) co=7. The initial
matrix o(0) is given by 0.»(0) =0.5, 0»(0)=0.1, and
o l2(0) =~2&(0) =0; cr, t, q, and co are dimensionless quantities.

both eigenvalues (o i and o 2) of cr are positive. If at least
one of its eigenvalues is negative, P diverges for large k&,
k2 and thus P (x,y, t) will no longer exist. If we start with
an initially positive definite matrix a(0) there are three
typical cases which are shown in Fig. 11. (1) The lower
eigenvalue of o ( t) becomes negative and remains negative
for taboo [see curve (1)]. This means that the initially
nonsingular distribution function P(x,y, t =0) becomes
singular and remains singular. (2) The lower eigenvalue
of o (t) first becomes negative and then becomes positive
again [see curve (2)], i.e., the initially nonsingular distri-
bution function first becomes singular and then becomes
nonsingular again and stays this way for all larger t. (3)
The lower eigenvalue of a(t) is positive for all times [see
curve (3)], i.e., the distribution function P(x,y, t) is non-
singular for t & 0.

The behavior of the solutions can be visualized by
transforming (Al) to a reference system rotating with the
angular velocity co, i.e.,

1 1+qo (ac )=— 1 —q—22
x'=x cos(cut) ysin(cot), —

y'=x sin(cot)+y cos(cot) .
(A17)

u))&0, o22&0, c ))o22 —o)2( )2&0. (A15)

If the matrix cr(t} is positive definite for t &0, P(k„k2, t)
is Gaussian and therefore its Fourier transform, i.e.,
P(x,y, t) is Gaussian, too. However, if a(t) is not posi-
tive definite for t &0 the Fourier transform P(x,y, t) of
P(k„k2, t) does not exist. The matrix o is positive
definite if

This transformation yields

aP a, a
, x'+, y'+ [cos (cut) qsin (cot)]—2

a'
Bt Bx c)y Bx

a2
+2(1+.q)sin(cot) cos(cot)

Bx Bg

From these conditions it follows that the stationary solu-
tion a( ao ) is positive definite for

a2
+[sin (cot) —q cos (~t)] P . (A18)

q & I, I+co &(1+q) /(I —q) (A16)

Note that these conditions do not depend on the special
form of the initial Gaussian distribution function.

For the time-dependent matrix a(t} the conditions
(A15) are more difficult to handle. Therefore we restrict
ourselves to some numerical examples, i.e., diagonalize
cr(t) numerically. The matrix o is positive definite if

Since such a transformation does not alter the eigenval-
ues of the diffusion matrix, (A18) still has a non-positive-
definite diffusion matrix which, in contrast to (Al), now
depends on the time. If the rotation rate is much faster
than the diffusion rate and-the initial distribution is broad
enough, we may perform a time average of the diffusion
matrix and obtain
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D)) ——Dz2 ——(1—q)/2, D)2 ——0 . (A19)

This matrix is clearly positive definite for q & 1. In order
to obtain a nonsingular distribution the following three
conditions must hold.

(1) q ( 1,
(2) to is large enough,
(3) the initial distribution is broad enough.

The first two conditions are essentially the same as (A16).
As a remark to the third condition we would like to men-
tion that in quantum optics the Heisenberg uncertainty
relation must be valid. In order to avoid a contradiction
to that relation the Q function must be broad enough.
Therefore we cannot start with initial conditions such as

P(x,y, t =0)=5(x —xo)5(y —yo) as one does when solv-

ing ordinary Fokker-Planck equations describing, for in-
stance, a Brownian motion process where all particles
start at x =xo and y =yo.

In conclusion, we have shown for a Fokker-Planck-like
equation with a linear drift term and a constant but not
positive-definite diffusion matrix that a pseudo-Fokker-
Planck equation need not necessarily have a positive
definite or positive semidefinite diffusion matrix in order
to have nonsingular solutions. As one can see in (A16) or
in the conditions necessary for performing the time aver-
age, the co terms in the drift terms of (A 1) play an essen-
tial role for the existence of a nonsingular solution. Such
"rotation terms" also occur in our equations (3.12) and
(3.17).
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