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Effects of multiplicative white noise on laser light fiuctuations
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The steady-state statistical properties of the single-mode laser with multiplicative white-noise loss

fluctuations are investigated. Analytic expressions for the intensity distribution and its moments are
derived and it is shown that the multiplicative noise significantly modifies the laser characteristics.
These predictions are then tested by photoelectric measurements of a He:Ne laser with fluctuating
loss. Good agreement between theory and experiment is obtained.

I. INTRODUCTION

Instabilities and phase transitions in nonequilibrium
systems have been the subject of great interest in many
branches of natural sciences. ' In the neighborhood of an
instability such systems are extremely sensitive to the
presence of noise. There are two types of noise present in
nonequilibrium systems. The so-called additive noise
arises due to the microscopic processes by which the sys-
tem evolves and is independent of the macroscopic state
of the system. Under the influence of additive noise a
system executes a random walk in the state space leading
to a distribution of the values of the state variables. This
type of noise, however, leaves the local stability proper-
ties of the system unchanged. In particular, the critical
points and the extrema of the probability distribution of
the state variables coincide with the solutions of the
deterministic system and no new instabilities which are
not expected from a deterministic description arise. This
type of noise has been studied extensively.

Multiplicative noise arises due to the randomness of
the environment to which the system is coupled. This
noise enters the system dynamics via its coupling to state
variables. Although the importance of multiplicative
noise in the context of electronic oscillators has been
known for many years, ' it is only recently that its im-
portance for nonequilibrium systems has been realized.
The effects of multiplicative noise are far less intuitive
than those produced by additive noise. Thus, for exam-
ple, multiplicative noise can change the local stability
properties of the deterministic solutions. As a result the
critical points as well as the extrema of the probability
distribution of the state variables may differ from those of
the deterministic description and new instabilities which
are unexpected from the deterministic description may
appear. Since the multiplicative noise is state depen-
dent it may not be negligible even for large systems. This
is in contrast to additive noise which scales inversely as
the system size and is usually important only in the
neighborhood of an instability.

In quantum optics both types of noise have been stud-
ied in lasers where sources of both noise are present. The
additive noise in the laser arises due to quantum-
mechanical spontaneous-emission fluctuations and the

multiplicative noise arises due to the fluctuations of the
gain or the loss. Two laser systems that have been stud-
ied rather extensively are the single-mode He:Ne laser
and the single-mode dye laser. ' ' The single-mode
laser threshold instability in the He:Ne laser is perhaps
the best studied nonequilibrium phase transition. ' It has
the phenomenology of a second-order phase transition
and various experimental studies of this instability seem
to indicate that, at least in the region of threshold, only
the additive noise is important. In the case of the dye
laser, on the other hand, the experiments' ' suggest
that the behavior of the dye laser is dominated by multi-
plicative noise' which arises due to pump fluctuations
and the turbulence in the dye jet. It is not clear what the
nature of the underlying instability is. Earlier theoretical
investigations' had suggested a 6rst-order-phase-
transition-type instability. This has, however, never been
observed. Furthermore, there are indications that the
fluctuations of the dye flow are chaotic. ' It remains to
be investigated if the effects of chaotic fluctuations are
any different from those of the random fluctuations. It is
therefore clear that the fluctuations of the dye laser and
the nature of the underlying instability as well as the role
of multiplicative noise in lasers can be better understood
by studying a system where the fundamental instability is
well characterized and where multiplicative noise can be
introduced in a controlled fashion. Also, since the addi-
tive spontaneous-emission noise is always present in
lasers, it would be of interest to see what new features ap-
pear when additive and multiplicative noise strengths are
similar.

In this paper' we report on the investigations of the
effects of multiplicative noise on the single-mode laser
threshold transition. Only the multiplicative white noise
arising from laser loss fluctuations is considered here. In
Sec. II we present an outline of the theoretical model
which describe the effects of multiplicative noise and
summarize the steady-state fluctuation properties predict-
ed by the model. Section III describes the experimental
setup and the method used to introduce rnultiplicative
noise. A number of corrections to data and the pro-
cedure to determine certain key parameters are described
in some detail. Experimental results and the principal
conclusions of the paper are presented in Secs. IV and V,
respectively.
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II. EQUATION OF MOTION

We consider a single-mode electromagnetic field of fre-
quency co interacting with a set of two level atoms inside
a laser cavity. If the laser electric field 8(r, t) at position
r at time t is written as

6(r, t)=u(r)E(t)e ' '+c.c. ,
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we can rewrite Eq. (2) with the help of Eq. (4) as
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where u(r) is the cavity-mode function and E(t) is a
slowly varying complex field amplitude, then on reso-
nance when the field frequency co coincides with the
atomic transition frequency, E(t) obeys the following
equation of motion

E(t)=(A —C' —B
~

E
~

')E(t)+g(t) . (2)

Here A, C, and B are the gain, loss, and self-saturation
coefficients which are real on resonance and g(t }is a com-
plex random process representing additive quantum noise
due to spontaneous emission. The properties of g(t) can
be determined by utilizing a fully quantutn-mechanical
treatment of the laser. However, it has been shown that
near threshold g(t) may be taken to be a 5-function-
correlated (white noise), Gaussian random process of zero
mean. Accordingly the noise properties of g(t) are deter-
mined by

(pt)) =0=(g (t}),
( g'(t, )g(t, ) ) =4S5(t, t, ), —

(3a)

(3b)

C =C+rt(t), (4)

where S represents the strength of the random process
g(t). If the laser gain or the losses are fluctuating then
the coefficients A, C, and B have a noise component.
Since these coefficients occur multiplied by the field am-
plitude, the corresponding noise appears as multiplicative
noise in the equation of motion. In this paper we consid-
er the laser loss to have a fluctuating component by writ-
ing

where we have dropped the primes on the new variables
with the understanding that in the rest of the paper we
will be dealing with the new scaled dimensionless vari-
ables. The noise sources in Eq. (7) are statistically in-
dependent with

(~)=0=(g),
( g*(t i )g(t2 ) ) =45(t i

—t, ),
(rt'(ti )rl(t2) ) =4Q5(ti t2) .—

(Sa)

(8b)
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The parameter a is the so-called pump parameter which
is negative below and positive above the conventional
threshold of laser oscillations which occurs at a =0 cor-
responding to A =C. The term conventional will be used
to refer to the situation when no multiplicative noise is
present. The pump parameter a is sometimes also ex-
pressed in terms of the mean number of photons no at
threshold in the conventional single-mode laser as a
[(A C)/C]&nn—o. The number no C/&BSm——is of or-
der 10 .

The stochastic equation of motion (7} for the field am-
plitude is to be interpreted in the Stratonovich sense. '

This is because the rnultiplicative noise process g, which
represents loss fluctuations introduced into the system, is
a Gaussian process with negligibly small (compared to
the correlation time of the laser) correlation time. Using
this interpretation Eq. (7) leads to the following Fokker-
Planck equation for the probability density p(E, t) of the
field to be characterized by the complex amplitude E at
time t,

where C is the mean loss coefficient and rt(t) represents
loss fluctuations. We take rt(t) to be a 5-correlated
(white-noise) complex Gaussian random process with
mean zero and strength D

P(E, t)= E(a —
I
E

I
)p(E, t)

( rt'(ti )rt(tq ) ) =4D5(ti —t2 ) . (5)
+2, (1+Q

i
E

~
)p(E, t) +c.c.

dE t}E'
The noise process rj(t) is assumed to be statistically in-
dependent of g(t). The coefficient C is real. The choice
of a complex or real rl(t) depends on the manner in which
loss fluctuations are introduced. If loss fluctuations
change the phase of the field, then rt(t) must be taken to
be a complex process. Our experiments correspond to a
complex noise process. The validity of the white-noise
assumption [Eq. (5}]will be examined later.

In terms of new dirnensionless variables
P, (I)=const X (1+QI)' 'exp I

(10)

The steady-state solution of this equation depends only
on the field intensity I =

~

E
~

and has been found in-
dependently by a number of authors. ' ' ' ' From this
solution we find the steady-state intensity probability
density P, (I) to be

1/48E'= — ES

t'=(BS)'/'t,

a =( A —C)/&BS,

(6a)

(6b)

(6c)

where v=a/2Q+ 1/2Q . The effects of multiplicative
noise on the steady-state fluctuation properties of the
laser can now be discussed in terms of Eq. (10) and its
moments. We note that in the limit Q ~0 we recover the
conventional intensity distribution

P, (I)=const X exp( —,'aI ——,'I )
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0, a&2Q
m

—
a —2Q, a)2Q . (12)

This means that laser oscillations cannot build up for
a &2Q. In the language of oscillators then we may call
a =2Q the threshold of oscillation. In the conventional
laser with additive noise only, the threshold of oscillation
is reached at a =O. Thus we see that the effect of multi-
plicative noise is to shift the threshold of oscillation from
a =0 to a =2Q. This threshold shift due to multiplica-
tive noise has also been noted in several other contexts.
Figure 1 illustrates this shift of threshold of oscillation
for Q = l. It is seen that the most probable value of the
light intensity does not begin to move away from zero to
nonzero values until a =2. By treating I as an order
parameter it is easily shown that the single-mode laser
with rnultiplicative white noise undergoes a phase transi-
tion with the phenomenology of a second-order phase
transition. This shift of laser threshold was observed ex-
perirnentally in Ref. 17.

Analytic expressions for the moments of light intensity
can be derived from Eq. (10}. For the mean (I ), the nor-
malized variance ~2, and the normalized skewness a3, we
obtain

&I &=2g
2

~ ( —1/2)Q

(2Q )'I v,
1

2Q2

(13)

((I—(I)) & +2Q 2

(I )' (I ) (I ) 2 (14)

for the conventional laser.
The steady-state intensity probability density P, (I) has

only a single peak and the peak position shifts to smaller
values as Q increases. The position of the peak in the
probability determines the most probable light intensity
I . From Eq. (10) we find

(2a Q+2a+4aQ +8Q )
Q2 I 3

(a Q +6ag —2ag+2Q +8Q —2)
1

g2(I )2

(15)

where the incomplete gamma function I (v, z} is given by

I (v, z)= f dx e "x"
z

(16)

The behavior of the mean light intensity as a function
of the pump parameter is illustrated in Fig. 2 for several
different values of the multiplicative strength. It is seen
that the rnultiplicative noise tends to increase the mean
light intensity for a given value of the pump parameter.
This increase, despite the fact that the peak of the distri-
bution shifts to lower intensity values, is possible because
the distribution develops a long tail with increasing noise
strength Q. This long tail is also responsible for the en-
chanced intensity fluctuations seen in Fig. (3). For the
conventional laser (Q =0) the relative intensity fluctua-
tions decrease rnonotonically from a value of 1 corre-
sponding to a thermal state for large negative values of
the pump parameter to a value of zero corresponding to a
coherent state for large positive values of the pump pa-
rameter. For nonzero values of Q the relative intensity
fluctuations may reach a maximum in excess of unity be-
fore decreasing as the pump parameter a is varied from
negative values to positive values. The maximum occurs
approximately at a = —(2Q+1/2Q).

In the conventional laser it is a good approximation to
neglect the saturation term in Eq. (2) for large negative
values of a. For the laser with multiplicative noise this
approximation leads to the steady-state intensity distribu-
tion,

PL (I)=const X ( 1+QI) (17)
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FIG. 1. Forms of the steady-state intensity probability densi-
ty P, (I}for a fixed value Q of the multiplicative noise strength
and several different values of the pump parameter a.

FIG. 2. Variation of the mean light intensity (I ) with pump
parameter a for several dilferent values of Q.
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FIG. 3. Variation of the normalized variance a2 of the light
intensity with a for several different values of Q.

&I)„=2Q+
2

1
K2 h=1-, t, (19)

As the pump parameter a is increased beyond a =2Q the
relative intensity fluctuations die out and we obtain the
following expressions for the mean (I ) and the relative
variance ~2,

(I) a —2Q,
2 2Q

&I)

(20)

(21)

The intensity distribution approaches a Gaussian with
mean and variance given by Eqs. (20) and (21). Its expli-
cit form is

P, (I)~const X exp
(I —&I))'

4(1+Q I )

Thus the laser eventually reaches a coherent state albeit
at a slower rate compared to the conventional laser where
F2~2/(I ) . These new features which result due to the
presence of the multiplicative noise were tested in the
photon-counting measurements of a He:Ne laser where a
controlled amount of multiplicative noise was introduced.

not all of whose moments exist. Our experimental results
are in disagreement with the predictions of Eq. (17) indi-
cating that for the laser with multiplicative noise the non-
linear term is important even for large negative values of
a.

Multiplicative noise also modifies the near-threshold
and above-threshold behavior of the laser. At the thresh-
old of oscillation the value of x2 and (I ) depends on Q as
opposed to the conventional laser where they have values
~2 ——0.57 and (I)=1.13 independent of the strength of
the additive noise. In the present case we have for large
values of Q,

III. EXPERIMENTAL PROCEDURE

The experimental setup used in these experiments'
consisted of a 20-cm-long standing-wave He:Ne laser
operating at A, =633 nm near threshold. Large
longitudinal-mode spacing (750 MHz) compared with
1500 MHz atomic linewidth and an intracavity aperture
to discriminate against off-axis modes ensured a single-
longitudinal- and single-transverse-mode operation at all
power levels available from the laser. The laser was
operated with the field frequency tuned to the center of
atomic line with the help of a mirror mounted on a
piezoelectric transducer. A photomultiplier tube moni-
toring a part of the output light intensity, an electronic
amplifier, and a movable knife edge formed the part of a
feedback loop which could control the operating point of
the laser at any desired level. The whole setup was en-
closed in a temperature-controlled housing which was
placed on top of a heavy vibration-isolated platform.
Once thermal equilibrium had been reached the laser was
naturally quite stable. Its frequency drifted by no more
than 5 MHz over a period of 10-15 minutes —and the
electronic feedback loop could hold the laser light inten-
sity constant at any desired level to better than 1% for
the same duration in the entire threshold regime. The
feedback unit only responded to slow changes occurring
on the time scale of several seconds.

In order to introduce multiplicative noise an acous-
tooptic modulator (AOM} was inserted into the laser cav-
ity. The input to the driver (not shown) for the modula-
tor was derived from a noise voltage source. The noise
voltage had a Gaussian amplitude distribution with flat
spectrum in the 10 Hz to 10 MHz frequency range. The
maximum root-mean-square (rms} voltage was 20 mV
with a peak to rms ratio of 5. The output could be at-
tenuated from 0—40 dB in steps of 1 dB. The transfer
characteristics of the driver-modulator combinations
were determined by passing a narrow laser beam (0.6 mm
diam) through the modulator outside the cavity and
analyzing the spectrum of the photocurrent produced by
the first-order beam when the input to the driver was the
noise voltage. The photocurrent spectrum again was
found to be flat from 10 Hz to 10 MHz within 2 dB.
Since the intensity of the first-order beam is proportional
to the loss suffered by the zeroth-order beam, the photo-
current spectrum reflected the spectrum of the loss fluc-
tuations. The relation between the rms value of the
modulator loss and the noise voltage was found to be
linear except at the highest voltages in the neighborhood
of V, , =20 mV. This means that when the modulator is
placed inside the laser cavity and driven by the noise volt-
age, the loss fluctuations introduced by the AOM may be
modeled by a Gaussian random process with a flat spec-
trum up to frequencies of 10 MHZ. Also, since the 10
sec correlation time of the loss fluctuations corresponding
to the 10 MHz bandwidth is negligible compared to the
correlation time of the laser, we may also treat loss fluc-
tuations as a white-noise process. The laser is then
modeled by Eq. (7). The strength Q of the multiplicative
noise can be varied by changing the rms value of the in-
put noise voltage.

To perform the experiment, noise voltage after proper
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attenuation is applied to the AOM and the laser is stabi-
lized by the feedback loop at some operating level charac-
terized by its mean light intensity. The main beam of
light coming out of the laser cavity after passing through
an interference filter and a set of calibrated filters, if need-
ed, falls on a fast-counting photomultiplier tube (PMT).
The photoelectric pulses appearing at the output of the
PMT are amplified and passed through a nonupdating
discriminator which produces standard negative-logic nu-
clear instrumentation module (NIM) pulses of 20 ns dura-
tion. These pulses are fed to an electronic gate which is
opened for a counting time T =3 ps. The pulses appear-
ing from the gate are counted by a sealer. The number of
pulses n registered by the sealer during the counting in-
terval T is transferred to a computer memory in such a
way that the contents of the memory location n are incre-
mented by 1. After the transfer the sealer is cleared.
This process is repeated 10 times and a histogram is
built up. Successive counting cycles are separated by at
least 250 ps in order to ensure independent counting sam-
ples. At the end of the measurement the number N„
stored at the memory location n becomes a measure of
p(n):p(n—, T), the probability of detecting n photoelec-
tric pulses during the counting interval T. Since the
counting interval T =3 ps is short compared with the
correlation time of the laser (40—200 ps) we can write the
relation between p (n) and the steady-state intensity prob-
ability density in the form

p(n)= f e P, (I)dI,
o nf

(23)

when the electronic deadtime can be ignored. In Eq. (23)
a is the quantum eSciency of detection. Using this rela-
tion we can extract the moments of the light intensity I
from the measured moments of n In pa. rticular, the
mean, the normalized variance ~2, and the normalized
skewness ~3 are given by

(I ) =aT(n ),
~ = ( n (n —I ) ) /(n ) —1,

(24)

(25)

y(n —1,P„,)
p(n)=

0 (n —I )!

y(n, P„)
P, (I)dI, (27)n!

where the incomplete y function y(n, P„) is defined by
P„

y(n, P„)=J x "e "dx, (28)
0

v3 ——(n (n —1)(n —2))/(n ) —3(n (n —I))/(n ) +2 .

(26)

In practice, several corrections had to be applied to the
measured moments of n before information about the mo-
ments of the light intensity could be extracted. The mea-
sured moments were corrected for the finite deadtime of
the counting electronics. The counting deadtime was
determined by the discriminator which had the longest
deadtime (30 ns). These corrections have been discussed
by many authors. ' If 5 denotes the ratio of the dead-
time to the counting time T, then Eq. (23) is modified to
read

with P„=aTI(1—n5). Corrections to Eqs. (24) —(26) due
to this modification are usually expressed as a power
series in 5. The convergence of this power series is worst
for light fields with large intensity fluctuations. The con-
vergence of the series for the kth moment requires
Ck(n)5((1, where the constant Ck depends on the
statistics of the light field. For a thermal light field

Ck ——k. For the experiments reported here Ck can be
several times greater than k depending on the strength of
the multiplicative noise. This condition puts severe limi-
tations on the counting rate usable in the experiment.
With the deadtime ratio 5 =0.01 (deadtime 30 ns and the
counting time T =3 ps) the mean ( n ) was kept around
0.6 by using a few calibrated neutral density filters. Even
under these conditions the inclusion of terms up to third
order given in Ref. 8 was not suScient. Fourth-order
terms were calculated ' and included in all corrections
applied in order to obtain a satisfactory convergence.

The data were also corrected for the effects of back-
ground light mainly from the laser gas discharge. ' An
interference filter, a polarizer, and two small apertures
were used in front of the counting PMT to reduce the
background light from the laser. The background count
rate was never more than 8 —10%%uo at the lowest working
point and usually much less at higher working points.
The background light is statistically independent of the
laser light and has a bandwidth large compared with the
inverse of the counting time so that its photocount statis-
tics may be taken to be Poissonian. If P denotes the ratio
of the background count rate to the total count rate, the
mean, the normalized variance, and the normalized skew-
ness for the laser light alone are obtained by multiplying
the corresponding quantities for the total light field by
(1 —P), (1 —P), and (1—P), respectively. Corrections
due to the finite counting time T were not considered in
these measurements.

Measurements were made for several different operat-
ing points of the laser for a fixed value of the multiplica-
tive noise strength determined by the rms value of the
noise voltage. The measurements were repeated after
changing the noise voltage driving the AOM. In all mea-
surements the laser was operated on resonance.

IV. EXPERIMENTAL RESULTS

The corrected data are compared with the theoretical
predictions of Sec. III in Figs. 4 and 5. The experimental
values of s.

2 versus (I ) are shown in Fig. 4, which is a
reproduction of Fig. 2 of Ref. 17 with some new data in
it. The scale constant aT [Eq. (24)] was chosen to give
best fit with the Q =0 (conventional laser) curve. This
was done by plotting xz against log, o(I ) for the Q =0
case. Since x2 (and ~3) is independent of aT, a variation
of aT corresponds to a translation along the log&0(I)
axis. The value of aT determined in this way was not ad-
justed any further. The parameter Q was estimated from
a curve of ~z versus Q for a fixed value of (I). The
values of Q determined in this way were in agreement
with the AOM loss versus noise voltage measurements.
Once a T and Q are known, the pump parameter a is
determined from a knowledge of (I). We found it con-
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10

FIG. 4. The measured values of the normalized variance K2

as a function of the mean light intensity (I ) for (bottom to top)

Q =0, 0.25, 0.66, 1.15, 2.13. Solid curves are theoretical predic-
tions based on Eqs. (13) and (14).

venient to plot az and a3 against (I) for in the experi-
ment it was the mean light intensity that characterized
the operating point of the laser. Superimposed upon the
experimental points are the theoretical curves derived
from Eqs. (14) and (15). It will be seen that there is good
agreement between theory and experiment. The normal-
ized variance a2 for the conventional laser (Q =0) is sub-

thermal remaining always below unity. As the operating
point of the laser is raised, ~2 monotonically decreases to
zero For .the laser with multiplicative noise (Q &0) the
relative variance exhibits a peak before decreasing to zero
with increasing light intensity. In the vicinity of these
peaks the laser can exhibit supertherrnal fluctuations far
in excess of unity. A similar peak in ~2 was observed by

Lett, Short, and Mandel' in the dye laser with large
colored multiplicative noise.

Enhanced intensity fluctuations are also evident in Fig.
5, where normalized skewness ~3 is plotted against the
mean light intensity. The theoretical predictions as de-
rived from Eq. (15) are indicated by the continuous
curves. Once again there is good agreement between
theory and experiment. It will be seen that v3 for
nonzero values of Q exhibits a pronounced peak before
decreasing to zero with increasing light intensity. For a
thermal light field ~3 ——2, but for the laser with multipli-
cative noise ~3 can be much greater than this value.
Higher-order moments exhibit similar superthermal in-
tensity fluctuations. The magnitude of the departures
from the thermal statistics increases as the strength of the
multiplicative noise is increased. Although these peaks
occur for negative values of the pump parameter, they
can be accounted for only if the nonlinear term in Eq. (2)
is included. They also require the inclusion of the addi-
tive term no matter how strong the multiplicative noise
1s.

The excess fluctuations are a reflection of the fact that
the multiplicative noise produces highly skewed intensity
probability densities. This is clearly reflected in the mea-
sured histograms for the probability p(n) of detecting n

photoelectric pulses in a counting interval T =3 which
were presented in Ref. 17. For all the histograms (I )
was kept constant, but the noise parameter Q was varied.
Although p ( n ) reflects P, (I) only indirectly, it was evi-

dent that increasing multiplicative noise strength gives
rise to intensity distributions with long tails and large in-
tensity fluctuations. These measurements also illustrated
the shift of the peak of the distribution to smaller values
of I with increasing Q (cf. Fig. 1). It is also clear that the
threshold of laser oscillation as characterized by the ap-
pearance of a peak in P, (I) at a nonzero value of I shifts
to higher values of a as Q is increased. Equation (27) is
not easily inverted to yield P, (I) from the measured

p(n). We therefore chose to compare the measured
forms of p(n) with those derived from Eqs. (10) and (27).
The values of the parameters 5 and a T for the computa-
tions of p (n ) were chosen to be 0.01 and 1.71, respective-
ly.

V. CONCLUSIONS

0
0. 1 10

FIG. 5. The measured values of the normalized skewness a3
as a function of the mean light intensity (I ) for (bottom to top)
Q =0.0, 0.25, 0.66, 1.15, 2.13. Solid curves are theoretical pre-
dictions based on Eqs. (13) and (15).

The overall good agreement between theory and exper-
iment confirms the validity of the model used to describe
the effects of multiplicative white noise on laser light fluc-
tuations. In the experiments reported here, multiplica-
tive noise strengths less than or comparable to that of the
additive spontaneous emission noise were used in order to
study the changes that laser light fluctuations undergo
when external noise is introduced into the laser. At
higher multiplicative noise strengths, no qualitative
changes in the fluctuation properties of the laser are ex-
pected to occur. Our measurements demonstrate that the
nonlinearity of light-matter interaction is important even
for negative values of the laser pump parameter when
multiplicative noise is present.

Some of the features observed here have also been seen
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in the dye laser. ' It is, however, not possible without
also studying the effects of multiplicative colored noise in
a He:Ne laser to make a definite statement about the na-
ture of the instability in the dye laser. Further experi-
ments with a controlled amount of colored noise are
needed. Finally, since gain variations due to plasma
current and power supply fluctuations also contribute to
multiplicative noise, one may ask how much is their con-
tribution. If we assume that these fluctuations can also
be represented by a Gaussian white-noise process, then
their strength must produce Q values which are indistin-
guishable from Q =0 within the experimental uncertain-
ties. From Fig. 4 we estimate that plasma tube current
and power supply fluctuations produce Q &0.05 in the
laser used in these experiments. The assumption of a
white-noise process for these gain fluctuations is ques-
tionable. More realistic estimates based on a colored
noise model would produce a smaller upper limit on Q

values. These estimates are probably too optimistic for
most commercial ion or even He:Ne lasers under normal
operating conditions.

Lasers are but one example of nonequilibrium systems
which by their very nature are susceptible to external
fluctuations in their environment. We have demonstrated
that these external fluctuations can alter the behavior of
nonequilibrium system drastically and that a correct
description of such a system must take into account the
internal noise, the external noise, and the nonlinearity of
its response.
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