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Certain nonclassical effects in four-wave mixing are studied within the framework of a quantum

theory of multiwave mixing. It is shown that the Cauchy-Schwarz and Bell's inequalities are violat-
ed for large detuning of the pump frequency from the side-mode frequencies.

I. INTRODUCTION

In quantum optics, nonclassical effects (where P repre-
sentation is not positive definite) exhibit some exciting
phenomena including squeezing, photon antibunching,
and violation of the Cauchy-Schwarz and Bell's inequali-
ties. In recent years, squeezing has been the subject of
great attention because of its potential applications in
weak-signal detection and optical communication sys-
tems, and a lot of interesting work has been done in this
regard. Yuen and Shapiro' first proposed squeezing in
degenerate four-wave mixing. Reid and Walls also gave
a detailed microscopic model for degenerate four-wave
mixing and predicted squeezing. Recently, Holm, Sar-
gent, and Capron predicted squeezing in nondegenerate
four-wave -mixing and marked the regions of strong
squeezing. Kilin predicted squeezing in forward degen-
erate four-wave mixing. Experimentally squeezed states
have been observed in four-wave mixing by Slusher
et al. and Levenson et al. The second-order coherence
function provides information to test photon antibunch-
ing and violation of the Cauchy-Schwarz inequality.
Kimble et al. and Cresser et al. observed photon anti-
bunching in resonance fluorescence from atoms in an
atomic beam. Walther and Diedrich' recently observed
this effect in resonance fluorescence from a single ion in
an ion trap. Violation of the Cauchy-Schwarz inequality
has also been studied in many systems including the two-
photon laser, " the parametric amplifier, ' Jaynes-
Cumming-type model systems, ' resonance fluores-
cence, ' and the three-photon hyper-Raman process. '

Clauser, and more recently, Grangier et al. , observed the
violation of the Cauchy-Schwarz inequality in an atomic
two-photon cascade system. ' Bell's inequality' ' pro-
vides a test of quantum mechanics. Aspect and co-
workers' ' performed experiments to test Bell' s
theorems and found good agreement with quantum-
mechanical predictions. Reid and Walls ' and Drum-
mond showed that the states of radiation fields which
give violation of Bell's inequalities cannot be represented
in terms of singular positive P representation. In a recent
paper Reid and Walls proposed an experiment for a
two-mode source to test the violation of Bell's inequality.
They also predicted the limits for the violation of Bell' s
inequality in such systems.

In this paper we discuss the violation of the Cauchy-
Schwarz and Bell's inequalities in a nondegenerate four-

wave mixing process within the framework of the theory
developed by Sargent, Holm, and Zubairy. 2 This theory
describes a number of interesting topics in quantum op-
tics, including resonance fluorescence, saturation spec-
troscopy, laser, and optical-bistability instabilities, and
three- and four-wave mixing. The theory treats a classi-
cal plane running wave of intense frequency and one or
two weak quantized plane running waves. In Sec. II, we
derive a Fokker-Planck equation for the Q representation
from the reduced density-matrix equation for the fields.
We then present an exact steady-state expression for the

Q representation for the field modes. Various correlation
functions needed for the study of nonclassical effects can
be obtained from this expression in a straightforward
manner. In Sec. III we calculate appropriate fourth-
order correlation functions and discuss the violation of
the Cauchy-Schwarz and Bell's inequalities in four-wave
mixing. We plot these inequalities against detunings of
the pump frequency to the side-mode frequencies and
mark the region where these inequalities are violated.

II. EQUATION OF MOTION
FOR THE FIELD DENSITY MATRIX

In four-wave mixing the pump frequency is servo-
locked at frequency v2 and the side-mode frequencies are
locked at frequencies v& and v3, respectively, so that the
mode-locking condition v2 —v& ——v3 —v2 is satisfied. We
take the pump field to be arbitrarily intense, and threat it
classically up to all orders. Side modes of frequencies
v, , v3 are considered weak and are treated quantum
mechanically up to the second order in the coupling con-
stant. The atomic system consists of two-level atoms
where transition takes place between the ground state
and some excited states.

The slowly varying field density operator equation of
motion for the system is

p= A i(pa&a l a &pal)

—(8, +v/2Q, )(a,a,p —a,pa, )

+C&(a &a3p —a3pa & )+D&(pa3a &

—a |pa 3)
t t f t t

+[1~3]+H. c. ,

where 1+ 3 represents the same terms with subscripts 1

and 3 interchanged, v/Q is the cavity loss rate, and a,

38 2380



38 VIOLATION OF CAUCHY-SCHWARZ AND BELL'S. . . 2381

and a; are the annihilation and creation operators for
the ith mode. The expressions of the coefficients
A „B„C,,D, appearing in Eq. (1) are given in Ref. 25.
We interpret A&+A& as the spectrum of resonance
fluorescence, while A

&

—B, is the semiclassical complex
gain and/or absorption coefficient and C& —D, is the
semiclassical complex-coupling coefficient.

In four-wave mixing the strong pump field consists of
two oppositely directed running waves, forming a stand-
ing wave. Due to spatial hole burning (SHB) of the upper
and lower population difFerence, the atoms in the
different locations receive different amount of saturation.
So the coefficients used in Eq. (1) should be averaged over
the spatial hole burning for one wavelength. The result-
ing expressions for the averaged coefficients A &,B&,

C&,D&, are 26

C = yX2FD 3

4
(3e)

d = F(D, +D3 ) .
2

(3

The complex Lorentzian denominator D„ is

D„= 1

y+i (co —v„)
(3g)

+2 y'/[y'+(~ vz—)']

I2 POI Az
I

T, T2/A

(3h)

(3i)

and the dimensionless quantities such as the Lorentzian
Xz intensity Iz, and the population pulsation term F are
defined by the following equations:

g'D i b, +—c/2 2 b, +—c ld

(1+4I2/2)' (1+4I d)'
I— r

I +iA
(3j)

(2a)

1 1

d
(2b)

g U)U3Di
& Cl )SHB 2—

—b3+c/Xz
(1+4I,Z, )'"

b3+c/d—

(1+4I,d)'"

1 1

d
(2c)

2UA UQD
&Di)sHB= 2—

b4+c/Xz-
(1+4I2X )'

b4+ c /d-
(1+4Izd)'

(2d)

g D, —bz+c/Ã2 d bz+cld—

2
—d (1+4I2Ã2) i/2 (1+4Izd) 1/2

The constants 1 (=1/T, ) and y(=1/Tz) are the upper-
to-lower-level decay constant and dipole decay constant,
respectively. Also, g is the atom-field coupling constant,
co is the atomic transition frequency, and 6=v2 —v, is the
beat frequency between the models 1 and 2. The
coefficients A 3,83,C3,D3 are obtained by interchanging

v, and v3 in the expressions of A &, B&,C„D,. The sys-

tem we consider here involves atomic transitions that
take place between ground level and some excited state.

III. FOKKER-PLANCK EQUATION OF MOTION
FOR THE FIELD

In this section we derive a Fokker-Planck equation for
the Q representation for the field modes from the equa-
tion of motion for the reduced field density matrix, and
then solve it exactly in steady state. The disadvantage of
using the more commonly used P representation in the
present problem is that it is non-positive-definite for the
nonclassical field. The Q representation, however, is pos-
itive definite for such fields.

The Q representation for the field of modes 1 and 3 is
defined as

1
Q(ai a3)= —&a»a3 IPI ai a3)

where

yD2F
+ 1+.

2 4

&F D2
b, = + D,* — 1—

2 2 4 ib

—qD,r
b3=

4

Dz I
b4 —— F D3+ 1 —.

2 4 ih

(3a)

(3b)

(3c}

(3d)

where
~
a„a3) is the eigenstate of a;, with eigenvalues

a, , i.e.,

a;laia3)=a;la, a3) (

The expectation value of any antinormally ordered func-
tion T(ai, a i, a3, a 3) can be evaluated from Q(ai, a3) us-

ing

& T(a„a„a„a,))
= f T(a, , a*, , a3, a3)Q(a„a3)d a,d a3. (6}

It follows, on taking the expectation values of various
terms appearing in Eq. (1) with respect to the coherent
state

~
a„a,), that
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a B B B B B2
Q= — A] a]+ A3 ]33 Q+ 8] a]+ +B3 a3+

Ba& Ba3 Ba]Ba; Ba3Ba3

B ~ B ~ B g, B
C, a3+C3 a]" Q+ D, a3+

Ba) Ba3 a& a& a3
B . B'

Oa
'+

Oa, Oa,
Q +c.c.

After performing rather lengthy calculations we get the
exact steady-state solution of the Fokker-Planck equa-
tion, which satisfies the above equation. The solution is
of the form

Q(a„a3)=—exp[ (L, ] ~

a—] ~
+L33

~
a3

~
+L]3a]a3

1 2 2

+L3]a]a3 )],

where the normalization constant

N = exp —L&& a& +L33 a3 +L)3a&a3

+L3]]xlQ3 }]d lxld Q3

and

(10b)

The expectation values of normally ordered correlation
functions are obtained from antinormally ordered cor-
relation functions using the commutation relation
[a;,a;]=1. The expectation values &a]a]&, &a]a3& ap-
pearing in Eqs. (10a}—(10d) are related to various
coefficients by the following expressions:

L]]——&a3a3 &/(&a]a]&&a3a3 &
—

~
&a,a, &

~

'),
L33 &a]a] &/(&a]a] &&a3a3 &

—
~

&a]a3 &
~

)

L]3——&a,a3&/(&a, a, &&a3a3& —
~

&a, a3&
~

), (10c)

L31 —&a]a3 &/(&a, a, &&a3a3 &
—

~
&a]a3 &

~
) . (10d)

&a ]a]&=—
I &][P3(

~ P]+P3 ~

') —(P]+P3)K]K3+c.c. ]D

+ A3(p] +p3 +c c)
~

K.] ~
+K] (C] + C3)[(p3+p3 )(p] +p3 ) —K]K3+K]K3 ]+c.c.

&a, a3 & ( K3[K] K3 K]K3 (P3+P3 )(P] +P3 )](A]+A] )
D

+(p, +p] )[p] (p3+p3 )(C, +C3)—K3(K;C, +K]C3—c.c. )]+[1~3]]. (12)

The denominator D in Eqs. (11)and (12) is given by

(P]+P] )(P3+P3 )
~
P]+P3

~
+(K] K3 K]K3 )

—I(p]+p] }K]K3(p]+p3)+[1~3]+C.C. ], (13)

taneous equations. After solving these equations algebra-
ically we obtain the expectation values given by Eqs. (11)
and (12).

IV. NONCLASSICAL EFFECTS
with p] =(8 ] +v/2Q —A ] ), K, = ( C, D, ). The quan—ti-
ty &a3a3 & is given by Eq. (11) with 1~3 interchanged.
The above expectation values are evaluated from the fol-
lowing equations of motion:

dt
—&a]a] & =( &] —&] —v/2Q] )&a]a] &

In this section we evaluate the expectation values of
fourth-order correlation functions for the field. We pre-
dict that the Cauchy-Schwarz inequality and Bell's in-
equality are violated under certain conditions. We also
plot the appropriate correlation functions and identify
the regions where these inequalities are violated.

+(C, D, )&a,a3 &+ A]—+c c. , (14}

d
dt
—&a]a3 & =( A1 B]—v/2Q] )&a]a—3 &

+(C, D, )&a3a3&+C]+—[1~3] . (15}

The equation of motion for the number operator & a 3a3 &

can be obtained by interchanging 1~3 in Eq. (14). The
quantity & a,a 3 & is determined by taking the complex
conjugate of Eq. (15). In steady state the time depen-
dence of these equations vanishes and we get four simul-

A. Squeezing

Recently, Holm, Sargent, and Capron predicted
squeezing in four-wave mixing using the present ap-
proach. We briefly review some of the calculations for
the sake of completeness. We define the linear superposi-
tion of the coupled-mode annihilation operator by

1d = —(a, +a3)e'v'2
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Then canonically conjugate Hermitian amplitude opera-
tors are given by

d, =—,'(d+d ),

d2 ———.(d —d ) .1

2l

(17a)

(17b)

where i =1,2 for —,+, respectively.
The minimum variance is obtained for hd

&
with phase

angle choice,

(a,a3)e ' =
I

&aia3&
I

hence

(18b)

ddt =-,'+ —,'(&ata, &+&a3a3& —2I &a&a3& I
) . (19)

In Fig. 1 we plot this variance versus detuning
(v, —v, ) Tz for pump intensity I2 ——50, with detuning of
the pump frequency from the atomic transition frequency
(co vz)T2 ———8 and C=5, where C=g /y(v/Q). This
figure shows the regions of strong squeezing.

B. Violation of the Cauchy-Schwarz inequality

The Cauchy-Schwarz inequality is violated in those
systems where the correlation between the photons of
different modes is larger than the correlation of the pho-
ton of the same mode. As mentioned before, the viola-
tion of the Cauchy-Schwarz inequality represents a non-
classical effect in the sense that the P representation of
the field is not positive definite. This can be seen by the
following argument.

In the case of two modes for a non-negative two-mode
P representation P (g&, (2), we get

1 92 2 ~1 ~ 1& 2

XP(q„g2)d g, d (2d g, d g2, (20)

This gives the following quantum analogue of the
Cauchy-Schwarz inequality:

0.28

The squared variances are given by

b.d, = —,'+ —,'((a, a& )+(a3a3)+(a, a3e ' +c.c. ) ),
(18a)

G;J ) [G;;GJ ]'i (23)

It is evident that this happens when P(g, , gz) is not posi-
tive definite. Hence to investigate the violation of the
Cauchy-Schwarz inequality in two modes whose destruc-
tion operators are a

&
and a3, we need to evaluate the fol-

lowing quantity:

(a &a3a&a3) ((a &a &ala& )(a3a3a3a3) )
t t i/2

(ata& )(a3a3) (a,a, )(a3a3)

(24)

The Cauchy-Schwarz inequality is violated if A, &0. It
follows, on substituting for Q (a ~, a3) from Eq. (8), that

(a, a, a,a, ) =
I a, I Q(a, ,a3)d a,d a3,4 2 2

1 BX
& BL'

=2(a, a, ) (25)

By using the commutation relation [a;,a; ]=1, we con-
vert this correlation function into a normally ordered
correlation function, so that

(a,ata&a&)=2(a&a, ) .

In a similar manner, we obtain

(26)

(a3a3a3a3) =2(a3a3) (27a)

(a,a3a, a3)=(a,a, )(a3a3)+
I (a, a3)

I
(27b)

On substituting for the fourth-order correlation functions
in terms of second-order correlation functions from Eqs.
(25)—(27) into Eq. (24), the following simple expression
for A. is obtained:

(21)

where the second-order coherence function of light is
defined as

(a;a a;a )

where a, and a,- are the destruction and creation opera-
tors for the ith mode.

Hence, the Cauchy-Schwarz inequality is violated
when

0.24

(aja3 &

A. = ) ) —1 .
(a,a, )(a3a, &

(28)

0.22—

The Cauchy-Schwarz inequality is therefore violated
when

(a,a3 ) ~ [(a,a, ) (a 3a3 ) ]' (29)

0.20
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l

-20
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-IO 0

(V;V )T2

I

IO

I

20

FIG. 1. Minimum squared variance b,d I vs detuning

( v~ —vi ) T2 for I,=50, (co—vq) T2 ——8, and C= 10.

From Eq. (29) we conclude that the Cauchy-Schwarz in-
equality is violated when the combination tone contribu-
tion exceeds the square root of the product of the number
operator contribution. In Fig. 2 we plot k versus detun-
ing (v2 —v, )T2 for the same parameters as used in Fig. 1.
It is obvious from the figure that the Cauchy-Schwarz in-
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lit is iol t d ifEq. (34) that Bell's inequa i y i

a 2

(35)

~ f/8 the violation o8 8'=ir/4, P'=3m
e s

' ' '
attained when

=0 =m/,
Bell's inequality is at ain

cost9+ a 3 sinc1 ——a1

c = —a, sin0+a3cosO,C2 1

d, =a, cosP —aisin

dz ——a, sinP+aicosP .

of detected modes isThen the correlation o e
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V. CONCLUSION

( t d d &=&a,a3aja3a )sin (8—P)1 1 1 1

2 ' 2
)cos 8 cos /+sin 8sm+(atatia, a, (cos cos

(31a)

( t dtd &=(a,a3a, a3a )cos (8—P)C1C1 2 2

2 s2 )( tata a, (cos sina a, 28sin /+sin 8co+ a,a,a,

(31b)
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