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Exact density-matrix calculations for simple open systems
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Explicit density-matrix solutions are obtained for several simple open quantum systems without
the usual trace being taken over the thermal bath. This is achieved using a representation of the
density matrix in terms of the dynamic operators of the system. The results are compared with

those from conventional reduced calculations. Different types of irreversible behavior are found,
and the implications of this distinction for models of quantum measurement are considered.

I. INTRODUCTION

Some recent work in the quantum theory of measure-
ment' has developed models in which the environment
of an open system plays a key role in achieving state
reduction. The underlying ideas is, of course, not new,
but it is only in the last few years that explicit solutions
for the states of some sample systems have been obtained,
exhibiting very clearly diagonalization of the reduced
density matrix in the basis given by the eigenstates of the
measured operator (Zurek's "pointer basis" ' ). Such
measurement schemes, in which state reduction is
modeled as a loss of coherence, of course, do not, and can
never, completely solve the so-called measurement prob-
lem;" their dependence on an average being taken over
the quantum states of the environment means that they
can never be more than a partial (though suggestive)
description of the process of measurement. As a response
to this, it can be argued that this is a limitation of all
physical models of irreversible processes. Thus (goes the
argument), while loss-of-coherence measurement models
solve nothing completely, they do reduce two problems to
one: quantum measurement becomes just a special case
of the general problem of irreversibility in quantum sys-
tems. For instance, Peres has argued that the unobser-
vability in practice of phase relationships within the envi-
ronment which carry the lost information means that the
irreversibility of a quantum measurement can be ex-
plained entirely analogously to "familiar classical irrever-
sibility. "

The crucial question here is the relative importance for
irreversibility of two quite distinct aspects of open sys-
tems (considered together with their environment). First-
ly, the fact that they are large systems with many degrees
of freedom. Secondly, the fact that our knowledge of
them is incomplete. Obviously, in practical terms, the
second is an almost inevitable consequence of the first,
but this does not mean that the distinction is not real. To
see the effects of these two properties separately, we need
to study open systems without making the usual average
over the environment; we must look at the behavior of
the unreduced density matrix, including the detailed be-
havior of the thermal bath.

In this paper I present such complete calculations for
several simple open quantum systems: a phase-damped

oscillator, an amplitude-damped oscillator, a Raman
amplifier, and a photon-number measurement model. Al-
though, as the preceding discussion indicates, these cal-
culations were principally motivated by concerns of mea-
surement theory, they do not use any assumptions or
techniques peculiar to it, and may equally well be taken
simply as more comprehensive solutions than hitherto
presented for some standard quantum models.

II. OPERATOR REPRESENTATION
OF DENSITY MATRICES

1 H
pT Z

exp (2.1)

where

H
Z =Tr exp

A. Single-mode states

For a harmonic oscillator (and all examples in this sec-
tion will be for the harmonic oscillator),

H =Acoa a (2.2)

and

so that

1 =N+1,
1 —exp( Aco 1kT)—

1 %coPr= %+1 krexp — a a (2.3)

Using the operator ordering relation"

exp(tea a) =:exp[(e"—1)a a]:, (2.4)

This paper makes extensive use of density matrices as
functions of the operator dynamical variables describing
the system. As this approach is not widely used, this sec-
tion gives some properties and examples of it. As a start-
ing point, one may use the operator representation most
commonly found: that for a thermal state in terms of the
Hamiltonian'
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this may be rewritten as

1 a a
T (2.5)

The representation for a coherent element similarly fol-
lows by the application of displacement operators

~a)(P~ =D(a)p„„D (P)

p„„= (
0) (0

/
=:exp( —a ta): . (2.6)

From this it follows immediately that for an element in a
number state basis the representation is

j
m ) & n

[
= (a ):exp( —ata): a" .

1

&m! n!
(2.7)

The zero-temperature limit of this gives the vacuum den-
sity matrix

—
f
a

I
/2 a a.

&
—a a. &P*a& —

I ~l

=(P
~
a):exp[ —(at —P')(a —a}]:. (2.8)

In fact, we can go further than this and obtain the repre-
sentation for the combination of a coherent element with
thermal noise:

D(a)p Dt(P)=e lal ~2 —l&! /2ea ae —a a

AN
exp — a a

N+1
ap pa

&pi )
:exp —(a —p' )(a —a) + (a —a' )(a —p)N+1 N+1

(2.9)

We see that this reduces to (2.8) for N=O, while for a =p
(coherent state with thermal noise),

~
a, re'~) =D (a)S(re'~)

~

0)

=D( a)exp[ 'r[e'~(a ) —e —'~a ]] ~

0) .

D(a)prD (a)=:exp—1 (a —a')(a —a)
N+1 N+1

(2. 10)

(2.11)

Using (A9) with o+ ———,'e'~( a)»d o' = —
—,'e ' a, this

becomes

as we would expect from (2.5).
As a final example for the single mode, the representa-

tion of a squeezed state can be produced using squeeze
generators. ' ' An ideal squeezed state is given by

~

a, re'~) =(coshr) '~ exp[ —,'e'~( —a a') t»hr]
~

a)

(2.12)

so that a general density matrix element is

I
a «' )(»se'"I=,

&
.exp[ —(a —p*)(a a)+ ,'e'—~(a a—*)t»h—r+ —,'e '~(a —p) tanhs]: .( a)

(coshr coshs)'~
(2.13)

In similar fashion, using (A9), (A7), and (A8), the general element for a squeezed therma1 state is

D(a)S(re'~)pTS (se'~)D (P)

=M„, '(P
~
a):exp( —(a —P')(a —a)+M N(N+1)(a —a*)(a —P)

+ —,'M„[(N+1) e'~si hnr coshs Ne'~c shor sinhs](a——a*)

+ —,'M„[(N + 1) e '~sinhs coshr Ne '~coshs sin—hr](a —P) j:, (2.14)
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where B. Continuous modes

M„, = [(N + 1) coshr coshs

—e'(~ ~)N sinhr sinhs]'i

All the single-mode representations of Sec. II A apply
in an obvious fashion to multiple independent modes. In
particular, in the case of a continuous distribution of
modes (for a field or heat bath) the vacuum state is

It may be noted that these normally ordered operator
representations of the density matrix are identical in form
to the Q function (the antinormal quasiprobability distri-
bution) for the same states. In particular, by taking pro-
jections over the coherent states of the on-diagonal cases
of (2.13) and (2.14) we can recover the results of Stoler'6
and Vourdas, ' respectively.

p„=:exp — dao b co b co (2.15)

[b (co), bt(co)] =5(co—co') .

Similarly, for the coherent state,

(2.16)

Here b(co) has dimensions [T]'i, with the commutator
being

[a(~)]& & [a(~)]
I

= P D.(a(~))p...g D'. (a(~) )

=exp J dco[bt(co)a(co) a'(co—)b(co)]:exp —Jdco bt(co)b (co)

&&exp f dco[b (co)a'(co) b(co)a—(co)]

=:exp —f dco[b (co) a'(co)—][b (co) —a(co)] (2.17)

The product over co in the right-hand side of the first line is a continuous product, interpreted as in the following line.
A continuous product of a more awkward type arises when one considers the thermal state, which is not normalizable:

pr —— exp — dco b (co)b (co) =:exp — dco
1 'RN 1 bt(co)b (co)

T Zr N co+1
(2.18)

Here the partition function Zr is a product containing a factor of 1+N (co) for each of the continuously infinite number
of modes. However, this causes no problems in practice. The combination of thermal and coherent elements gives

g D (a(co))pr g D (P(co))= & [P(co)]
I
[a(co)]&: exp —J dco[b (co) P*(co)][—b(co) —a(co)]

1

ZT

—Jdco [b (co) a*(co)][b(co)——))3(co)]
N(co)+1

(2.19)

where

& N(~)]
I [«~)]& =exp —Jd~Ã'(~)a(~) ,' I

&(~—)
I

—'——,
'

I
a(~)

I
'l

Multimode squeezed states could similarly be obtained
using the appropriate generators. '

C. Time-dependent behavior

Although the density matrix is a quantum-mechanical
operator, and can be represented as a function of the
dynamical variables of the system, it of course obeys not
Heisenberg's equation of motion but von Neumann's,
differing by an overall sign. The density matrix (in the
Schrodinger picture) may therefore be treated as an ordi-
nary operator (in the Heisenberg picture) evolving back-

p =:e(0) . —(a —a )(a —a). (2.20)

The Heisenberg equation for a (t) gives

a(t)=e '"'a(0)=e ' 'a, (2.21)

wards in time. This means that we can obtain its time
evolution by solving the equations for the dynamical
operators, and substituting these solutions into the opera-
tor representation, changing the sign of the time.

As a trivial example, take a free harmonic oscillator in-
itially in a coherent state:
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so we can immediately write

p(t)=:exp[ —[a ( —t) —a*][a( —t) —a]]:
=:exp[ —(a —a*e+' ')(a —ae ' ')]: . (2.22)

Care may be needed when the evolution mixes annihila-
tion and creation operators; the normal ordering applies
before substituting in the solutions. Special attention to
detail is also required when dealing with a driven system,
in which the total Hamiltonian is time dependent.

ceptional simplicity of the calculations for this process re-
sults entirely from the fact that the coupling operator is a
constant of the motion (i.e., N ( t }=N (0) since

i—h '[N, H] =0};in the terminology of measurement
theory, it is a quantum nondemolition variable of the sys-
tem. The choice of any other such constant coupling
(e.g., a quadrature phase operator' ) would give results
formally very similar to those below.

As a first step, the Heisenberg equations of motion for
the bath operators are easily solved. The equations are

III. PHASE DAMPING

Phase damping is a suitable first choice for unreduced
calculation for two reasons: firstly, it is mathematically
straightforward; secondly it is a system for which a con-
ventional reduced calculation is most clearly
inadequate —a Markovian master equation can be ob-
tained only in the limit of high bath temperature.

The model Hamiltonian is conventional, with the iso-
lated (system) mode being coupled to the continuous
(bath) modes via its number operator N =a a.

H =ficopN'+ —,
' f dco[p (co)+[coq(co) ic(co)N] —} . (3.1)

Obviously, slightly different models are possible; for in-
stance, N could couple to p(co) instead of q(co). The ex-

I

q(co, t) =p (co, t),
P(co, t)= —co q(co, t)+am(co)N .

(3.2}

In terms of the annihilation operators defined by

b(co)=,
2 [coq(co)+ip(co)],

1

(2fico)'i

we have the solution

(3.3)

b(co, t)=e '"'bp(co)+ N(1 —e ' '), (3.4)
(2%co)'~

where I use b p(co }=b (co,0).
Next consider the equation of motion for an arbitrary

system operator Y:

2 1Y= ——[Y, H] = icop[—Y N] + f dcoK(co) [Y, N], [b(co)+bt(co)] tc(co)N2A 2%co) '/2
. +

(3.5)

where [ A, B]+ denotes the anticommutator of A and B. Since bath and system operators commute at equal times, this
can be rearranged as

Y= i cop[Y, N]—+i f dcolc(co)
2A'

1/2

+ t f dco Ic(co)
2A

' 1/2

[Y, N] e ' 'bp(co)+, 2N(1 —e '"') — f deox (co)[[Y,N], N]+
(2fico) ' ~ 2'

= —i cop[ Y, N] + i fd co ~( co )
2A

1/2

Ibp(co)e' '[Y,N] +[Y, N] e ' 'bp(co)]

' fd~~'(~) [[[Y,N], N]+cos(cot) i [[Y, N], N—]sin(cot)], (3.6)

where the solution (3.4) for the bath operators has been used. At this point we may select an appropriate basis in which
to represent the system density matrix. As N is constant, the number states are the obvious choice. Specializing Yto a
matrix element in this basis gives

d CO

dt ~

m ) ( n
~

= i (n m)cop
~

m——) ( n
~
+i (n m}f dco a(co)—

2A

1/2

[bp(co)e'"'~ m )(n
~
+

~
m)(n

~

e ' 'bp(co}]

24
dco~ (co)[(n —m )cos(cot) i (n —m) si—n(cot)]

~

m )(n
~

which can be directly exponentiated to give

(3.7)
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(
~

m )(n
~

), =e exp — f dcoK (co)f dr[(n —m )cos(cor) —i (n —m) sin(cov)]
2lri 0

Xexp i(n —m) f dcoK(co) f dr
o 2A

X exp i (n m—)f dco K(co)f 'dr
o 2'

bo(co)e'"' (
~

m )(n
~

)0

' 1/2

bll(co)e

—i (n —m)coot K (co)2
2=e exp i f d—co I(n —m )sin(cot)+i(n m)—[cos(cot) —1]J

2'Aco

Xexp (n m) f—dco bo(co)(e' ' 1) (—
~

m )(n
~

)0

Xexp (n—m—)f dco
K(co)

bll(co)(e '"'—1) (3.8)

We now have all the information we need to write down the solution for the total density matrix for the process. We
start with a density matrix of the form

b,'(~)b, (~)
p(0) =p,„,pr ——g c „( i

m ) (n
i
)0:exp —f dco

Zz. N co +1 ~ ~ (3.9)

A typical term in the solution is

b co —t b co
p „(t)=:(

~

m )(n
~
),exp —f dco

T N(co)+ 1

i ( n —m)capt K (co)2

e exp i(n —m }fdco sin(cot)
T 2%a)

K CO
Xexp (n m) f dc—o [cos(cot) —1]:(

~

m )(n
~ )0

r

Xexp —f dco bo(co}
n K(co);, mK(co)

( 2irtco )
'

( 2l)ico )
'(1—e' ') be(co) — (1—e '"')

N(co bt( )
mK(co

(1
'

) b ( )
(co)

(1 —'

)N(co)+1 e (2g~)1/2 (2f1N)l/2
(3.10)

From (2.19) we can recognize the bath part of this as off-diagonal coherent excitation of the original thermal state, al-
lowing us to write

p(t)= g c „p „(t)=g c „exp i(n —m)coot+i(n —m ) dco sin(cot)
K (co)

m, n PB, n

Xexp m f dco[bo(co)13(co) p*(co)bo(co)] (p—T
~

m )(n
~

)o

)&exp n co
*

co bo co —bo co co (3.11)

where

P(co)= (1—e ' ') .
K(co)

(2fico)'

Thus the effect of the coupling between bath and system is twofold: a phase shift given by the factor involving an in-
tegral over sin(cot), which for K(co) slowly varying will rapidly reach a steady value; and more importantly, the coherent
excitation of a range of bath modes in correlation with the state of the system. From this point of view there is no sign
of phase damping, or loss of coherence. These two (related) effects may be inade to appear by tracing over the bath
modes, to give
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(p(t))= g c exp i(n —m}coot+i(n m—} dco sin(cot}2 2 K (co)
mn 0 2'

m, n

2

&(exp (n —m)' f dco [N(co)+ —,'][cos(cot) —1] (
~

m ) (n
~

)0 . (3.12)

It is the extra factor involving (n —m), arising from ig-
norance of the bath rather than from the intrinsic nature
of the physical process, which gives the decay of the
coeScients of off-diagonal elements, i.e., the loss of
coherence which can be described as phase damping.

Equation (3.12) may be compared with the approxi-
mate result obtained from a Markovian master equation
in Ref. 2. The interaction picture master equation is

(p) =A[a apa a —(a a) p —p(a a) ], (3.13)

giving

rotating-wave approximation (RWA). The Hamiltonian
is

H =Eicosa a +A f dco cob (co)b(co)

+i f dco Sue(co)[b (co)a a—b(co)] . (4.1)

The extension of the bath frequency range down to —00

is an unphysical idealization, but appropriate within the
RWA. As a further idealization, the coupling constant
«(co) will be taken to be a constant. The equations of
motion are

m, n

(3.14) a = i coo—a —f d co «(co )b (co. ), (4.2)

Similar behavior may be seen in (3.12) in the high-
temperature limit N(co)+ ,'=kT/f—ico, giving [for «(co)
constant]

f dco [N(co)+ —,'][cos(cot) —1]=— t;
0 'RCO 2A

(3.15)

that is, A, =m«kT/2A . For times short compared with
the thermal correlation time (t &irt/kT), (3.12) yields
highly non-Markovian phase damping. The n —m
anharmonicity is also relatively more important at short
times.

IV. AMPLITUDE DAMPING

b(co) = i cob (—co)+ic(co)a .

The formal solution of (4.3) is
t

b(co, t)=e ' 'bo(co)+«dec '"" 'a(r),
0

which substituted into (4.2) gives

a =[ i coo —mtc sg—n(t)]a icf d—co e '"'bo(co),

the solution of which is

—IcO0t —nit
~

t
Ia(t)=e ap

—icoot —mc
(

t
[

e
—(cot e 0

—icf dco bo(co) .
sgn( t)m.« —i (co —coo)

(4.3)

(4.4)

(4.5)

(4.6)

I use here a standard model for a harmonic oscillator
linearly coupled to a heat bath of oscillators in the

The full solution for b (co, t) is not really needed here, but
for completeness (4.6) can be substituted into (4.4) to give

—ico0t —mP
[

t
)—t Alt

b(co, t)=e ' 'bo(co}+« ap
sgn(t)ir« —i (co coo)—

t t
—ico0t—md

~

t
~

—K de, +
l co —co

—I Alt bo(co')

sgn(t)irtc i (co coo) s—gn(t)ir« i (co' coo—)— (4.7)

The solution (4.6) can be rewritten in a very simple form
as follows. Define a combined bath mode operator Bt by

Bt = defog co b ct3 (4.8}

where

This is normalized so that

and hence

(4.9)

g(co)=
0'

K e —e

(1 e
—2~~

I
'

l )&~2 sgn(t)ir« —i (co —coo)

[B„Bi] =1 .

For convenience, further define the overall loss to be
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r=e-
Then (4.6) becomes

a (t) =e '[I ao —(1 1—)' 8, ] . (4.10)

In effect, for any chosen time t, one can write the mul-
timode combination of (4.6) as the two-mode combination

(4.10). Instead of describing the bath by N( = ~ ) equally
spaced modes, we are doing so with one isolated mode,
and N —1 remaining modes with some new spacing.

As before, we allow an arbitrary initial state of the sys-
tern, and assume an independent thermal state for the
bath. This time, the appropriate basis states for expand-
ing the system density matrix are the coherent states:

„(~~&&p~),„,p(0)= f d a f d pp(a, p") "
@pe

= f d a f d PP(a, P"):exp —(a —P')(a —a) — f drab (to)b(co)
ZT N+1 (4.11)

As the evolution does not mix creation and annihilation operators, there are no ordering problems. To be able to write
down the evolved density matrix p(t) we simply need

[a ( t) p'—][a—( t) a]—+ — f drab (co, t)b(to—, t)—
N+1

[I'ao —(1—I )'~ 8,)[I ao —(1—I )'~ 8,]—e 'P*[I ao —(1 I )'~ 8—, ]+
—e ' [1 aot —(1—I )'~ Bt, ]a+p'a+ de bo(ro)bo(ro)+aoaoN+1

l COot

(ao —e 1P )(ao —e

N(1 —I'}+1
1+N(1—I )

1+N

demob co b co —8 8N+1
Nr(1 —I )' ao (N+1)(1—r )'~ e 'p*

1+N(1 —I ) 1 N(1 —1 )—

x 8,—Nr(1 —r')'"ao (N+1)(1—r)'"e '""a
1+N(1 —1 ) 1+N(1—I )

(4.12)

where the first step uses the fact that J de b (to)b (to)+a a is a constant of the motion. So

p(t) =fd a f d p p(a, p' ):exp
ZT

~ 0~ —I Ctlpf

(ao —e 1P )(ao e ra)
N(1 —I')+1

8 — [NI, —(N +1) 'P']
1+N ' 1+N(1 —r')

X 8,— [Nl ao (N+1)e 'a—]
(1—r')'" —l coot

1+N(1—I )

+ f drobo(to)bo(to) Bt,B-
N+1 (4.13)

That is, the system mode a has amplitudes decaying as I =e ~' ~, with the number of thermal quanta rising as
N(1 —I ); the isolated bath mode 8, has amplitude rising as 1 —I, and its thermal fiuctuations are transiently corre-
lated with the system, with the number of thermal quanta decaying as I [this can be confirmed by rearranging (4.12) so
that the correlation terms are grouped with a instead of with 8, ]; and the other bath modes remain unaffected. Tracing
over the bath now gives

Tre[p(t)]= f d a f d p ':exp
N(1 —I ')+1

(ao —e ' I P*)(ao—e ' I a)
N(1 —I ~)+1

d&~ f d2P ~ (P
~

~) —e v~ —2 ~l& ~~(&+&&«~)D(&) expN(t)+1
a pap

N( )+1: (4.14)



2240 M. J. COLLETT 38

where

i 6—J0t 1TK —
~

t
~ [N ( t ) + I ]cx+N ( f )pc7=e

2N (t)+1

la&—0t 1TK
~

t —
~ [N(t)+1]p+ N(t)ct

2N(t)+1

(4.15)

pling constant with the amplitude of the driving field,
which is assumed to be strong enough to be treated classi-
cally. Clearly, for the rotating-wave Hamiltonian (5.1) to
be valid, co —coo must be positive and large compared to
the gain rate [which turns out to be ma (co)]. The solu-

tions of the equations of motion can be found in just the
same fashion as for amplitude damping, giving

—&ru0(+ma. ~
~

t
~at=e

in agreement with the result obtained by the fully re-
duced calculation of Appendix B.

In the reduced density matrix (4.14) we can see not
only the overall decay of amplitude but also preferential
decay of the off-diagonal elements. This preferential de-

cay has two aspects. Firstly, the coefficients of off-

diagonal elements are reduced compared to those of diag-
onal elements by a factor which starts as 1 and ends as

(p
~

a). This is similar to the decay of off-diagonal ele-
ments in phase damping in Sec. III. Secondly, for finite

temperatures, any off-diagonal component of amplitude is
reduced compared to the diagonal component. The
reduction is given explicitly in (B13). In this case then,
unlike the phase damping of Sec. III, the damping of the
system mode arises out of the motion of the system, but
exhibiting the loss of coherence still requires ignorance of
the state of the bath.

V. RAMAN AMPLIFICATION

Raman amplification is superficially similar to the
damping process of Sec. IV—indeed the reduced equa-
tions have exactly the same form (see &ppendix B).
However, in this case there is additional complexity re-
sulting from the process mixing annihilation and creation
operators. The physical difference from simple damping
is that the coupling between local system and bath is not
direct but is achieved via a high-frequency driving field
(usually with the pump frequency co roughly twice the
system frequency coo). This means that in the rotating-
wave description the important interaction terms are
those which couple system and bath operators with the
same frequency sign rather than the opposite one. The
same effect can be achieved with an ordinary damping
coupling to a local system modeled as an inverted (i.e.,
negative frequency) oscillator.

The Hamiltonian is

H =ficooa a+fif dcocobt(co)b(co)

i(N —co)t —icoOt+mK
~

t
~

tc—t dco bo(co) . (5.2)
sgn(t)nz —i (co+coo co—

p )

Again, similarly to the damped case, we can write this as

a(t)=e '[Gaz —(G —1)' B, ], (5.3)

where the combined bath mode is given by

Bt = dcog co b co

with

g(co)= K

(e2~~ '
I I) ~ sgn(t)n~ —i(co+coo co )—

so that

(5.4)

and the overall gain is given by

6 ~ma /t/

At this point we can usefully begin to disentangle
creation and annihilation operators, by noting that (5.3)
is of the same form as the solution for a two-mode para-
metric interaction. That is, we can write

—icoOt —r a0 t 0 t r 0 I aOBta(t)=e 'e ' ' ' ' aze (5.5)

where r corresponds to (coupling multiplied by time) in
the two-mode case. Here r =cosh 'G. The analogy
should not be pressed too far, since important differences
between the two are hidden by the time-dependent
definition of the mode B,. Since ata —f dcob (co)b(co)
is a constant of the motion, it follows from (5.5) that

+i f dco %le(co)[e b (co)a e~ ab(co)], —

(5.1)

where the explicit time dependence of the interaction
term indicates that this is a driven process: the effective
coupling constant K is in fact the product of the real cou-

f dcob (co, t)b(co, t)

r(a B —a B) —r(aB —aB)0 i 0 r'fd bt( )b ( )
''0 t 0 t

(5.6)

This can be established as follows:
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f dcgbt(cp, t)b(co, t}=fdcob (co, t)b(co, t) a—t(t)a(t}+a (t)a(t)

d~ b o ~ bo ~ —a o~ap+ Ga p
—G —1

' B, Gap —G —1
' B,

d~bpt co bo co —B,B,+ GB, —G —1 ' ao GB, —G —1
' ao

bo —B,B,+e (5.7)

and (5.6) follows since

(apB, apB,—), f dcobp(cp)bp(cp) B,B—, =0.

or ~Orcp, t =e '"e ' '
p cp)e

' '[bp(cp)+(G —1)g'(cp)B,

(G2 1)1/2g«( } 1']

Note that it is not true that the transformation used in
(5.5) and (5.6) gives the correct time dependence of the
bath modes individually. Using (5.6) it is, however, possi-
ble to write

For an initial density matrix representing a vacuum
state for the system and a thermal state for the bath,

T

pp(0)=:exp( —a a):exp — fdcob (cp)b(co)
%co

ZT kT

f dcpb (co, t)b(co, t)= f demob (co, t)b(cp, t),

where

(5.g)

the density-matrix solution is then

(5.9)

r(0021, aoB, ) —
(0) 0 —i ao —r

t t t t
Ppt =e Pp

1 a pap 1
:exp dcp bp(cp)bp(cp) B-

G'zT 1+(G —1)(N+1) N+1

1+(1 G
—2)N t G (G —1)' (1+N)a(1

B
1+N ' 1+(G2—1)(1+N)

G(G —1) (1+N)ap
B

1+(G —1)(1+N)
(5.10)

using successively (A14) with cr+ ——apB „cr =apB „and cr =apap+B, B,+1; the vacuum state of the system
[appp(0) =pp(0)ap =0]; the ordering relation (2.4); and the definition of r

For a coherently displaced initial system element, i.e.,

p tt(0) =:exp[—(a —P')(a —ct)]:exp — f dc@ b (co)b(co)
ZT kT

we can use a modification of the transformation (5.5), since

(5.11)

a(t) a=e '[G—a —(G —1)'/ B, e'a]=e ' —U, (ap Ge a—)U,

where

U, =exp(rI(ap Ge —P')[B, —(G —1)' e 'ct] —(ap Ge 'a)[B,—(G——1)' e 'P']) ),
and also

(5.12)

0 ' 0 ~ B " 0 ~ 0 ~ GB (Gl 1)1/2at U [B (G2 1)1/2e '
op«]U —1 (5.13)

So the calculation can proceed in exactly the same fashion as for the vacuum case, with the replacements

r cgOf f f —r capt
ap ap —Ge a, ap ap —Ge P (5.14)

(G2 1)1/2e ' oP«B t Bt (G2 1)1/2e' oct

This gives as the complete density-matrix solution
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p(t) =f d af d PP(a,P*):exp1

T

(ao —Ge 'P*)(ao —Ge 'a)
1+(G'—1)(N +1)

1+(1—G ')N t G
1+N ' 1+(G —l)(N+1)

X [(G —1)' (1+N)ao+Ne 'a]

B,— [(G —1)'~ (1+N)ao+Ne P']
1+(G —1)(N+1)

f dai bot(co)bo(co) Bt,—BN+1 ~ ~ (5.15)

Tracing over the bath gives for the reduced density matrix

Tra[p(t)]= f d a f d P 2

' .exp
1+(G' —1)(N + 1)

I Clipt

(ao —e GP )(ao —e

1+(G —1)(N+1)

0 G

(p
~

& ) —exp(2~/It I
~&(1+2N(t~)=f d af d PP(a, P') D (c7 ):exp

N t+1
a Oao :D( ),N(t)+1 J

where

c~,~+—~PI ~
I [N(t)+1]p+N(t)cc

2N (t)+ 1

again agreeing with the result of Appendix B.
As for amplitude damping, we can see in (5.16) decay

of both the coeScients and the off-diagonal amplitude of
off-diagonal matrix elements. The latter effect is, howev-
er, much more important here, since the diagonal ampli-
tudes are now being amplified (as G), while the off-
diagonal ones are still being damped (as G '). Thus in
this case all elements of the density matrix eventually be-
come diagonal. Temperature considerations are less im-
portant than in the damping case, as any amplifying pro-
cess must in any case introduce extra noise. (The extra
noise introduced by the Raman amplifier is in fact the
least noise allowed by the uncertainty principle. } This di-
agonalization is of course not present in the unreduced
density matrix (5.15), although the amplification is, being
a direct consequence of the substitution (5.14).

VI. A MEASUREMENT MODEL

As a final example of unreduced calculation, I will con-
sider the measurement model of Walls, Collett, and Mil-
burn. This is a three-part model, including the quantum

system being measured, the measurement apparatus or
meter, coupled to the system; and the environment,
modeled as a heat bath coupled to the meter. The
specific choice of Hamiltonian is

H =fiQN+Acooa a i AN(e*ae ' —ace ' )—
+ f dcohcob (co)b(co)+i f deifilc[bt(cu)a ab(co)], —

(6.1)

where N is the system number operator and a is the meter
annihilation operator. The reasons for these choices are
given in detail in Ref. 4, the principle considerations be-
ing the following.

(i) The coupling to the system is back-action evading,
giving a more nearly ideal measurement.

(ii) Amplification (a necessary component of any
genuine measurement scheme ) is built in by the driven
system-meter coupling.

(iii) The amplitude coupling of meter and environment
means that after the bath is traced out the meter is diago-
nalized in a basis of coherent states, which have a well-
defined classical limit.
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The equations of motion are

d —l Capt ~ l Capt—
~

m )(n
~

=[ —iQ+(a ee —e ae )]
dt

As in the phase-damping model of Sec. III, the system
number operator is a constant of the motion

X[~m)(n ~, N]
N(t}=N(0) . (6.3)

—I Capt
a = i&—boa +e eN —f dcoKb (co),

b(co) = ic—ob (co}+Ka .

(6.2) Solving (6.2) in a fashion similar to preceding sections
gives

a(t)=e I ao+ N(1 —I ) —(1—I' )'c 8,
sgn(t}mK2

~

m )(n
~

=e ' '" "exp (n —m—)ef dna (r)e (
~

m )(n
~

)Oexp (n —m)—e' f dna(r)e
0 0

(6.4)

where I" and Bt are as defined in Sec. IV.
To avoid unnecessary complexity, I shall specialize to the zero-temperature case, with the meter initially in a vacuum

state:

p(0)= g c „:exp —a a —f dcobt(co)b(co)
~

m )(n ~: .
m, n

(6.5)

This choice of initial state exhibits the measurement process most clearly, although some interesting effects might well
be seen with the meter and bath prepared in, for instance, a squeezed state. '

It would be possible to proceed from here as in earlier sections, just substituting the solutions (6.4) into the initial
density matrix. In this case the additional mode makes such an approach considerably more complicated. With the
simple initial state (6.5), it is, however, quite straightforward to solve the evolution of the density matrix directly. We
have

—p „=—:(
~

m )(n
~
),exp —a ( —t)a( t) dcob —(co,——t)b(co, t)—d d

0

=i Q[p „,N] —[p „,N[a ( t}ee —e'a ( t)—e ' —]]

=iQ(n m)p „+[p—„ne'a( t)e '+meat( —t)e 'p n] .— (6.6)

Since [a (t),a (t')] =0 for any times t, t', we can directly exponentiate (6.6) to give

I COpT —t COpT

p „=e' '" "exp me dna ( r)e ' p~„(0)—exp ne' d~a( r)e— (6.7)

From (6.4),

ef 'dna( r)e '"o'=—ct(t)ao+ f deep(co, t)bo(co) ,'N ~
a(t)—

~
+—fdao ~P(co, t)

~

0

where

(6.8)

—mc ~t~a(t)=, (1—e '' ' ), P(a), t)=
1TK +I (co—c00) 8'K

i (cg—cop)t
e

l (CO —COp)

Putting all this together gives

p(t)= g c „(
~

m )(n
~

),„,8[
~

ma(t))(na(t)
~
]~ [ ~

[mP(co, t)])([nP(co, t)]
~ Je .

m, n

(6.9)

Thus both meter and bath are coherently excited in correlation with the number of photons in the system. Tracing out
the bath gives
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2
2 2 —m'v 7 —nv7 2Tr [p(t)]= g c exp (n —m} [l n—at. .—e "'+—'(l —e ""') ]B

(2 2)2 2

X(
~

m )(n
~

),„,C31 ( l
—17K t}

27TK
( l

—l1TK t)
27TK

as obtained by reduced calculation in Ref. 4.

VII. INTERPRETATION AND CONCLUSION

The aim of this paper has been to try and shed some
light on the behavior of open quantum systems by a
method which allows the detailed description of the envi-
ronment to be retained, at least in the simple cases stud-
ied here. All the results here follow exactly from the ini-
tial (usually approximate) Hamiltonians. One possible
approach to more complex systems would be to calculate
the behavior of the bath along the lines of the
input/output formalism of Gardiner and Collett. Given
an "input" field (specified by the initial state of the bath)
the behavior of the local system can be calculated by con-
ventional methods (such as a master equation), and the
final state of the bath is then the "output" field, given by
boundary conditions between system and bath. To con-
struct a description in terms of an unreduced density ma-
trix one would also need to know the system-bath corre-
lations. For a general nonlinear system this is clearly not
possible exactly, but might reasonably be attempted with
a Gaussian approximation for the fluctuations. Effective-
ly, one would be assuming an unreduced density matrix
in the form of an exponential quadratic, as in Secs. IV
and V above, and determined the coefficients by inverting
the antinormally ordered covariance matrix, neglecting
higher-order cumulants.

Interpretation of the complete density-matrix solutions
is not necessarily obvious, especially when correlated
quantum noise terms are present. In the case of zero

temperature, where no such correlations arise we can
venture an identification of two distinct sorts of irreversi-
ble behavior, as suggested in the Introduction. Firstly,
there is the deterministic loss or gain of amplitude seen in
Secs. IV and V, and in the meter mode in Sec. VI. This is
of the same nature as classical damping or amplification,
and does not depend on any tracing out of the bath,
though of course for true irreversibility we will require
the limit of a continuous number of bath modes. Second-
ly, there is a loss of coherence, manifested as a diagonali-
zation of the system density matrix, and also appearing as
phase damping in Sec. III. This is evidently a specifically
quantum-mechanical effect —the expression of the initial
state as a superposition is necessary for the notion of di-
agonalization to have any significance. It is purely a
property of the reduced density matrix, and thus, unlike
the first sort of irreversible behavior, only appears when
all possibility of any detailed knowledge of the bath is
denied.

At finite temperature, the picture is less clear. In the
case of phase damping, a thermal randomization of phase

would be expected even classically, but the only apparent
effect of the increase in temperature is that the quantum
loss of coherence becomes stronger. Part of the difficulty
here, of course, is that the chosen number-state basis has
no classical limit or analogue. Where a classical analogue
can be found, in the amplitude-coupled cases, we can see
thermal contributions to both types of irreversible behav-
ior: even before tracing out, thermal excitation of the
system mode is evident (though the system-bath correla-
tions leave some ambiguity as to just how much there is),
while loss of coherence after tracing out is also increased.

As far as measurement models are concerned, we noted
at the beginning of the paper one principal objection to
all loss-of-coherence measurement schemes. That is that
to work as models of a collapse and hence perhaps of a
measurement, they require not merely the inclusion of
the environment in the model, but the explicit reduction
of the density matrix by tracing out the environment.
One might perhaps say that a scheme such as that of Sec.
VI does not so much show state reduction arising out of
the behavior of a real physical system, as arising out of
the calculational technique of tracing over the bath.
Some knowledge still present in the model has to be ac-
tively suppressed before it can exhibit the empirically fa-
miliar features of a quantum measurement.

It is tempting to appeal here to the enormous practical
difficulty, amounting to a practical impossibility, of "un-
doing" the processes which distribute the quantum
coherences over the bath modes. But this is to miss the
point; were we concerned solely with practical predic-
tions, there would be no reason to question the "text-
book" account of quantum measurement, which has,
after all, passed strenuous experimental tests. Merely to
raise the problem of rneasurernent in the first place is to
indicate that one is concerned with matters of theoretical
principle and consistency. In any case, this appeal is
somewhat circular; to make use of the difficulty of
measuring phase relationships in the environment is to
assume the availability of some acceptable account of
measurement, which is just what the model seeks to pro-
vide. Increasing the complexity of the already infinite
bath would just further increase the practical difficulties
without introducing anything new in principle.

I also noted in the Introduction another possible
response to this objection. While accepting that models
of this type do not represent the whole answer to the
problem of quantum measurement, it may be pointed out
that questions of the legitimacy of tracing out the envi-
ronment are not specific to measurement models. They
are, rather, a common feature of all models of irreversible
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quantum processes. It might seem reasonable then to
consider that measurement models of this type, while not
solving any problems completely, do reduce two prob-
lems to one: measurements may be considered as just a
special case of irreversible processes in general.

The unreduced solution for the model considered here,
(6.9), allows us now to make some assessment of this de-
fence. Recalling our distinction between the two sorts of
irreversible behavior, one which does 'not depend on the
tracing out and the other which does, we can see both at
work here. The development of correlations between the
system and the meter is an irreversible process of the first
kind, like the amplitude damping of Sec. IV. It appears,
described by the quantity u(t), even in the unreduced
solution. But the system part of each term in the density
matrix is constant in this solution. The diagonalization
which gives a mixture of number states as the system
state only appears when the bath is traced out, like the
phase damping of Sec. III. If amplitude damping is taken
as the more typical instance of an irreversible process, as
I think it must be, then the (reluctant) conclusion must be
that the assumptions needed to make loss of coherence a
source of diagonalization do go further than those re-
quired for normal dissipative irreversibility.

In saying this, I do not wish to deny the value of mea-
surement models of this type. What such a model actual-
ly shows is that: if in a sufficiently large and complex sys-
tem the coherences between distinct subsystems are negli-
gible (allowing us to trace over at least some of those
parts of the system which we are not directly interested
in), then the measurement postulates (or something very
like them) must be approximately true. If this assump-
tion holds, then we would in effect be justified in treating
the local system as being genuinely open, in which case
the diagonalization of the density matrix follows trivially
(as Peres points out). The problem is that while this cru-
cial assumption is intuitively plausible, and seems far less
of an arbitrary addition to quantum mechanics than the
measurement postulates themselves, it is still by no means
clear that it is in any way a consequence of quantum
mechanics, or even that the two are compatible.

In summary, standard theories of open systems not
only include a heat bath, perhaps with the essentially
classical ignorance represented by a thermal initial state,
but also, by tracing out over this bath, introduce a much
more thoroughgoing ignorance amounting to a denial of
any possibility of more detailed knowledge. The former
is a necessary part of the theory; the latter can be con-
sidered a legitimate calculational technique, greatly re-
ducing the complexity of the problem without affecting
the conclusions for the system alone. But if wider con-
clusions are to be drawn concerning the loss of quantum
coherence, as measurement theory would like to, this
more complete ignorance also becomes indispensible.
However attractive measurement models which exploit
this loss of coherence may seem, the fact remains that the
specifically quantum-mechanical aspects of irreversibility
still require explanation beyond that which is needed for
ordinary classical irreversibility.

More broadly, we have here an instance of an ambigui-
ty in the representation of quantum states: the mixture

of states was originally introduced to allow classical un-
certainty to be represented within quantum mechanics; it
is also used to describe incomplete quantum systems.
Whatever their mathematical similarities, the two are
physically distinct, and any careful interpretation of the
density matrix must recognize this.
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APPENDIX A: SOME OPERATOR RELATIONS

where '"'[8, A] denotes the n-fold-nested commutator
of B with A. In particular, for the case that

[A,B] =kA,
we have

A.Bg —A.B —A.k g 7

whichfor A =a, B =a a gives

e pa ae aa e exp( —p)aae pa a
7

(A2)

(A3)

(A4)

needed for the derivation of (2.9). For A, B satisfying
(A2), we can further show that

e" + =exp —(1 —e ") e =e exp —(e"—1)
k

(A5)

This can be done in standard fashion by differentiation of
the product e + e e

Now consider a set of operators o+, o. , o., with spin
commutation relations

[cr+,o ] =o„[o„o+]=+2o~ . (A6)

Using (A1) we immediately obtain

KCT —KHg
e ~+e =e o~ . (A7)

Again using the technique of differentiating and then
reintegrating, we may also derive two particularly useful
ordering relations:

In using operator representations of density matrices,
one frequently wishes to reorder exponentiated operators.
I summarize here some of the operator relations which
have been particularly useful in preparing this paper.
The starting point in each case is of course the Baker-
Hausdorff expansion

e Bye Bg —(n)[g g]1

nl
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ka~ A.tr ~ A, cr ~ /(]+A, v) her ~cr~/(]+A. z)
e e =e (1+k,tr) *e

and
g o +o ) a+tanhx + cr cJ + tanh~

e + =e — (cosh' ) *e

(A8)

(A9)

to give

X(k, t)=e" + X(A, , O)

=exp[ (N—+ —,')
~

3,
i

(1—e r')]

8» t)
X exp ——,'yt A,

ax*
X(A,, O) . (B4)

APPENDIX 8: REDUCED DAMPING
CALCULATIONS

We obtain a standard form for X(A,,O) by expanding p
over coherent states

The reduced density matrix p =Trtt (p) can be calculat-
ed directly for amplitude damping using the usual master
equation for this process:

p= —,'y(1+N)(2apa aa—p —Pa a)

-(p) yd2 yd2pp( p«) l
a&&PI
p/a

so that

X(A, ,O)= fd a Jd PP(a, P')X,tt(/(, ,0),
where

(B5)

(B6)

+ , yN(2a —pa—aa p —paa ), (Bl) (g p) —
i

2.
i

/2+2. tt —l a (B7)

Now using (A3) with /1 =A, , B = ,'yt (B/—'B—A.), we have

where a rotating frame has been used to remove the free
system frequency from the equation. This has been
solved by direct integration for the zero-temperature
case. Here we make use of the characteristic function,
defined by

a
exp ——,'ytA, e =exp(e r'/ aA, ),

so that

X tt(A. , t)=exp[ —(N+ —,')
i

t(,
~

(1—e r')]

(B8)

X(t(.)=Tr(e ' 'p) . (B2) Xexp[ —e r'
—,
'

i
t(,

i
+e r' (/(,p' —A, 'a)]

Using the operator correspondences which follow from
(B2), we find

&X(A, ) 2 «a
Bt

= ——,'y (2N+1)
i

A,
~

2+A, +A, ' X(A, ) .
BA,

(B9)

The Q function can be obtained as the Fourier transform
of the antinormally ordered characteristic function

—
i xi'n+.

(B3) Q p(&)=
N(1 —e r')+1

We can produce a formal solution of this by exponentia-
tion, and then use (A5) with (5 e

—rt/2 )(aQ»e —Yt/2P» )
+exp

N(1 —e
—r )

,'yt(2N+1—)i—A,~', B=——,'yt A, +A, "
so that

(B10)

2 P(a,p') (a er' p'—)(a —e r' a)
N(1 —r )+1 N(1, r)+— (Bl 1)

The operator part of this represents a coherent element with thermal noise, as one might expect, but it is not quite in
the form of (2.9). To put it into this form we want to find effective displacements a and p, such that

(a t —e ' p')(a —e ' a)
:exp

N(1 —e r')+1 : =C:exp —(a —p')(a —a)+ N(t)
N(t)+1 (a —a *)(a —P) (B12)
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where N(t)=N(1 —e r'}. Identifying coefficients of a
and a gives

giving a final result identical to (4.14), where y =2mtc .
If in (B1}we make the replacements

a+p=e r' (a+p),
(B13} y —e, N (N—+1), (B15}

Then

2N(t)+1

i(p~a) i(» ~+

(p i

—) (p i
) —e r'l[2N(t)+1] (B14)

we have the equation for a Raman amplifier with gain e.
Making the corresponding substitution into the solution
(4.14), now with e=2ntc, .gives the solution for the Ra-
man amplifier (5.16}.
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