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Modeling of the optical piston: Density-wave shape and resonance-fluorescence effects

J. M. Calo, * N. M. Lawandy, D. Frezzo, and M. T. Perkins
Diuision ofEngineering, Brown Uniuersity, Providence, Rhode Island 02912

(Received 8 February 1988; revised manuscript received 11 April 1988)

We present results of a numerical model of the optical piston driven by laser-induced drift (LID).
The model is based on a drift-velocity formulation of Lawandy, derived from an asymmetric-
random-walk argument, and includes resonance-fluorescence effects. The model is applied primari-

ly to the experimental conditions of H. G. C. Werij and co-workers [Phys. Rev. A 33, 3270 (1986)].
It is shown that both the velocity and the shape of the propagating density wave change continuous-

ly throughout the traverse of a (finite) diffusion tube under these conditions. In addition, we have
numerically verified the contention of G. Nienhuis [Phys. Rev. A 31, 1636 (1985)] that a "self-
preserving" form of the density wave is indeed possible for the case of a "finite number of absorbers
in an infinite medium, both with and without saturation. Finally, we show that resonance fluores-
cence slows the piston velocity, broadens the density distribution, and decreases its peak height. It
is concluded that resonance fluorescence can play a significant role in determining the time evolu-
tion and detailed shape of the optical-piston density distribution in sodium.

I. INTRODUCTION

Recently, there has been significant interest in the ex-
perimental and analytical investigation of the
phenomenon of light-induced drift (LID). In the work of
Werij et al. , ' Na in its 3S ground state in an argon
buffer gas was excited near the Na D2 resonance to its 3P
level. Off-line-center excitation results in the production
of counter-difFusion fluxes of excited- and ground-state
Na. Since the diffusion cross section of the excited-state
species is generally larger than that of its ground-state
counterpart, these fluxes will not be equal. Thus, an ini-
tial 5-function packet of Na, excited in this manner, will
exhibit asymmetric diffusion in the direction away from
that of the velocity group selected. Therefore, for axial
excitation in a cylindrical tube, a net Na flux will occur
away from the laser source when the latter is tuned to the
red Doppler wing, and vice versa. The asymmetry of the
diffusion process gives rise to a time-dependent expecta-
tion value of the first moment of the density distribution,
which is manifested as a drift velocity vd,

' hence the name
light-induced drift. In an optically thick system, this be-
havior results in the formation and propagation of a den-
sity wave that literally sweeps the gas mixture of the ab-
sorbing species. It is this latter phenomenon that has
been given the name of the optical piston by Werij
et al. '

The prediction of this phenomenon seems to have ori-
ginated with the work of Gel'mukhanov and Shalagin. '

More recent interest has been provided by the elegant ex-
perimental work of Werij and co-workers' involving
the Na optical piston in a gehlinite glass tube. In this
latter work, it was also hypothesized that the piston ve-
locity is a strong function of Na adsorption on the tube
walls. This was subsequently verified by experimental re-
sults which demonstrate that the piston velocity can be
substantially increased by coating the tube walls to mini-
mize Na adsorption (Werij et al. and Xu et al. ). A ru-

bidium optical piston (i.e., Rb in argon) has also been
demonstrated (Hamel et al. ).

Due to the nature of LID, it has obvious potential ap-
plications as a separation technique for removing low lev-
els of impurities, and for isotope separation. The direct
effect of wall interaction on the velocity of the optical pis-
ton has also been suggested as a surface diagnostic tech-
nique. In addition, of course, LID phenomena provide
very useful information on intermolecular potentials and
gas kinetic theory in a conveniently observable macro-
scopic form.

In the current paper we present a numerical model of
the optical piston and report on results obtained for con-
ditions similar to that employed in the experimental work
of Werij et al. , hereafter known as WHW. In particu-
lar, we examine the effects of resonance fluorescence on
the shape and behavior of the optical piston.

II. MODEL DEVELOPMENT

A. Drift velocity

a=1 P+(1—A, , IA, ), —

P=1 P, (1—A,, IA. )=1——5,
(2a)

(2b)

where P,*are the probabilities for an excited species to be
moving in the ( ) directions, and A,, is the mean free path

An expression for the drift velocity vd, based on a ran-
dom walk argument, has been derived by Lawandy. The
result of this derivation for a two-level absorber in a one-
dimensional system is

ud =(k Ir, )[aPI(a+P)]in(a/P),

where a and P are ratios of the effective mean free paths
of the absorber in the (+) directions to the mean free path
of a ground-state species A,g, and ~, is the mean collision
time. a and P are further given by
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of an absorber in the excited state.
Neglecting the effects of fluorescence, for the time be-

ing, and for excitation of the red wing from the ( —) direc-
tion, P,+ =0 and o,'=1, whereupon v& becomes

v~=(A, /r, )[P/(1+P)]ln(1/P) . (3)

where Av& and Ava are the homogeneous and Doppler
linewidths, respectively, and I and I, are the local laser
and saturation intensities, respectively. Since for typical
operating values of the parameters 5&&1, Eq. (3) be-
comes

p is given by Eq. (2b), from which 5=P, (1—A,, /)(. ), and

P, =(—,
' )(ln2/n. )' (b,v& /b, vD )(I/I, )l(1+I /I, )', (4)

vg =(&g /r, )[(I—&)/(2 —&)]&=(—,
'

)(&g /r, )& .

It is noted that this expression is of the exact same form,
with respect to the laser intensity I as given by %H% Eq.
(9). In fact, even the predicted values are quite similar;
e.g., for the experimental conditions of WH% presented
in Table I(a), WHW Eq. (15) yields v&(0)=320 cm/s for
the drift velocity at the incident laser power, Io ——1.6
W/cm, whereas Eq. (5) yields 318 cm/s. Thus, the two
expressions appear to be equivalent. Equation (5), how-

ever, allows for the facile inclusion of resonance fluores-
cence effects, as demonstrated below.

If it is assumed that the resonance-fluorescence intensi-

ty If(z) interacts with the entire absorber velocity distri-
bution, then for red wing excitation originating at z =0,
P, can be approximated as

P,+ = ( ,' )[(If /I—,) l( 1+If /I, )],
P, =P++ [(—,

' }—2P+](1n2/n )'~ (hvt, /hvD )(I/I, )/(1+I/I, )'

(6a)

(6b)

An examination of Eqs. (6a) and (6b) reveals that
P, & P,+, or a & P, or from Eq. (1), uz & 0, i.e., drift in the
positive z direction for red wing excitation from a source
located at z =0. It is also noted that these expressions
observe the correct expected limits; i.e., P, reduces to
Eq. (4) for If ——0 (i.e., P,+ =0), and P, +P,+ (i.e., P—~a),
or v&~0 as If becomes large. From the latter, it is evi-

dent that the primary qualitative effect of increasing
fluorescence intensity is to reduce the effective local drift
velocity by decreasing the population of the selected ve-

locity group. It will be shown below that, in general, the
effects of resonance fluorescence are to broaden and slow
the density wave in the case of the optical piston.

B. Macroscopic continuity expressions

The one-dimensional continuity expression for the ab-
sorber species in a buffer gas for LID, as given by %HW,
1s

ap/ac= a'p/ag' —) a[pv ]/ag, (8)

where O=tDg/L, p=n /no, g=z/L, y =uz(0)L/Dg
(the characteristic Peclet number for the system), no is
the initial mean density in the diffusion cell, J is the tube
length, uz(0) is the drift velocity at z =0, and
V =Vg/Vy(0).

The laser intensity is coupled to Eq. (8) via the saturat-
ed form of the Beer-Lambert law:

Bn /Bt =Dg r) n /Bz B(nup ) /Bz,—

where n (z, t) = n (z, t)+n, (z, t) is the local absorber num-

ber density (the subscripts g and e designate ground- and
excited-state species, respectively, for the two-level sys-
tem), and D is the effective diffusivity of the ground
state. In dimensionless form, Eq. (7) becomes

BI/dz = a, n —(z)I(z)/(1+I/I, )'~2,

which in dimensionless form becomes

d(I /I, )/Bg= ap(g)(I/I—, )/(1+I/I, )' (10)

wherey =(I+I/I, )'~ andyv=(1+Iv/I, )', and

0= J,pdk' (12)

is the axial column density. The transcendental equation
(11) can be solved for y (i.e., I) using standard numerical
root-6nding techniques.

The axial column density [Eq. (12)] provides a useful
transformation for the mass continuity expression, Eq.
(8), which simplifies the numerical solution scheme and
the boundary conditions. Integrating Eq. (8) with respect
to g, and noting that p =d (/d g, transforms it to

ag/ac= a'g/ag' —}vs/ag, (13}

which is the actual expression that was solved numerical-
ly, rather than the density expression directly.

C. Boundary conditions

For the geometry employed in the experiments of
WHW, the laser radiation was introduced axially at the
end of the diffusion cell away from the Na reservoir ap-
pendage [i.e., at z (or g) =0], at which it is obvious that

=D.

where a=o, noL Equatio. n (10) can be integrated direct-
ly to yield

2(y —yv)+ln[ [(y —1)(yv+ 1)]/[(yo —1)(y + 1)]j

= —ag, (11)
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The other end of the cell is more interesting. At Arst it
may appear that the diffusion cell is a closed system, and
that the appropriate condition would be /= 1. However,
the Na reservoir in the appendage acts as a source-sink
for Na, and thus the cell is actually open at this end with
respect to Na (but obviously closed with respect to the
buffer gas Ar). Due to the relatively low value of the pis-
ton velocity in the work of WHW, it may be safely as-
sumed that the Na vapor and liquid are in equilibrium
immediately above the surface of the molten Na source.
It is noted that the Na reservoir was located at some dis-
tance from the end of the diffusion cell. Therefore, for
calculation purposes here, the cell length was taken as 15
cm (as given by WHW), with an additional estimated
length of 5 cm to account for the separation of the Na
reservoir from the actual end of the diffusion cell. (In any
case, the results of the simulations are relatively insensi-
tive to this latter value. ) Thus, the entire cell length is
taken as L =20 cm, divided into two regions: a 15-cm-
long diffusion cell in which diffusion and drift operate
simultaneously in accordance with Eq. (8), and a S-cm-
long region between the end of the diffusion cell and the
Na reservoir, in which only ordinary diffusion operates.

In summary then, the most appropriate boundary con-
ditions for the experimental conditions of WHW are

with respect to the fluorescence intensity. With these as-
sumptions in mind, and neglecting axial radiative losses
in comparison to those in the radial direction (due to the
generally low probability of leakage from the tube in the
axial direction), a simple energy balance over a
differential volume element yields

If /I, = (d—!4T)d(I/I, )/dz, (16)

30

3.0 W/cm
2

where d is the tube diameter and T its transmissivity to
fluorescence radiation. The actual transmissivity of the
tube used in the experiments of WHW is not known, and

by its inclusion in Eq. (16) we do not intend to imply that
it was anything other than unity. However, T serves as a
convenient control parameter with which to vary the
fluorescence intensity in order to examine its effect on the
drift velocity (see Sec. III below). In dimensionless form,
Eq. (16) becomes

If /I, =(d/4LT)ap(g)(I/I, )/(1+I/I, )' . (17)

This is the expression that is used in the current model to
estimate the Iluorescence intensity for inclusion in Eq. (1)
for the drift velocity.

(=0 at (=0 (laser entrance), (14a)

t)(/Bg=p=e at g= 1 (Na reservoir), (14b)

where e=n„, /no=i if the vapor pressure above the
liquid Na is maintained at no, or some other appropriate
value if it is not.

D. Fluorescence

20

(a)

2
1.6 W/cm

The effect of fluorescence on the drift velocity can be
determined using the formulation of Eq. (3). In order to
apply this expression, however, an estimate of the local
fluorescence intensity must be made. Obtaining an exact
solution to this problem is difficult due to complications
caused by radiation imprisonment or trapping, which is
likely to occur at the high densities and energy fluences
that have been used to demonstrate the optical piston.
For example, the absorption cross section for fluores-
cence over the entire line is given by WHW as

20
1.6 W/cm

2

Appendage

o =bc'/4~I, r, (15)
Appendage

where ~=16 ns is the spontaneous lifetime of the Na D2
line, h co/2m =3.37)& 10 ' J, and I, =0.27 W/cm . This
expression yields 0.=3.9&&10 " cm . For a peak ab-
sorber density of 7&10' cm, the absorption length is
1/On =3.7X10 cm, which is much smaller than the
radius of the 1-mm capillary used by WHW. Obviously,
radiation trapping is a certainty under these conditions.

An estimate of the local fluorescence intensity was ob-
tained as follows. Due to the high quantum e%ciency of
the Na D2 line, practically all the absorbed radiation
must be re-emitted as fluorescence. Also, due to the rap-
id time scale of photon transport in comparison to that of
the piston, it is reasonable to assume steady state locally

(c)
) J J & J 3 J J J

Distance (cm)
15

FIG. 1. Number density distributions for optical-piston
propagation calculated using the model proposed by WHW
(Ref. 2) without resonance-fluorescence effects for equal time in-
tervals of 0=10 . (a) Io ——3.0 W/cm with boundary condi-
tions (14a) and (14b); a=40, y=454; (b) Io=1.6 W/cm with
boundary conditions (14a) and (14b); a=40, y=320; (c) Io ——1 ~ 6
W/cm with an impenetrable boundary at g= 1;a=30,y =320.
(Note that the equivalent time step for the latter calculation is
0=1.78@10-'.)
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TABLE I. Experimental values and dimensionless model parameters for the experiments of WHW
(Ref. 2).

Io, incident laser intensity (W/cm )

uz(0) (cm/s) [WHW Eq. (15)]
a (20-cm cell length) (=a,noL)
a (15-cm cell length)

y (20-cm ce11 length) [=uq(0)L/Dz]
y (15-cm cell length)
Characteristic time (s) (=L'/Dg);

L =20 cm

(a)

1.6
320
40
30

320
240

20

(b)

3.0
454
40
30

454
340.5
20

WHW (Ref. 2) experimental and estimated parameter values

I„Na D& line saturation
intensity (W/cm')

Dg (cm /s)
0, (cm)
no (cm )

T„, (K)

0.27

20
2X 10-"
1X 10"

520

III. RESULTS AND DISCUSSION

All the numerical results in this section were obtained
by integration of the corresponding model using the
package FDEcoL (Madsen and Sincovec' ) which is a gen-
eral code for the solution of systems of coupled partial
differential equations in one time and one space dimen-
sion. The principal technique is finite element collocation
over piecewise polynomials expressed in terms of 8-spline
basis functions for spatial discretization. As applied in
the current work, the code was used to solve a system of
only one PDE, the integrated form of the macroscopic
continuity equation (13). However, it was also necessary
to simultaneously solve the nonlinear algebraic expres-
sions for the laser intensity [Eq. (11)]and the fluorescence
intensity [Eq. (17)] in order to obtain the local value of
the drift velocity [Eq. (1)].

WHW Eq. (9), as discussed in Sec. II A above, it is to be
expected that numerical results would also be compara-
ble. Indeed, results from calculations using our current
formulation for the drift velocity were virtually indistin-
guishable from those presented in Fig. 1.

Some interesting observations can be derived from the
numerical results presented in Fig. 1. In Fig. 2 are plot-
ted the first three moments of the Na density wave for the
WHW model results of Fig. 1(b). As is evident, the first
moment increases in a monotonic, nonlinear fashion indi-
cative of continuous deceleration of the density wave as it
progresses through the capillary. This behavior is not
consistent with the assumption of the piston attaining a
constant velocity v as applied by WHW in their analysis.
It is also inconsistent with some of the data (e.g., WHW
Fig. 5a) which clearly show that after a brief initial
period of relatively constant velocity, the piston de-

A. Model results without fluorescence

Numerical solutions were first obtained for the model
as presented by WHW [i.e., WHW Eq. (8)] with no reso-
nance fluorescence effects. The results of these calcula-
tions are presented in Figs. 1(a) and 1(b) for the experi-
mental conditions of WHW listed in Table I(a) and I(b),
respectively. For these calculations, the drift velocity
ud(z) was determined from WHW Eq. (9). The boundary
conditions used in these calculations were (14a) and (14b)
with a=1. As long as the density wave does not interact
strongly with the end of the cell at z =15 cm, the numeri-
cal results are relatively insensitive to the end boundary
condition (14b). In order to demonstrate this, results for
the exact same conditions as given in Fig. 1(b) are
presented in Fig. 1(c) for a closed cell with g= 1 at g= 1

(i.e., at z =15 cm) in lieu of condition (14b). As shown,
the results are quite similar.

Due to the similarity of the limiting form of Eq. (1) for
the experimental conditions of WHW [i.e., Eq. (5)] to

0.7-

0.6-

0.5-

0.4-

0.3-

0.2-

0.1

x100
x1000

I I I I I I

4 6 8 10 12

Density Distribution No.

FIG. 2. First (noncentral), and second and third central mo-
ments of the ten-number density distributions presented in Fig.
1(b).
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celerates for a time, and then actually accelerates
smoothly to the end of the cell.

The second and third moment results presented in Fig.
2 also show that after an initial sharpening associated
with the formation of the density wave, the variance and
skewness of the optical piston both increase monotonical-
ly throughout its traverse of the capillary. This behavior
is not consistent with the piston attaining a self-
preserving form. In addition, as is evident from Fig. 1,
the peak amplitude never attains a steady-state value, but
rather progressively increases as the piston continuously
accumulates additional Na.

The temporal development of the piston shape can be
better appreciated by replotting the results of Fig. 1(b), as
shown in Fig. 3(a). In this latter figure, the maxima of
the ten density distributions of Fig. 1(b) have been nor-
malized to unity and superimposed. As can be seen, the
illuminated leading edge of the density distribution rapid-
ly establishes a steady-state form, i.e., the shape of the
leading edge does not change significantly after the
second time step. The dark side of the distribution, how-
ever, continually broadens and increases in amplitude as
the wave sweeps and accumulates sodium. Accumulation
of sodium on the dark side of the distribution is also re-

sponsible for the slowing down of the density wave.
WHW have shown experimentally that suddenly increas-
ing the downstream density by heating the Na appendage
causes the optical piston to stop and travel backwards.
From these results, it is apparent that for the experimen-
tal conditions of WHW, where there is always sodium
available to be swept in front of the density wave, the
dark side of the density distribution will never assume a
self-preserving form.

The assumption of a self-preserving form for the Na
optical piston derives from the analysis of Nienhuis. "
However, Nienhuis's results were obtained for the
specific case of a finite number of absorbers in an infinite
medium. These conditions were not satisfied in the ex-
periments of WHW.

In Fig. 3(b) it is shown numerically that a self-
preserving form can indeed be attained under the condi-
tions cited by Nienhuis. These results were obtained for
the exact same parameters as in Fig. 3(a), using the unsa-
turated form of the Beer-Lambert law for the drift veloci-
ty, with the condition of a finite number of absorbers ap-
proximated by imposing an initial sodium distribution of
density p= 1 over only the first 10% of the diffusion tube,
rather than along its entire length, as was done for the
calculations presented in Fig. 1(b). As can be seen, the
shape of the density wave is very nearly invariant over
the entire piston evolution.

That similar behavior can be expected under saturated
conditions is shown by the results presented in Fig. 3(c)
which were obtained using the saturated form of the
Beer-Lambert law [i.e., Eq. (10)] for the drift velocity. As
in Fig. 3(b), it appears that after the first time increment,
at which the distribution is slightly broader than the oth-
ers, the form of the density wave remains relatively well
preserved for the subsequent time increments shown.
Only a total of four time increments, free of the effects of
the far boundary, were recorded for the exact same time
and parameter values as in Fig. 3(b) because one effect of
saturation was to significantly increase the piston velocity
such that subsequent density distributions were situated
against the boundary of the cell at g= l. A comparison
of panels (b) and (c) indicates that saturation seems to
slightly broaden the distributions near the peak, but
reduces tailing somewhat on the dark side. These results
graphically demonstrate that unsaturated conditions are
not necessary in order for the density wave to assume a
self-preserving form, as also implied by Nienhuis. '

B. Model results with fluorescence

(c)

Relative

FIG. 3. Normalized and superimposed number density distri-
butions for a=40, y =320 for equal time increments of 0= 10
(a) Data of Fig. 1(b); (b) Eq. (18) model without saturation; (c)
Eq. (13) model with saturation. (Note that due to the higher
piston velocity observed in the latter case, only the first four
density distributions are presented. )

In all our calculations using the model proposed by
WHW (or other related models) to explain the propaga-
tion of the optica1 piston, we could not obtain density-
wave shapes that were qualitatively very similar to the
Na density profiles recorded by WHW. For example, the
osci11oscope display obtained with a probe beaxn perpen-
dicular to the diffusion tube, presented in WHW Fig. 4,
shows a Na density profile that is significantly broader
and of a lesser amplitude than those shown in Fig. l.
Therefore, it must be concluded that the model of WHW
and the estimates obtained from the "self-preserving
form" ideas of Nienhuis are, at best, only a first-order
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IV. CONCLUSIONS

From the results presented above, it is concluded that
for the typical experimental conditions of WHW, the Na
density wave of the optical piston never attains a "self-
preserving" form during its traverse of the diffusion cell,
i.e., both the velocity and the shape of the traveling den-
sity distribution change continuously with time. It is
shown, however, that the conditions of a finite number of
absorbers in an infinite medium can indeed produce a
density wave that preserves its form, and that this holds
true for both saturated and unsaturated conditions.

Also, using the formulation developed here, it has been
shown that resonance fluorescence acts to significantly

reduce the optical-piston velocity, broaden the density
distribution, and decrease its peak height. Therefore, it is
concluded that resonance fluorescence can play a
significant role in determining the time evolution and de-
tailed shape of the optical-piston density distribution in
sodium, and that it must be considered in any model that
attempts to explain the detailed dynamics of the optical
piston.
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