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Based on Klauder’s continuous representations in Hilbert space, we discuss a fundamental fuzzi-
ness of the coordinate and momentum variables for a quantum particle. These fuzzy dynamical
variables are intimately related to a very small radical length R( <1078 cm) and a very large
cosmological length S (2 10'° light years). The uncertainty Aq for the measurement of a particle’s
position alone is assumed to be restricted by S X Ag * R. Physical properties of fuzzy base states
(p| and (q| and their general cosmological and very-high-energy implications are discussed. In
particular, a new density of states and its possible effects on decay rates and scattering cross sections
at large momenta p 2 #/R ~ 10* GeV/c (c is the velocity of light) are considered. We also discuss
the superposition of waves in the presence of R and S.

I. INTRODUCTION

In a previous paper' we discussed and explored funda-
mental properties of the position and the momentum
operators, Q and P, and their states on the basis of
Klauder’s continuous representations in Hilbert space,’
which excludes the usual eigenstates (g | and {p |. We
note that the eigenstates (g | and (p | have infinite
lengths and cannot be normalized to have an elementary
probabilistic interpretation. Dirac observed that the
infinite length of the ket vectors corresponding to these
eigenstates may be connected with their unrealizability
and that all realizable states correspond to ket vectors
that can be normalized and that form a Hilbert space.>*
Thus, in the bra-ket formalism of quantum mechanics,
one gives up the fundamental idea of probabilistic inter-
pretation of a state for the sake of introducing certain
mathematical idealizations of what can be realized. It
does not appear to be in harmony with the operational
principle in physics which states that one should formu-
late a physical theory by using observable quantities and
realizable states. This motivates us to explore a new for-
malism based on Klauder’s continuous representations
for Q and P which can have only fuzzy values and fuzzy
base states (¢ | and (p | with finite lengths. Let us term
such a formalism ““fuzzy quantum mechanics.”

For simplicity, we assumed the momentum operator P
to be the same as usual in the previous paper,' so that we
could concentrate on the fuzziness of the coordinate
operator Q. In the present paper we first discuss general
relations for both fuzzy operators Q and P. In this gen-
eral case, Klauder’s continuous representations for Q and
P involve a small radical length R and a very large
cosmological length S. We consider general physical im-
plications in cosmological and high-energy phenomena
based on quantum-mechanical framework. We also dis-
cuss the possibility that the usual four-dimensional sym-
metry of flat space-time becomes exact only in the limit
R —0 and S — o (in which Q and P are no longer fuzzy).
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II. FUZZY OPERATORS Q AND P

Let us consider the mathematical properties of fuzzy
state vectors which are denoted by the parenthesis nota-
tion rather than the usual bracket notation. A fuzzy
state, say, the position of a particle, is represented by a
state vector [a “thesis” vector |a) or a “paren” vector
(a| ] in Klauder’s continuous representation.’ As usual,
the state thesis | a) of a physical system is postulated to
contain ‘“‘complete information” about the state.

There are particular theses of importance, namely, the
base theses of Q and P. According to Klauder’s continu-
ous representations, we have the relation’

(q'|qQ=D*d")8%q'—q), 3'=—i#d/dq , (1)
D(d)=1/(2R%'*/#*+1) )

for the base state |q) which is assumed to be the wave
packet with the minimum width Agq_;, =R that can be
physically realized in nature. The absence of the position
eigenstates in fuzzy quantum mechanics implies that, in
principle, one cannot measure the position of a particle
with absolute certainty. In this sense, we have made a
further departure from the determinism in classical
mechanics than the conventional quantum mechanics.

Suppose a state | a) is formed by the superposition of
the base state | p),

lo=[Fo)pd’p, [=[", (3)

where |p) is the base momentum state with the
minimum width Ap_;,~#/S. The length scale S is inter-
preted as the effective size of the physical universe.! [See
Eq. (14) below.] The physically realizable wave packet
corresponding to | a) has a width Agq restricted by

S2AgZR . 4)

This relation is considered as a fundamental assumption
for fuzzy quantum mechanics based on Klauder’s con-
tinuous representations.
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Thus physically realizable wave packets correspond to
a certain sector (or subset) of vectors in a Hilbert space.
In this physical sector, state vectors have a finite length
and a finite width given by (4). This physical sector does
not involve any eigenvector of Q or P and has nondenu-
merably infinite dimensionals. We note that this physical
sector of vector space does not form a closed linear mani-
fold (or a subspace) in the usual mathematical sense.
Nevertheless, one can have a restriction on the superposi-
tion of waves, so that realizable states of Q and P always
correspond to vectors in the physical sector and do not
contradict previous experiments. [See the discussions
after Eq. (44) below.]

Since the mathematics of Hilbert space is so elegant
and beautiful, one might deplore the fact that physical
states in fuzzy quantum mechanics correspond to only a
subset of vectors associated with Q and P in Hilbert
space. But this should not be considered as a drawback
of the present formalism. The situation here resembles
the fact that observed particles with certain masses and
spin in nature correspond to only a subset of particles al-
lowed in the irreducible representations of the fundamen-
tal four-dimensional group, i.e., the Poincaré group.
(Particles with a continuous spin do not seem to be real-
ized in nature.) Similarly, the physical states in Yang-
Mills field theories and the unified electroweak theory are
only a subset of all states in the theory.’

The properties of the base theses |p), the base parens
(p |, and the fuzzy operators P and Q acting on them can
be summarized as follows:

(p|Q=3,(p|, d,=i#d/dp, (5)
Qlp)=-3,|p), (6)
P, | p)=[py—i#3InE(Q)/3Q,]1|p) , ©)
(p| P=(p|[px +i#dInE(Q)/3Q;] , (8)

(p' | p)= [ EXq)exp[ —i(p'—p)-q/#]d’q /(2m#)}
=E*3,)8’(p'—p)=E(3,)E(3,)8(p'—p), (9)
[d’p |PE-3,)p| = [d*p[E~'3,)|p)]
X[E~'@,)p|]=1, (10

where E(d,) and E—Z(a,,) are understood as integral
operators

F(3,)Y (p)=(27#)"* [ d°q exp(—iq-p/#A)F (q)

X fd3p'exp(ip'-q/ﬁ)Y(p') ,
(11
Y(p)=|p) or ¢(p).
These relations characterize the fuzzy p representation
in the theory. To guide our discussions, we follow the
previous paper and assume

E(q)=exp(— |q| /28)=E(q/S) . (12)

That is, the whole physical space may be pictured as a
“big fuzzy point.”! The results in this paper are not sen-
sitive to the spacific form of E(q) in Klauder’s continu-
ous representations, provided that
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1 for |q] «<S

E(q@)= for |[q| >S .

It appears that the explicit form of E (q) cannot be deter-
mined by existing principles of physics or by known ex-
periments. We hope that it can be determined in the fu-
ture.

With the help of (12), Eq. (9) can be written as

(p'| p)=(#/mS)(p'—p)*+#/S?] 2
—8(p'—p) as S— o . (13)

In contrast with (p|p)=258%0)= «, we have
(p|p)=S*/(#n)# o ,

which can be used to normalize (p | p’). We have seen
from (13) and (4) that the length S characterizes the size
of the physical three-dimensional space. According to
fuzzy quantum mechanics, the physical universe, in
which physical phenomena take place, has an effective
finite volume Vg because of the presence of E(q) in
Klauder’s continuous representations. If E (q) is given by
(12), we have

Vs= [d’q EXq)=87S", (14)

where S is presumably of the order of 10'° light years or
larger.

Equations (5) and (6) for the base momentum vectors
look familiar. But the results (7) and (8) show that they
are not eigenvectors of the momentum P and that the ob-
served value of P has a fuzziness due to E (q) or the finite
size of the physical universe. Such a fuzziness is inherent
in nature and cannot be reduced by any artificial method.
One may consider (9) as a “fuzzy orthogonal relation” be-
cause it can be written as

E~%3,)(p' | p)=E~'(3,)E~"(3,)(p' | p)
=(p'| E7AQ)| p)=8%(p'~p) .

The fuzzy closure relation (10) enables us to express an
arbitrary paren or thesis in terms of the base parens or
theses, e.g.,

la)= [d’q |Q)D~*3)(q| ).

Similarly, the fuzzy position operator Q, the base
theses | q), and the base parens (q| are assumed to have
properties corresponding to Egs. (5)—(10):!

(q|P=—i#id/3q(q| =d(q]| , (15)
P|q)=-9]|q), (16)
Q|q)=[q+i#dInD (P)/3P]|q), (17
(q| Q=(q|[q—i#dInD (P)/3P], (18)
(q'| Q)=m#)~> [ DXp)expli(q'—q)-p/Ald’p
=D%*9")8%q'—q) , (19)

[d% QD ~%d)q| = [d*q[D~'(d)|9ID~'(3)q]]
=1, (20)
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where D%3) and D ~%(9) are integral operators:
F(@)p(q)=—— [d’p e™VAf (p)

T Qrh)
X fd3q’e_iq"”¢>(q') . (21)

The function D*(p) in (19) is given by’
DXp)=1/(2R*p*/#+1)*, (22)

so that (q' | q) can be pictured as a fuzzy point with a bell
shape and a width approximately equal to R. From (19)
and (22) we obtain

(ql | q)=(167T21/2R3)_1exp(— |q»_q| /21/2R)
—8%q'—q) as R— , (23)

which shows that the base thesis | q) is normalizable.

The sector of fuzzy thesis states under consideration
can be viewed as being spanned either by the set { | q)} or
by the set {|p)}. It can be shown that the relations
(5)-(10) expressed in the set {|p)} and the relations
(15)-(20) expressed in the set { | q)} are connected by a
new transformation function (q | p),

(q| p)=(27#%)">?E(3,)D (d) exp(ip-q/#)
=(2m#)>*E(3,)D (p)explip-q/#) , (24)

where E(3,) and D(3) are integral operators given in
(11) and (21). For example, the relation (17) can be ob-
tained from (6), (10), and (24):

Qla)=[QIpE%3,)p|qd’p
=[q+i#3InD(P)/3P]|q), P=d . (25)

We note that the new transformation function (24) corre-
sponds to the plane wave in ordinary quantum mechan-
ics. In the present formalism, the expression (24) is inter-
preted as the physically realizable “plane wave” for a free
particle. In other words, the usual plane wave
exp(ip-q/#i) is an idealized function which cannot be
physically realized (see Appendix A).

In this connection, we also note that the position
operator Q in Egs. (5) and (6) of the fuzzy p representa-
tion behaves like ordinary the Hermitian operator,
Q, =i#0d/9dP,, and its fuzziness is not obvious. However,
with the help of the new transformation function (24), we
have the result (25) which clearly shows the momentum-
dependent fuzziness of Q. Also, from the expression (25)
for Q| q), it is not clear whether (q | Q| q’) is a real num-
ber. Nevertheless, we can show that, for an arbitrary

| @) and (B, the quantity (a | Q| B) is a real number,

(@]|Q|B)=B|Q|a)*= [ piqlapsq)EXq)d’q , (26)
E(q)pi(q)=D "' 3d)a|q) . (27)
III. FUZZY MATRIX REPRESENTATIONS
AND FUZZY UNCERTAINTY RELATIONS

Suppose we have an equation for operators 7, U, and
V:
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T=UV .
Using the fuzzy closure relation (20), it can be written as
(q|T |q")=(q| UV |q")
=[(q|U|q)D~X3)q |V |q")d’q .

(28)

Thus the operators 7, U, and V in this formalism can be
represented by matrices (q| T |q"”), (q| U |q’), and
(q' |V |q"), which may be termed ‘“‘fuzzy matrices” be-
cause they cannot be diagonalized. We stress that these
fuzzy matrices follows a modified rule of multiplication
due to the presence of D ~%(d'), as shown in (28). Some
other examples of fuzzy matrices and their new multipli-
cation rule are as follows:

(q| U |9)= [(q| U |q)D~*3)q | ¥)d’q’ (29a)
= [(al@D"2@d)q' | U |dq’, (9

(¢ ¥)=[(¢]Q)D~*d)q | P)d’q (30a)
= [($IPE~3,)p|¢)dp , (30b)

where we have used Eqgs. (10) and (20). We see that
(q' | ¥) can be looked upon as a continuous fuzzy column
matrix and (¢ |q) a fuzzy row matrix. The complex
number (¢ | ¢) in (30) can be expressed as the multiplica-
tion of the two matrices (¢ | q) and (q | ¢) in the fuzzy ¢
representation. From (29b), we see that (q|q’') is a “unit
fuzzy matrix.”” We note that fuzzy matrices obey all rules
of the usual matrices except the multiplication rule. Evi-
dently, fuzzy matrices reduce to usual continuous ma-
trices in the limit R -0 and S — «. Of course, the ma-
trix representations of discrete observables such as the
angular momentum Q X P, etc. and their states have the
usual properties.

As usual, Q and P are assumed to satisfy the commuta-
tion relation

as one can see from (5) and (8). Therefore one has the un-
certainty relation

AP AQ, >#/2, k=1,2,3 (32)

except that neither AP, nor AQ, can be arbitrarily small.
Let us consider the spatial extension AQX, of the fuz-
zy base state | q),

AQ;in=(<le)min_<Qk >3nin)l/2’ k:1’2,3 (33)
where
(F(Q)=(q|F(Q)|q)/(q|q), (34)

(@] Q2 l@)= [ |D'@)(q | Q)| g%’

2
:f exp(— | q'—q]| /2!’R)
87R*|q—q'|

q’d’q’

1

=m0 k=123 (35)
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From Egs. (34), (35), and (23), we find
AQk. =R /3'2, k=1,2,3. (36)

It follows from (36) and the minimum uncertainty rela-
tion APk AQk =ﬁ/2 that

APk, =3"%4/(2R), (37

which implies that it is impossible to have arbitrarily
large momentum (or short wavelength). Otherwise, if one
has an indefinitely short wavelength, then one can deter-
mine the position of a particle with unlimited accuracy.
As a matter of fact, a particle with a momentum p is
suppressed by an inherent probability proportional to
D?(p), as shown in (19). The suppression is significant
only when p 2 7i/R. In high-energy laboratories, we now
have particles with momenta p ~ 10* GeV/c and we have
not yet seen any anomaly related to the inherent suppres-
sion of momenta. This enables us to estimate that #/R
should be roughly 10* GeV/c or larger.

Similarly, we can calculate the minimum uncertainty
AP ;in’
APk =((P?) pin— (P OLIY2 k=1,2,3
where

(p|(P*?|p)= [dp'pi?| E~'@,)p' |p)]|>

— [dppp? #i/(2mS)
[(p—p')?+# /48]
__S
127
From these relations and (13) with p’'=p, we obtain
APk, =#/(2x312x8S) . (38)

This result together with the minimum uncertainty rela-
tion AP, AQ, =7i/2 lead to a maximum uncertainty for

AQ%,
AQk  =3'2S, k=1,2,3. 39)

Otherwise, there will be a contradiction because if the
space is infinite, i.e., AQf,m = o0, then one can have the
usual plane wave with a definite momentum (with
AP*=0). Therefore, the result (38) is consistent with the
effectively finite size of the physical universe expressed in
(14).

IV. EFFECTIVE DENSITY OF STATES
AND SUPERPOSITION OF WAVES

For the discussion in this section, we take the
viewpoint that the four-dimensional symmetry of flat
space-time is exact only in the limit S— o and R —O0.
Evidently, if the physical universe is effectively finite, the
Lorentz transformation and the four-dimensional symme-
try are only approximately true. Unfortunately, this ap-
proximate nature probably can never be detected by
measuring new effects due to S in, say, (39), because S is
extremely large. Nevertheless, let us consider the
modified density of state of a free particle solely on the

basis of the fuzziness of P and Q. Such a modification is
intimately related to the probabilistic nature of the
dynamical variables. We believe that this modification
will not be changed in the future when one takes the
four-dimensional symmetry of spacetime into considera-
tion (see Appendix B).

The suppression of the momentum p by an “inherent
probability” D*(p) in (19) is difficult to be implemented
in a theory to calculate probability amplitudes of scatter-
ing or decay processes in detail, unless the theory in-
volves creation and annihilation operators. However, we
still can see its partial effect in a physical process through
an effective density of states.

Mathematically, the coordinates q and the momenta p
can have values from — o to + o, as shown in Egs.
(9—(11). But the region in which matters or waves exist
is effectively finite, so that physically the three-
dimensional space appears to be non-Euclidean (see Ap-
pendix A). It appears to be some sort of quantum-
mechanical analog of the Riemannian space because one
may picture that the space has the volume element
E?*(q)d3q. The space is physically finite with the volume
given by (14) and has no boundary. Similarly, the
momentum space is also physically finite and has no
boundary. From Eq. (19), we see that the volume element
d’p in the neighborhood of p is suppressed by the factor
D*(p). Thus the number of one particle states in the
range p and p+dp is given by the following effective den-
sity of states:

[sz(q)d3q ]Dz(p)d3p/(21rﬁ)3=Vspz(p)dSp/(zﬂﬁP
(40)

for a spin-zero particle. This is an important physical re-
sult of the new restriction (4) to the Heisenberg uncer-
tainty relation. It is also consistent with the modified
inner product in (30a) and (30b),

(a]a)= [ |¥(@) |’EXQ)d’q= [ | ¢a(p)|2D*p)d’p ,

41)

where
E(qQ)¢¥,(q)=D"'(d)q|a), (42)
D(p)Y(p)=E~'3,)p |a) . 43)

It follows from (43) and (24) that the amplitudes
E(q)y,(q) and D(p)y,(p) are connected by the usual
Fourier transform,

E(Q),(q)= [ d’p(27#) 22D (p)y,(p) explip-q/#) .
(44)

Based on the inner product (41), we interprete that, for a
particle in the state |a), its wave packets in the coordi-
nate and the momentum spaces are described by the
probability densities | E(q)¥,(q) |2 and | D(p)¢,(p) |2
respectively. The properties (41) and (44) ensure that the
new restrictions (4) can be consistently imposed on the
superposition of waves in (3) [where the coefficient F(p)
is related to (p | @) through Eq. (10)], so that the physi-
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cally realizable wave packets always correspond to vec-
tors in the “fuzzy vector sector.”” We stress that such a
restriction on the superposition of waves modifies only
physics at very small momentum p ~#/S and at very
large momentum p ~#/R and, hence, it does not contra-
dict previous experiments.

Since the effective density of states is given by (40), the
differential decay rate dwgqy (FQM indicating fuzzy
quantum mechanics) for the decay process, 1—2+3
+4 - +n,is given by

dwgom ~dwgyD*(p,)D*(p;) - - - D (p,) , (45)

where dwqy, is the decay rate for the same process calcu-
lated in ordinary quantum mechanics and the sign = in-
dicates that the suppression of the momentum by the in-
herent probability D?(p) in the intermediate steps of the
decay process has not been taken into account.

Similarly, the differential cross section d O rQM for the
process, 1 +2—3+4+4+ - -+ +n, is related to dUQM in or-
dinary quantum mechanics by the relation

doggu=~doguD(p3)D*(p,) - - - D¥(p,) . (46)

These modifications become important only at very large
momentum p 2 #%/R ~10* GeV/ec.

We believe that the fundamental fuzziness of dynami-
cal variables P and Q and their base states in Klauder’s
continuous representations is independent of the four-
dimensional symmetry of space-time. Based on the result
(45), we conclude that, apart from the usual relativistic
time dilatation, the lifetime of an unstable particle decay
in flight (with the momentum p) will be further delated
by a “radical dilatation” when p * #i/R. Otherwise, the
concept of quantum-mechanical probability is probably
not really fundamental and could be modified in the fu-
ture. For the lifetime 7(A) of the decay process
A—p +m, suppose p, ~p,~10° GeV/c and #/R ~10*
GeV/c; we estimate that

[Trom(A)—Tom(A)1/Toum(A) ~0.04 , 47)

where we have used (45) and (22). This can be tested by
the superconducting supercollider in the future.

Note added in proof

The difficulty with nonsquare integrable coordinate (or
momentum) representations by itself may not be
sufficiently strong motivation for introducing a new phys-
ical formulation of quantum mechanics (i.e., fuzzy quan-
tum mechanics). However, the new physical formulation
is also motivated by the relation between this difficulty
and the problem of locality and, hence, the ultraviolet
divergence in quantum field theories. This could be
significant because the radical length R, which character-
izes the inherent fuzziness at short distances, is related to
Dirac’s conjecture of a fundamental length A and to
Feynman’s width for a modified 6 function for interac-
tions. In 1949, Dirac said the following: ‘“Present-day
atomic theories involve the assumption of localizability,
which is sufficient but is very likely too stringent ... . A
less drastic assumption may be adequate, e.g., that there
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is a fundamental length A such that the Poisson bracket
of two dynamical variables must vanish if they are local-
ized at two points whose separation is space-like and
greater than A, but need not vanish if it is less than A.””’
A similar view was expressed by Feynman: “There were
several suggestions for interesting modifications of elec-
trodynamics. We discuss lots of them, but I shall report
on only one. It was to replace this delta function in the
interaction by another function f (which has the width of
order a?) ... Interactions will now occur when
T?—R? is of order a’ roughly, where T is the time
difference and R, is the separation of the charges.”®

Furthermore, it is interesting to note that the concept
of fuzzy coordinate variables is in harmony with
Schwinger’s conclusion that ““a convergent theory (QED)
cannot be formulated consistently within the framework
of present space-time concepts. To limit the magnitude
of interaction while retaining the customary coordinate
description is contradictory, since no mechanism is pro-
vided for precisely localized measurements.””’
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APPENDIX A: MODIFIED PLANE WAVES
AND WAVE EQUATIONS FOR A FINITE UNIVERSE

Let us consider the global picture of the finite and fuz-
zy universe with an effective size approximately equal to
S. For simplicity of discussions, we set R =0. The posi-
tion amplitude E (q)¥,(q) in (41) involves two parts: One
part E(q) is related to the macroscopic universe and
another part ¥,(q) describes the microscopic system un-
der consideration.

As usual, the time evolution of the microscopic ampli-
tude ¥,=1v,(q,?) is postulated to satisfy the Schrodinger
equation with the usual Hermitian Hamiltonian H,:

i#dy,/dt=H,(3,q)¢, , (A1)
#
H,(3,q)=— 2m 3q? +V(q). (A2)

Since ¥,(q,?) is related to (q,? | @) by (42), one may
rewrite (A1) in the form

i | ) =E(QH,(P,QE Q) |a), (A3)
where we have used the relation (q|D " P)E(Q)
={(q|E(Q)=(q| E(q).

When V(q)=0, we have the usual free particle solu-
tion ¢,=exp(—iEt/fi+ip-q/#), |p|=02mE)/*=a.
Thus we have a modified plane wave given by
E(q)y,=exp(—iEt/A+ip-q/fi— | q| /2S) and the
probability for finding this free particle between q and
q+dqis EXq)d’q.

We note that if one takes the effective finiteness of the
physical universe seriously, one probably has to consider



38 KLAUDER’S CONTINUOUS REPRESENTATIONS AND ... . II

E?(q)d’g in (14) as an “invariant volume element” and to
use curvilinear coordinates for describing physical phe-
nomena. In this sense, fuzzy quantum mechanics based
on Klauder’s continuous representations suggests that
the physical space is non-Euclidean. The Hamiltonian in
(A2) will be only an approximation. Such a non-
Euclidean property of the physical universe will be
significant only when S is small (i.e., at very early
universe, provided S is time dependent). In view of the
observed expansion of the universe, the cosmological
scale S in Klauder’s continuous representations (9) and
(12) is probably dependent on the age of the universe. It
is hoped that, in the future, one may discover a more fun-
damental equation which takes gravity into consideration
and determines the evolution of both the microscopic sys-
tem ¥,q) and the whole universe described by
Yuni[a/S (1) ]=E(q).

APPENDIX B: EFFECTIVE DENSITY OF STATES
AND FOUR-DIMENSIONAL SYMMETRY

The density of state (40) at large momenta is modified
by a new factor DX(p)=1/(2p*R?/#*+1)%. One can re-
place d’p by a four-dimensional invariant quantity
d’p/(p>*+m?)!2. Nevertheless, one wonders whether
the p-dependent function D (p) is compatible with the
four-dimensional symmetry which is believed to be im-
portant at large momenta. Evidently, the p-dependent
function D (p) cannot be invariant within the framework
of special relativity. However, if one looks at the four-
dimensional symmetry from a different angle,’ namely,
introducing a new scalar evolution variable ¢ (which can
be interpreted as a common time) for all inertial reference
frames, then one has a new scalar quantity G (p) which is
momentum dependent and can be used to express invari-
ant p-dependent functions. This can be seen as follows.

Suppose we choose an arbitrary inertial frame F in
which the speed of light is assumed to be isotropic and
constant c. We can set up a synchronized clock system in
F (say, the ground) by using the light signals. Suppose
another frame F' (say, a train) is moving with a constant
velocity (¥,0,0) and the observers in F’ use the clock sys-
tem on the ground F to record time, so that all observers
in both frames have a common time o=t =t'. Within

the four-dimensional framework, an event is now
specified by
x*=(co,x,y,z) and x"*=(b'o,x",y',2") (B1)

in F and F’, respectively, where b’ is no longer a con-
stant. Since F and F' are assumed to be completely
equivalent, as required by the principle of relativity for
physical laws, these two sets of coordinates can be shown
to bf connected by a new four-dimensional transforma-
tion

x'=y(x —Bco), y'=y, z'=2z, blo=y(co—pBx),

(B2)

’

o=t=t'=-"",
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where <. is common time, B=V/¢, and
y =(1—p* "2, The physical meaning of the new vari-
able b’ is completely specified by the transformation (B2)
which  preserves the four-dimensional interval
2ot —x2—p2—z2=b"262—x'"*—y'?—2z'2. The transfor-
mation of velocities, measured with respect to the com-
mon time o, is given by

2

’

vy=y,—B.), vy=v,, v,=v,, c'=y(c—Pv,),

(B3)

where ¢'=d(b'0)/do, v,=dx'/do, v,=dx/do, etc.
Although the speed of light is no longer a universal con-
stant, we still can postulate an invariant ‘“action func-
tion” A for a free particle,

A=— fm ds, ds=(dx}—dr?)'?=(dx,dx")""* .
The “four-momentum” of the particle is

pt=m dx*/ds

=(p%p)
=(m/(1=v2/CHV2 (mv/C)/(1—v?/C?)'?)

where C =dx°/do. Such covariant four-momenta p*
have the dimension of a mass and transform as follows:

Px=v(py—Bpo), Py=P,» P,=P;» Po=7(Po—Bpy) .
(B4)

It follows from (B3) and (B4) that the ratio p; /c’ is an in-
variant:

po/c'=po/c=G(p), po=(p*+m?H)'/*. (BS)

The scalar property of G (p) can also be seen in the fol-
lowing form:

G(p)=m/(C*—v)"2=m /(ds/do), (B6)

where m, ds, and do are all scalars under the new trans-
formation (B2).

Thus we have seen that the function D (p) necessary
for Klauder’s continuous representations for Q and (q |
can be compatible with a four-dimensional symmetry
with a common time, provided that we define D(p) in
terms of the scalar G (p) associated with a physical parti-
cle with a mass m, namely,

D(p)=1/[I*GXp)+1], (B7)

where I is a new constant which is related to the radical
length R in the frame F by the relation I =Rc?/#. The
expression (B7) is essentially the same as D (p) in Eq. (40)
because I?m?2/c*=(Rmc /#)* << 1. For a detailed discus-
sion of the four-dimensional transformation (B2) with a
common time (i.e., common relativity), we refer to Ref. 6.
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