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The theory for a fully relativistic, two-center, coupled-channel treatment of atomic collisions be-
tween high-Z ions has been developed and applied to U + + U '+ collisions at SOO MeV/amu and
to Xe ++Ag and Xe' ++Au collisions at 82, 140, and 197 MeV/amu. In the former case, a set of
36, and in the latter a set of up to 29 atomic Dirac basis states has been used. Detailed state-to-state
cross sections for excitation and charge transfer are presented. For charge transfer in Xe' ++Ag
and Xe' ++Au collisions, the calculated results are generally in good agreement with experimental
data. Relativistically induced magnetic couplings of unusually long range are identified and
classified with respect to their selection rules and range dependences.

I. INTRODUCTION

In recent years, the study of atomic collisions at rela-
tivistic projectile velocities has developed into a new field
of physics. At the Berkeley Bevalac, ion beams ranging
from carbon to uranium projectiles are now produced
with maximum energies of about 1 GeV/amu. It is then
possible to examine quantum electrodynamics (QED) by
measuring the Lamb shift at very high charge numbers Z.
For this purpose, uranium ions have been accelerated up
to 1 GeV/amu, and in subsequent beam-foil time-of-flight
measurements the produced hydrogenlike or heliumlike
uranium ions have been studied. ' Furthermore, the
atomic structure of high-Z few-electron ions, as well as
dynamic processes, may be investigated. For the design
and interpretation of such experiments, it is necessary to
calculate excitation and charge transfer cross sections for
relativistic projectile velocities and relativistic electron
motions. '

Excitation and ionization cross sections in relativistic
collisions have been calculated by Anholt et al. and by
Becker et al. in a first-order perturbation theory. Elec-
tron capture has been successfully treated by Eichler, '

Anholt and Eichler, and by Meyerhof et al. with a rel-
ativistic eikonal approximation. Earlier calculations us-

ing a relativistic Oppenheimer-Brinkman-Kramers
(OBK) approximation' resulted in cross sections that
were almost an order of magnitude too large. Other per-
turbative approaches have also been employed; for exam-
ple, higher-order OBK expansions, " the impulse approx-
imation, ' continuum distorted-wave methods, ' the
symmetrized eikonal approximation, ' and a relativistic
first-order Born approximation with Coulomb boundary
conditions' (R1B).

Recently, Becker et al. ' used a finite-difference algo-
rithm as a nonperturbative method to calculate inner-
shell excitation and ionization for U ++U ' collisions at
1 GeV/amu. Their exploratory computations were, how-
ever, confined to the impact parameter b=0 (which car-
ries zero weight for the cross section). To supplement
those results, Becker has also performed coupled-channel
calculations using a one-center expansion in terms of tar-

get bound and discretized continuum states. ' In this
method, the projectile merely acts as a moving source for
an electromagnetic field. Molecular effects during the
collision and the possibility of charge transfer are hence
disregarded.

In the current work we solve the time-dependent Dirac
equation for relativistic ion-atom collisions employing a
coupled-channel treatment with a two-center atomic ex-
pansion for arbitrary impact parameters. A brief account
has been given in Ref. 18. Within this method, the only
approximation consists in the restriction to a finite set of
(up to 36) atomic basis states (as compared to 20 in Ref.
18). In most cases, we couple Is, zz, 2s, &2, 2p, &2, 2p3/z,
3s &&2, 3p &&z, and 3p3/2 states of target and projectile.

Just as in nonrelativistic collisions, ' the two-center
atomic expansion is most appropriate if the projectile
speed is of the same order as the orbital velocity of the
active electron and hence molecular effects play a role
(for details see Sec. IV). In other words, with the
coupled-channel treatment we aim at "slow" relativistic
collisions with laboratory projectile energies ranging be-
tween about 100 MeV/amu and 1 GeV/amu, depending
on the nuclear charges involved. Incidentally, this is the
energy regime in which most experiments have been
done.

Since in the current work the expansion is restricted to
a finite set of bound atomic eigenstates, we are able to de-
scribe excitation and transfer within this set to arbitrary
order, but so far we have not included ionization chan-
nels. The approximate treatment of higher excited levels
and of continuum states is left to a future publication.
Experience from nonrelativistic calculations suggests (see
Sec. IV) that the rates for charge exchange will not be al-
tered significantly by including these channels.

The aim of our paper is threefold. Firstly, we want to
develop, in some detail, the formalism for fully relativis-
tic two-center close-coupling calculations. As one may
expect, the main complications compared to the familiar
nonrelativistic problem' arise from the basis functions
attached to the relativistically moving projectile. Second-
ly, we wish to demonstrate the feasibility of detailed cal-
culations for the U ++U '+ system which serves as a
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testing ground for fully relativistic collisions (in which
the relativistic electron motion plays a significant role) in

a similar way as does the p +H system for nonrelativistic
encounters. Thirdly, in two cases, namely, Xe ++Ag
and Xe + + Au we want to compare calculated results
with experimental cross-section data. ' Additional ex-
perimental data for projectile K capture into Xe + can
be extracted from Xe + and Xe + data. Unfortunately,
only total cross sections are experimentally available, so
that a test cannot be very specific.

The plan of the paper is as follows. In Sec. II we give
an outline of the theory and subsequently, in Sec. III,
some numerical details. The results of our calculations
are presented and discussed in Sec. IV, while Sec. V con-
tains some concluding remarks. Atomic units (a.u. ) are
used throughout unless specifically stated otherwise.

II. THEORY

H i %—(r —t) =0
at T

with

H= —ica V—ZT Zp—S +c y4,
fy Tp

(2)

where a„, a, a, (the z axis being chosen in the beam
direction), and y4 are the familiar Dirac matrices, and the
spinor transformation '

' 1/2
y+1

2
(1—5a, )=S (3a)

with

S =y(1 —j3a, ) (3b)

transforms a four-spinor from the target to the projectile
system according to

g'(r', t')=Sf(r, t) . (4)

Let us consider a relativistic projectile ion (charge Zp )

colliding with a one-electron target atom with nuclear
charge Zz. At relativistic velocities U, it is a very good
approximation for atomic processes to assume a classical
rectilinear trajectory R=b+vt for the projectile motion.
Here, R is the projectile position with respect to the tar-
get nucleus, and b is the impact parameter . Associated
with the two inertial frames, we have two sets of space-
time coordinates. While R and rz, t measure the posi-
tions of projectile nucleus and electron, respectively, from
the target nucleus, the coordinates R' and rp, t' refer to
the positions of the target nucleus and electron, respec-
tively, as seen from the projectile nucleus. Both sets of
space-time coordinates are connected by a Lorentz trans-
formation characterized by the parameters P= v/c,
y=(1 —P ) '~, 5=[(y —I)/(y+I)t'~, where c=137
a.u. is the speed of light.

The time-dependent two-center Dirac equation govern-
ing the electron motion in the laboratory (target) system
is given by

The Hamiltonian (2) does not include' the interaction
ZpZr/R' with R'=(b +y v t )' between the two nu-

clear point charges, since it does not contribute to the to-
tal cross-section or b-dependent transition probability.
Starting from expression (2), it is convenient to introduce
the target Hamiltonian and the target eigenfunctions in

the target system through

Hr i—c——a V
ZT 2+c p4 (sa)

and

. 8
Hr i g—k(rr, t) =0,

Bt

Pk(rr t) Ok(rr)e
(5b)

Similarly, the projectile Hamiltonian and the associated
eigenfunctions in the projectile system are

and

p
Hp = ica—V'p —. +c y4

Tp
(6a)

Hp i,—
Qk (rt„t') =0,

Bt

—iEk, t'
Pk'(rp t ) 4k'(rp)e

(6b)

The first sum represents an expansion in terms of target
states; the second sum is an expansion in terms of projec-
tile states originally defined in the projectile rest system
and subsequently transformed to the laboratory system.
In practice, both expansions are truncated to a finite set
so that the problem of overcompleteness does not arise.
Note that the Lorentz transformation of the time factor
included in the projectile states automatically implies
the relativistic counterparts of the well-known translation
factors. Moreover, there is no need to expand in terms of
distorted waves, explicitly satisfying relativistic Coulomb
boundary conditions' since their effect can be absorbed

In our coupled-channel treatment we use a two-center
atomic expansion of the total wave function 4 in terms of
target and projectile atomic orbitals (AO). In this way,
molecular wave functions in the interaction zone (for
not-too-small impact parameters) can approximately be
represented, ' and it is a simple matter to specify the ini-
tial conditions at t~ —00. It is well known from non-
relativistic calculations' that for collision velocities nei-
ther much smaller nor much larger than the relevant or-
bital velocity U, of the electron, mainly distant collisions
are important and hence two-center AO expansions are
capable of describing the time-dependent wave function
in the interaction region. Referring the total wave func-
tion to the laboratory system we therefore start from the
expansion

% (r, t) = g ak(t)pk(rr, t)+ g ak (t)S 'gk (rt„t') .
k k'
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into a b-dependent phase of the expansion coefficients.
When inserting Eq. (7) into Eq. (1}we immediately ver-

ify that

p
H i——gk

—— HT t ———S
c}t Bt rp

TZ yEk, (ulc )zT
2

P; (rr ) —S P„(rp )e
T

d
T

T

—i (yEI, ,—E,. )t
Xe

—iyE, (ulc )zT4;(rp) —S pk(rz. )e ' d rr
rp

(12b)

Zp= —S'
7'p

(8a)
—i (E& —yE, )r

Xe

—2 TZ
P; (rp) —S P„(rp)I

(12c)

and, using the transformation properties of the Dirac
equation, we get

H —i—S Pk—- S Hp i—, S — S. (} y, . () ZT

(3t
'

—iy(Ek, —E, )(u/c )zT 3
2

Xe ' d rr
—~'y(Ek, —E, )i

Xe (12(I)

ZT's-'y„, . (8b)

iN a= Va (9)

or

a= —i'N 'Va . (10)

The overlap matrix N and the interaction matrix V are
each built from four submatrices corresponding to
target-target, target-projectile, projectile-target, and
projectile-projectile transitions.

The overlap matrices are

—i (EI( —E, )tk= ke (1 la)

~ r s-', y

—
& (yEk —E, )~

Xe
—i E (u/c )z

N;.t, =f P;,(rp)S 'Pk(rp)e ' d rr
—i (EI, —yEt, )t

Xe
—iy(Ek, —E, )t

'k =&'k e

(1 lb)

(1 lc)

(11d)

With the aid of Eqs. (8), the time-dependent two-center
Dirac equation (1) can be rewritten as a set of coupled
differential equations for the occupation amplitudes ak(t)
and al, .(t). Combining the amplitudes into a column vec-
tor a =(a„,. . . ;ak, . . . ) we may write the coupled equa-
tions in a compact matrix form as

One may easily verify that in the nonrelativistic limit all
matrix elements merge into the corresponding nonrela-
tivistic expressions including translation factors.

In principle, the set of coupled equations (10) is
equivalent to the original two-center Dirac equation (1).
In practice, however, the expansion (7) has to be truncat-
ed to a finite number of eigenstates. The choice of this
truncated set hence constitutes the only approximation in
solving the problem.

Before Eqs. (10) can be solved numerically, we specify
the target electron initially to be in state k0 so that

ak (t = —00 }=1,
0

ak(t = —~ ) =0 for k&ko,

ak(t = —~)=0
(13)

constitute the initial conditions.
It is noted that, in our expansion in terms of atomic

eigenfunctions, all basis states are mutually orthogonal at
asymptotic separations, i.e., for t~+~. This means
that the expansion coefficients ak, ak can be interpreted
unambiguously as occupation amplitudes (in this limit)
and, in particular, there is no overlap with the negative-
energy continuum which might lead to spurious results.
In the interaction region, where target and projectile
states are nonorthogonal and where each bound state of
one center has some overlap with bound states and
positive- as well as negative-energy continuum states of
the other center, an interpretation in terms of occupation
amplitudes is not needed. It suffices that the overlap ma-
trix (11) is rigorously taken into account.

The final occupation probabilities are

The last equation (lid) expressing the orthogonality of
the projectile eigenstates in the target system can be
directly proved by using the transformation properties of
the Dirac equation (1). Similarly, we have four types of
interaction matrix elements

and

Pk(b)=
~

ak(t =ao)
~

for excitation (14a)

Pk(b)=
~
ak.(t =DO)

~

for charge transfer . (14b)

Vk —— p;(rT) —S pk(rT)d rTe
P 3

Tp

—i(Ek Ei)

(12a)

The integrated partial cross section for exciting state k
from the initial state k0 is given by

o.
k
——2m. Pk b b db,

0

while for charge transfer, k has to be replaced by k'.
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The main task consists in evaluating the matrix ele-
ments defined by Eqs. (11) and (12). In doing so we use
exact hydrogenic Dirac wave functions as basis states

Pj, and P& and the associated eigenenergies. It is im-

mediately seen that owing to the Lorentz transformation
of the space-time coordinate there is no axial symmetry
about the internuclear line which in a nonrelativistic col-
lision greatly facilitates the evaluation of the two-center
matrix elements. A fully numerical integration is hence
required. In the following section we briefly discuss the
numerical procedure.

III. NUMERICAL PROCEDURE

The most cumbersome part in solving Eq. (10) consists
in the evaluation of the matrix elements (11) and (12).
For a given projectile energy, these matrix elements have
to be computed at each time t and each impact parameter
b.

It is helpful first to notice that calculations can be
confined to times t )0, i.e., after the closest approach of
the projectile to the target nucleus has been reached. The
incoming branch of the trajectory (t &0) can be mapped
upon the outgoing branch (t &0) by rotating the coordi-
nate system about the internuclear line at t=0 (chosen as
x axis) by an angle of m. . With the resulting replacements
t ~—t, x ~x, y ~—y, and z ~—z, we can exploit the
relation

YP (~ 8, 2m —P)—=( —1)'+ ( YP )"(8,$)

for the spherical harmonics to derive the symmetry rela-
tions

(16a)

and

(16b)

where a,P denote any of the labels i, k,i ', k' and I„'~ are
the orbital angular momenta for the large components of
the states a, p, while m '~ are the projections of the total
angular momentum j =lz k —,'. Both relations may be
combined to yield

(N ' V) g(r)=( —1) " " ' ' (N 'V)'p( —r),
(17)

which is directly applicable in Eq. (10).
The computation of all matrix elements is performed

by direct three-dimensional numerical integration in
coordinate space.

The single-center matrix elements V;& and V; & are cal-
culated in spherical coordinates (rr, 8r, pz) and

(r&, 8p, gp) for target and projectile states, respectively.
Only at small internuclear distances R, where the conver-
gence of the integrals becomes unsatisfactory, are in-

tegrations performed in prolate spheroidal coordinates.

Similarly, the two-center matrix elements N;&, N;&,
V;&, V; & are evaluated in prolate spheroidal coordinates

g=(r, +r2)lR, ri=(r, r—2)lR

and P, where r, and r2 =
~

R —r,
~

are the electron-target
and electron-projectile separations in the coordinate sys-
tern rotating with the internuclear line in the laboratory
frame. Since for each point (g, g, P) in this system, the
atomic wave functions have to be furnished, we pass
through the following sequence of transformations:
(g, g, g)~(r~, r2, $)~(x„,y„,z„) in the rotating coordi-
nate system. From here, the Cartesian coordinates
(xr,yr, zr) in the space-fixed laboratory system can be
obtained and are used to evaluate the target wave func-
tion and r~. Finally, a simple Lorentz boost assigns a set
( xp yp zp, t '

) to each set ( xr,y r, zr, t ) thus allowing us to
evaluate the projectile wave function and rz.

The Gauss-Laguerre and Gauss-Legendre procedures
are subsequently used to perform the quadratures for
dr, dg and for d8, dP, and dg, respectively. The number
of mesh points varies between 10 and 200 depending on
the value of R.

Owing to Eq. (17) it is sufficient to calculate the matrix
elements at discrete time steps for t )0 and to interpolate
between the mesh points. It is economical to divide the
range of t into an inner and an outer region. Estimating
the characteristic radius of the interaction region by
r=4l(ZP+Zz ) we define the inner region by

~

Ut
~

&20r
and the outer region by 20r &

~

vt
~

250r. When neces-
sary for convergence, the upper limit has been extended
to 500r or 1000r. Within the inner region, we calculate
and tabulate all matrix elements at 40 mesh points. An
interpolated value then deviates from an exact one by less
than 0.1%. In the outer region, the two-center matrix
elements are negligibly small and it suffices to calculate
and store the single-center matrix elements at 60 mesh
points.

The coupled equations (10) with the initial condition
(13), are then solved by Milne's predictor-corrector
method. In this algorithm, the step width in time is au-
tornatically adjusted for any desired accuracy. For the b

integration entering into the evaluation of the cross sec-
tion (15) we used up to 40 mesh points.

We have performed several checks of our numerical
calculations. We have examined the convergence of the
matrix elements and also compared with cases in which a
partially analytical evaluation is possible. We have
made sure that for small velocities and small charges our
results merge into those of independently calculated non-
relativistic cross sections. Furthermore, for each calcula-
tion, we verify that the unitarity requirement is satisfied
to an accuracy of better than 10 . Finally, as a very
stringent test, we find that for all cases examined, detailed
balancing for target excitation as well as for charge
transfer is valid within an accuracy of 10 to 10 . It
should be mentioned that the calculations require consid-
erable computing time.

IV. RESULTS AND DISCUSSION

As is well known from nonrelativistic collisions, ' the
coupled-channel formalism with two-center atomic ex-
pansions is best applied if the projectile velocity is of the
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same order as the orbital velocity of the active electron.
For relativistic collisions, the matching energy E is es-

timated by the requirement that the kinetic energy of a
free electron traveling with the speed of the projectile
equals the binding energy of the atomic state, or
y —1=1—(1—a Z )' for ls states. There are other
possible prescriptions yielding similar results.

In this sense, we are dealing here with "slow" relativis-
tic collisions. In the following, we consider the collision
systems of U ++U '+ at 500 MeV/amu (E =240
MeV/amu) and of Xe ++Ag and Xe ++Au at 82,
140, and 197 MeV/amu (E s= 55 MeV/amu, E""=170
MeV/amu). The U + U collision mainly serves as a mod-
el case for which effects of relativistic electron and pro-
jectile motion can be studied, but experimental data are
not yet available. For Xe "++Ag and Xe ++Au we

may compare with experimental data for single-electron
transfer.
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This collision serves as a testing ground for various
theoretical approaches. ' ' In a previous paper, ' we
discussed a 20-state coupled-channel calculation involv-

ing target and projectile 1s»2, 2s»2, 2p»z, and 2p3jp
shells. In the present calculation at a projectile energy of
500 MeV/amu, we have supplemented the basis of Ref.
18 by 3s&&2, 3p»2, and 3p3/2 states at target and projec-
tile so that altogether 36 exact hydrogenic bound states
are coupled.

In Figs. 1 and 2 we present the time evolution of the
occupation probabilities for target shells (excitation) and
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U92+ 091+
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+
151/2
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FIG. 1. Time evolution of the occupation probabilities of tar-
get and projectile states in U ++U '+(1s, /&) collisions at 500
MeV/amu laboratory energy and impact parameter b=0.01 a.u.
The abscissa plotted is the projection of the projectile-target
separation on the beam direction. The projection of the angular
momentum is indicated by +, —,and + + for ~, = ~, —~,
and —,respectively.

FIG. 2. Time evolution of the occupation probabilities of the
target states in U ++U"+(2s&/&), U '+(2p&/2) collisions at 500
MeV/amu laboratory energy and impact parameter b=0.01 a.u.
For the notation see caption of Fig. 1.

projectile shells (charge transfer) assuming an impact pa-
rameter of 0.01 a.u. This is approximately equal to the
E-shell radius and roughly corresponds to the region of
maximum contribution to the cross section, see Fig. 3.
Regarding the interval

~

vt &40atr displayed in Figs. 1

and 2, it should be mentioned that it just represents a
narrow window out of the total time range

~

vt
~

&(500—2000)ax actually treated in the calcula-
tions, see Sec. III. As has been noted in Sec. II, the inter-
pretation of the expansion coeScients as probability am-
plitudes is valid only approximately near t=0, so that
transient probabilities exceeding 1 may occur. While Fig.
1 shows excitation and charge transfer from an initial

is&zz ground state, Fig. 2 refers to target excitation (or
deexcitation) from initially excited 2s, &z and 2p, zz states.

Both figures reveal three qualitative features: (a) non-
perturbative multistep processes are important; (b) elec-
tron transfer, both during the collision as well as in the
exit channel, is of equal magnitude as excitation and
hence cannot be neglected;' (c) certain target states are
affected by the projectile long before and long after it
reaches its distance of closest approach at t=0. These
anomalous long-range couplings are of a relativistic ori-
gin and are entirely absent in nonrelativistic coupled-
channel calculations. This effect has been first pointed
out by the present authors in Ref. 18.

According to Eq. (12a), the interaction leading to tar-
get excitation is

2 Zp 1 bxT+y vtzTS, =yZp(1 —Pa, ) + ~ ~ ~

R' (~')'

(18)

where higher multipole terms have been omitted. In this
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FIG. 3. Weighted excitation and capture probabilities P(b)b
for U ++U '+(1sl/2) collisions at 500 MeV/amu laboratory
energy as a function of the impact parameter b. Only the lead-
ing probabilities into specific final states nl, (m, ) are plotted.

expression, the 1/R term multiplied with the unit matrix
has vanishing off-diagonal matrix elements. The Dirac a
matrix and the second term in the large parentheses give
rise to dipole selection rules. However, it should be noted
that owing to

a=[(a V), r]= [H, r],
Pic

(19)

all matrix elements of a between degenerate states are
zero. Therefore, we may distinguish the following three
types of long-range interactions.

Type-I as well as type-II interactions are of magnetic ori-
gin and do not survive if either the projectile or the elec-
tron motion tends to the nonrelativistic limit. In that
case, type-III interactions prevail. A11 three types do not
change the magnetic quantum numbers, and only

I. Matrix elements with 1/R' (i.e., monopole) separa-
tion dependence and dipole selection rules arising from
the term Pa, /R ' between nondegenerate states.

II. Matrix elements with 1/(R') (i.e., dipole) separa-
tion dependence and monopole or quadrupole selection
rules arising from the term 13a,y zTUt /(R ') .

III. Matrix elements with 1/(R') (i.e., dipole) separa-
tion dependence and dipole selection rules arising from
the term y utzT/(R') dominate if the type I matrix ele-
ments vanish.

higher-order terms in Eq. (18) with an 1/(R') depen-
dence and monopole, dipole, or quadrupole selection
rules are able to do that.

In Fig. 1 the curves for the excitation probabilities
clearly demonstrate the existence and different separation
dependences of the type-I and -II long-range interactions.
In Fig. 2 the same is true, and only the transitions be-
tween the 2s, &2 and 2p, &2 states deserve particular atten-
tion. The latter appear to have a 1/R' separation depen-
dence; however, because of the 2s, &2-2p, &2 degeneracy
and hence the absence of time oscillations in the transi-
tion amplitude, it is the indefinite time integral over a
type-III interaction that is responsible for the behavior of
the occupation curves. To be sure, we have in all cases
confirmed our interpretation by a direct numerical calcu-
lation of the coupling matrix elements.

In contrast to excitation, the charge transfer probabili-
ties exhibited in the lower part of Fig. 1 are all of short
range since they depend on the overlap between target
and projectile states. The corresponding diagrams for ex-
cited initial states (not shown here) have the same appear-
ance.

In Fig. 3 we present weighted excitation and transfer
probabilities P(b)b for the leading transitions as a func-
tion of the impact parameters. As expected, the probabil-
ities for excitation reach out to much larger impact pa-
rameters than for transfer. A particular role is played by
the spin-(lip transition Is&/z( —,')~ls»z( —

—,'). Being de-

generate within our treatment, the two states are strongly
coupled even at large impact parameters. In fact, the to-
tal cross section diverges logarithmically since the time
integral over the matrix element of the transverse dipole
part Pa, bxzl(R') in Eq. (18) yields a dependence of
P(b)b as I/b This div.ergence is spurious and can be
remedied by including higher-order QED corrections or
hyperfine interactions removing the degeneracy. Howev-
er, even with these corrections the estimated range in b
space of the spin-flip transitions is much larger than for
any other transitions, so that the latter remain unaffected
by the former.

We already have remarked that the U ++U '+ col-
lision may serve as a testing ground for fully relativistic
calculations. In Tables I and II we therefore present
state-to-state cross sections for excitation and charge
transfer obtained from a 36-state calculation. Within a
single calculation using the same matrix elements, we
have separately chosen the initial states as Is, /2( —,'),
2s, /2( —,'), 2p, /z( —,'), 2p3/2(2), and 2p3/2( p) and subse-

quently have calculated the cross sections into all final
states up to the 3@3/2 shell. In analogy to the spin-flip
transition discussed above, the excitation cross sections
between the degenerate states diverge. Inspection of
Table I also reveals that detailed balancing o.; f —0 f
holds within the calculated accuracy. Since these num-
bers have been derived from independent calculations,
the agreement serves as a check on the numerical accura-
cy. A similar test for charge transfer comparing capture
into the target with capture into the projectile has also
been performed and has led to the same conclusion.

In Table III we compare the results of the present 36-
state calculation with those of the previous 20-state ex-
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TABLE I. Excitation cross sections (in barns) between target and projectile nl, (m~) states in

U + + U '+ collisions at 500 MeV/amu laboratory energy. The 36-state close-coupling calculations
include target and projectile K, L, and M shells. Diverging cross sections (see text) are indicated by div.
The number in square brackets following the cross section gives the power of ten multiplying the
preceding number.

Initial 1s
Cross section (barns)

»]/2( 2 ) 2p]/2( 2 ) 2p3/2 2p3/2(23 )

is&/2(-2' )

1S&/2( —
2 )
1

n =1 shell

2S]/2( 2 )

2S1/2( 21 )

2p]/2( 2 )

2p1/2( ——, )

"-(-,)'
P~/2(-2' )

"-(-'-, )""(- )

n =2 shell

3S]/2( —)

»1/2( —-)
3p 1/2(-,

'
)

3pi/2( ——,)

""(-,)'
3p3/2(-,

'
)

3p3r2( ——,
'

)

n =3 shell

div

3.65[3]
2.95[2]
1.96[3]
3.49[3]
3.19[3]
3.86[3]
7.52[2]
6.35[1]

1.73[4]

7.09[2]
7.20[1]
1.82[2]
2.25[2]
2.94[2]
3.83[2]
1.06[2]
5.87[0]

1.98[3]

3.65[3]
2.95[2]

3.95[3]

d1v

d1V

d1V

5.60[5]
8.59[4]
1.83[5]
1.23[3]

3.80[4]
1.05[3]
2.00[4]
3.18[4]
1.79[4]
2.15[4]
6.30[3]
5.59[1]

1.37[5]

1.96[3]
3.49[3]

5.45[3]

div

d1V

d1V

1.60[4]
3.62[3]
1.05[4]
1.91[4]

9.91[2]
3.91[3]
1.72[4]
3.60[3]
4.35[2]
9.10[2]
1.75[3]
1.53[3]

3.03[4]

3.86[3]
7.52[2]

4.61[3]

8.59[4]
1.83[5]
3.62[3]
1.05[4]

d1V

d1V

8.11[3]

5.82[3]
5.26[3]
2.44[3]
9.12[2]
2.40[3]
1.97[4]
7.40[3]
2.10[3]

4.60[4]

3.19[3]
6.35[1]

3.26[3]

5.60[5]
1.23[3]
1.60[4]

1.91[4]

dlv

8.1 1[3]
4.06[2]

1.48[4]
1.75[2]
7.24[3]
7.76[3]
3.07[4]
1.11[4]
1.84[3]
3.60[1]

7.37[4]

pansion. ' The difference between the two sets of results
is of the order of 10% or less. This suggests that the ex-
pansion has almost converged within the space of
bound-basis states. While ionization channels have not
been included explicitly, each atomic bound state on one
center has an overlap with (positive- or negative-energy)
continuum states on the other center within the interac-
tion region rejecting a transient population of continuum
states. The explicit inclusion of ionization channels in
the basis expansion, similarly as in nonrelativistic calcula-
tions, will not significantly change the rates for charge
transfer. This can be inferred from the distinctly
different range of ionization interactions on the one hand
and capture on the other hand. Only at very small inter-
nuclear separations will both processes couple strong-
ly, ' ' but this region carries little weight for the total
cross section. The insensitivity of charge transfer to the
inclusion of ionization channels means that the unitarity
requirement is satisfied at the expense of the initial state.
In other words, the addition of further states leads to a
depletion of the initial state rather than of competing
final states. We also disregard the possibility of electron-
positron pair production. The corresponding cross sec-
tions are negligible and, more importantly, negative-

energy compoments do not invalidate the unambiguous
interpretation of the occupation amplitudes, since at
t ~+ ca our basis states are exact orthogonal eigenstates
of the full Dirac Harniltonian, having no overlap with the
negative-energy continuum.

Having obtained rather detailed close-coupling results
for the U +U '+ test system, it is instructive to com-
pare with the results of other theories. In Ref. 18 we
have compared with the results of the Born approxima-
tion for excitation and with the results of the relativistic
Born approximation satisfying Coulomb boundary condi-
tions' (R1B) for charge transfer. For the energies of 1

and 0.5 GeV/amu, the perturbative results differ
significantly in some cases from those of close-coupling
(CC} calculations. ' For charge transfer, we here present
a more complete comparison in Table IV. In addition to
R1B (Refs. 15 and 28) and OBK (Refs. 10 and 28} cross
sections, we also include the prior and the post versions
of relativistic eikonal approximation (EA) cross sec-
tions. ' If one uses the nuclear charge as a criterion
to choose between the prior and post forms, obviously
none of them is preferred in a symmetric collision. How-
ever, if one chooses Z/n to gauge the strength of the in-
teraction, ' the excited projectile states effectively "see"
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TABLE II. Electron transfer cross sections (in barns) between target and projectile nl, .(m, ) states in

U + + U '+ collisions at 500 MeV/amu laboratory energy. See caption of Table I.

nitial 1$1/2( 2 )

Cross section (barns)

2si/2( 2 ) 2p&/2( z ) 2p3/z( z ) 2p3/2( 2 )

1s, /, ( —,
'

)

1$1/2( —
21 )

n =1 shell

2s]/2( 2 )

2s]/2( —
2 )

2pi/2( 2 )

2pl/2( —
21 )

2p3/, ( —,
'

)

2p3/2(

2p 3/2 (

2p3/z( ——)

n =2 shell

3$]/2( —,
'

)

3$1/2 (

3p]/2( —')
3p i/2( ——')
3p3/2(-')

3p3/z( —)

3p3/2( ——,
'

)

3p3/z( ——)

n =3 shell

sum n (3

3.98[3]
2.28[2]

4.12[3]

1.01[3]
4.84[1]
3.06[2]
8.50[1]
3.27[1]
1.43[2]
5.08[1]
4.17[0]

1.68[3]

3.18[2]
1.46[1]
8.32[1]
1.57[1]
6.02[0]
4.98[1]
1.46[1]
9.97[—1]

5.03[2]

6.31[3]

1.43[3]
7.47[1]

1.51[3]

4.55[2]
3.05[1]
4.81[2]
2.32[2]
9.86[1]
4.46[2]
3.20[1]
5.35[0]

1.78[3]

1.66[2]
1.16[1]
1.12[2]
5.52[1]
2.52[1]
1.25[2]
1.13[1]
1.51[0]

5.06[2]

3.79[3]

2.25[2]
8.51[1]

3.11[2]

2.79[2]
1.73[2]
2.22[2]
3.10[2]
5.87[1]
3.90[2]
2.11[1]
1.04[2]

1.56[3]

1.72[2]
1.35[2]
9.13[1]
1.32[2]
1.24[1]
1.95[2]
2.86[1]
2.62[1]

7.92[2]

2.66[3]

1.97[2]
5.73[1]

2.54[2]

2.44[2]
1.61[1]
3.53[2]
4.34[1]
1.15[2]
4.13[2]
1.83[2]
3.66[1]

1.40[3]

2.15[2]
1.71[1]
2.54[2]
3.14[0]
3.1 1[1]
2.51[2]
7.71[1]
1.15[1]

8.60[2]

2.52[3]

4.51[1]
6.25[0]

5.14[1]

7.87[1]
5.43[0]
4.82[1]
1.00[2]
8.95[1]
7.65[1]
4.16[1]
1.33[0]

4.41[2]

8.86[1]
3.34[0]
4.21[1]
2.53[1]
3.48[1]
5.97[1]
1.24[1]
2.28[ —1]

2.67[0]

7.59[2]

a smaller charge, and hence one should use the prior
form of the theory. We observe that the R1B cross sec-
tions in most cases have a magnitude intermediate be-
tween the prior- and post-form eikonal values. For some
final subshells, the R1B results are close to the coupled-
channel results; for others they deviate by as much as a
factor of 2. The total K-shell capture cross sections are
all in fair agreement with one another except for those of
the OBK theory, which systematically yields cross sec-
tions that are one order of magnitude too high. It
might be remarked that the simple analytical formula of
Ref. 6 for ls, &2-ls, &2 transitions (based on an aZ expan-
sion) in conjunction with the scaling rule of Ref. 9 yields

cross sections for higher shells that are considerably too
large in this case.

B. Collision of Xe + with Ag and Au targets

Total cross sections have been measured ' for a num-
ber of projectile-target combinations. We have chosen to
compare our calculations with data for Xe + and Xe +
ions incident on Ag and Au as representatives for a
medium-heavy and heavy target atom. Measurements
are available for projectile energies of 82, 140, and 197
MeV/amu. As is already known from a previous
analysis based on the relativistic eikonal theory, the E,

TABLE III. Excitation and capture cross sections (in barns) for 500 MeV/amu U + + U '+ (1s]/2)
collisions calculated in 20-state (Ref. 18) and in 36-state expansions. The number in square brackets
gives the power of ten by which the preceding number has to be multiplied.

Cross section (barns)
Final
shell 20 states

Excitation
36 states 20 states

Capture
36 states

1$1/2
2s l/z

2p]/2
2p3/z

4.37[3]
5.19[3]
7.49[3]

3.94[3]
5.46[3]
7.81[3]

4.18[3]
1.12[3]
4.20[2]
2.36[2]

4.12[3]
1.06[3]
3.91[2]
2.30[2]
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TABLE IV. Cross sections per electron (in barns) for K capture in collisions of U + + U '+ at 500
MeV/amu. The columns show various theoretical results: CC, present 36-state coupled-channel calcu-
lations; R1B, relativistic boundary-corrected Born approximation (Refs. 15 and 28), EA prior and EA
post are eikonal approximations (Refs. 6 and 28); OBK, relativistic OBK approximation (Refs. 10 and
28). The number in square brackets gives the power of ten multiplying the preceding number.

Final shell

1$1/2
2$

2p]/2
2p3/2

$1/2

3p&/2

3p3/z

Sum

CC

4.12[3]
1.06[3]
3.91[2]
2.31[2]
3.28[2]
1.03[2]
7.25[1]

6.31[3]

R1B

3.39[3]
5.13[2]
5.95[2]
2.74[2]
1.51[2]
1.75[2]
9.15[1]

5.19[3]

Cross section (barns)
EA prior

4.14[3]
7.62[2]
1.35[3]
1.24[3]
2.30[2]
4.37[2]
4.62[2]

8.62[3]

EA post

4.14[3]
5.67[2]
4.44[2]
1.07[2]
1.58[2]
1.30[2]
3.61[1]

5.58[3]

OBK

4.91[4]
5.28[3]
9.02[3]
7.61[3]
1.41[3]
2.60[3]
2.56[3]

7.76[4]

L, and M shells of target and projectile all contribute to
the total cross section, and to a lesser extent even higher
shells. This reflects the fact that the energy range in
which rneasurernents have been made is adequate for
nonperturbative coupled-channel calculations.

The theory presented in Sec. II is founded on a single-
electron description. For multielectron targets, addition-
al assumptions have to be made. Since transitions be-
tween occupied target shells cannot occur, we separately
compute the contribution of each target substate to the
capture cross section by including only this single target
state in the two-center basis and "freezing" all other oc-
cupied target shells. On the projectile side, we couple all
28 states of the E, L, and M shells. Only for transitions
from the target M shell do we restrict ourselves to the 18
lowest projectile states (up to the 3p3/p subshell} in order
to save computing time. All target subshells up to
2p3/2for Ag and up to 3p3/2 for Au are individually con-

sidered using effective charges Z'=ZT for the K shell (a
subtraction of 0.3 gives a negligible correction),
Z* =ZT —4.15 for the L shell, and Z' =ZT —11.0 for the
3s and 3p shells.

Table V summarizes the cross sections from individual
initial shells obtained in this way. The importance of
higher target shells at these energies is clearly evident.
Only at the higher projectile energies, there is some indi-
cation of convergence with increasing principal quantum
number. Computing time puts a limitation to
significantly extending the calculations to higher shells.

In Fig. 4 we present electron transfer cross sections
from initial 1st/2, 2s&/2, 2p&/2, and 2p3/2 shells into all
subshells up to the 3d, /2 shell of the projectile at an ener-

gy of 197 MeV/amu. The cross sections given are aver-

aged over initial and final substates. Both for Ag and Au
targets, the 1s, /2 ~ ls

& /2 cross section is the largest.
However, for capture into higher projectile states, the be-

TABLE V. Cross sections (in barns) for charge transfer from Ag and Au subshells into the I(, L, and
M shells of Xe + at laboratory energies of 82, 140, and 197 MeV/amu. The number in square brackets
gives the power of ten multiplying the preceding number.

Initial
shell

Ag
1$1/2
2$1

2p &/z

2p3/2
Sum

Au
1$1/2

2$1/2

2pl /2

2p3/2

3$1/z

3p&/2

3p3n
Sum

82 MeV/amu

9.46[4]
2.39[4]
2.85[4]
2.59[4]
3.98[5]

3.07[4]
7.07[4]
7.20[4]
7.01[4]
1.55[4]
2.76[4]
2.75[4]
7.36[5]

Cross section (barns)
140 MeV/amu

3.30[4]
7.70[3]
4.26[3]
3.64[3]
1.04[5]

1.97[4]
1.52[4]
2.22[4]
1.92[4]
4.77[3]
7.99[3]
7.08[3]
2.45[5]

197 MeV/amu

1.42[4]
3.19[3]
1.14[3]
9.24[2]
4.08[4]

1.23[4]
6.08[3]
9.05[3]
7.22[3]
2.34[3]
3.10[3]
2.48[3]
1.05[5]

'The sum over final M subshells does not include 3d3/2 and 3d, /2 states.
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FIG. 5. Cross sections for charge transfer in collisions of
Xes + with Au and Ag targets as a function of the laboratory
projectile energy. The data points are from Refs. 9 and 20. The
error bars include estimated 20% systematic errors. The solid
lines represent the results of the present coupled-channel calcu-
lations. The dashed and dash-dotted lines are taken from Ref. 9
and show the results of two different eikonal (Ref. 6) calcula-
tions, see text.

be extracted from existing capture data for Xe + projec-
tiles at the same energies. ' Aside from a small screen-
ing correction, we may approximately identify

FIG. 4. State-to-state charge transfer cross sections for
Xe' + + Ag and Au collisions at 197 MeV/amu laboratory en-

ergy. The cross sections given are averaged over initial and final

angular momentum projections within a subshell.

„o,(Xe' +
) —o «,(Xe' +

) = cr x (Xe' + ), (20)

where o.x (Xe +
) is the cross section for capture into the

havior of these targets is strikingly different. For Ag
(ZT =47) the projectile energy significantly exceeds the
E-shell matching energy E =55 MeV/amu, so that the
initial and fina 1s,&z and 2s&&2 shells with their large
momentum components contribute most to the cross sec-
tions. Conversely, for Au (ZT ——79) the projectile energy
is close to E =170 MeV/amu, so that energy matching
of the wave functions plays a more important role.

In Fig. 5, experimental and theoretical total cross
sections for Xe ++Ag and Xe ++Au have been sum-
marized. The eikonal cross sections indicated by dashed
and dash-dotted lines have been taken from Ref. 9. They
differ by the criterion used to choose between the post
and prior versions of the theory. For the dash-dotted and
for the dashed curve the values of Z/n and Z, respective-
ly, have been adopted to determine the stronger interac-
tion and hence the choice between post and prior. ' The
solid line represents the results of the present coupled-
channel calculations. While for Au they are in reason-
able agreement with the data, they overestimate the cross
section for Ag by 20—40%%uo.

An independent piece of experimental information can

1P6

I/l
C
cj
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Co 105

CV
Vl

I l

Capture into Xe~' K —shell

10~—
4

a

1P4

I I

50 100 200
pro&ectile energy (MeV/amu)

FIG. 6. Cross sections for charge transfer into the projectile
K shell in Xe + + Au and Xe' + + Ag co11isions as a function
of the laboratory projectile energy. The data points have been
obtained according to Eq. (20) of the text. The notation for the
theoretical curves is the same as in Fig. 5. For Ag targets the
two eikonal versions coincide.
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K shell of Xe +. To the extent that Eq. (20) is valid, we
can directly compare this number with the corresponding
theoretical value and thus eliminate the contribution
from excited and continuum states of the projectile. This
has been done in Fig. 6. The experimental points have
been obtained from Eq. (20) and the solid line from Table
V. The exact eikonal curves are calculated from Ref. 6
using the same two versions as in Fig. 5. For Ag targets
both versions coincide. We observe that the agreement
with these more specific experimental data is quite satis-
factory, in particular for the higher energies. The data
point for Au at 140 MeV seems to be too low in Figs. 5
and 6, as judged from the systematics. For the lowest en-

ergy (where anyhow convergence is incomplete), another
effect besides screening corrections may play a role in
limiting the applicability of Eq. (20): For Xe + the K
shell is forbidden not only as a final state but also as an
intermediate state during the collision. This is in con-
trast to theoretical Xe + calculations in which all inter-
mediate states are accessible. Clearly, multistep process-
es will be more important at lower energy so that a larger
discrepancy may be expected there.

This example illustrates that it would be highly desir-
able to have experimental data for specific transitions in
which at least the initial or the final state is detected. A
comparison with a detailed theory like the present one
then would be much more meaningful.

V. SUMMARY AND CONCLUSIONS

We have presented here for the first time a detailed ac-
count of fully relativistic coupled-channel calculations'
for atomic collisions between high-Z projectiles and
high-Z targets. Using a two-center atomic expansion in
terms of exact hydrogenic Dirac eigenstates we have been
able to give detailed predictions for single-electron excita-
tion and charge transfer cross sections between specific
atomic states.

It has been demonstrated that relativistically induced
magnetic effects give rise to unusual long-range cou-
plings' which affect certain partial cross sections. These
couplings have been classified with regard to their selec-
tion rules and their dependence on the internuclear sepa-
ration. Several examples have been presented and dis-
cussed.

The coupled-channel method has been systematically
applied to collisions of U ++U '+ and Xe ++Ag and
Xe + + Au. In all cases we have included initial and
final excited states. In fact, at these high atomic num-
bers, charge transfer from excited target states and to ex-
cited projectile states plays an important role.

The collision of U + + U '+ at 500 MeV/amu serves
as a testing ground for relativistic theories. We have
studied the time evolution of the occupation probabili-
ties, the impact parameter dependence of the cross sec-
tions, and the convergence properties by increasing the
size of the basis set from 20 states' to 36 states. We
found that the addition of 18 M-shell basis states changed
the cross sections within the E and L shells by 10% or
less. We have also compared with the results of other
calculations. While the R1B approximation' and the
eikonal theory give total cross sections roughly similar
to the coupled-channel method, they deviate considerably
in certain partial cross sections.

For collisions of Xe ++Ag and Xe ++Au at 82,
140, and 197 MeV/amu we have been able to compare
the results of our calculations with existing experimental
data for charge transfer. ' We found good agreement
with the data for Au targets but our results slightly
overestimate the total cross sections for Ag targets. As
an independent piece of information, we have extracted
approximate cross sections for charge transfer into the K
shell of Xe + projectiles from Xe + and Xe + total
capture data. ' These cross sections were well
represented by our calculations except for the lowest en-

ergy, where incomplete convergence and blocking effects
play a role.

In summary, we have shown that accurate calculations
for excitation and charge transfer in collision systems of
particular experimental interest are becoming possible.
The main limitation is given by the availability of com-
puter time.
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