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Using the general anharmonic oscillator as a case study, we examine the coupled-cluster method

(CCM) in some detail. Emphasis is specially placed on the accuracy of the standard ground-state

energy calculation and the excitation spectrum as derived via the Emrich ansatz. We are particular-

ly interested in problems that can arise from large diff'erences between the exact wave function and

its model counterpart that forms the starting point of the CCM. To this end we begin with a varia-

tional Hartree approximation applied to three particular anharmonic-oscillator Hamiltonians that

contain, respectively, pure quartic, equally weighted cubic and quartic, and double-well perturba-

tions. These are chosen to provide increasingly stringent tests for the CCM in the above sense.

Considerable attention is paid to the variational description of the double-well case, where the vari-

ous possible solutions to the Hartree equations are considered and a further calculation on the

energy-level splitting is performed. The CCM is then used to improve systematically upon our

chosen starting point and is shown, particularly for the ground state, both to produce extremely ac-

curate results and to be rather resilient to even gross deficiencies in the starting wave function. The
main problem is the double-well system, where the CCM shows its lack of intrinsic inbuilt tunneling

mechanisms via the absence of level splitting. Even here the CCM still produces very accurate aver-

age energies for very deep wells. While clearly needing some modification in such extreme cases,
the CCM is shown to be quite adaptable and robust with regard to inaccurate starting wave func-

tions.

I. INTRODUCTION

The coupled-cluster method (CCM) is a very powerful
technique for describing many-particle systems, which
has been successfully applied to many different types of
physical problems. Its original basis was the observation'
that the exact interacting ground state of a many-body
system could be usefully written as an exponential opera-
tor exp(S) acting on the noninteracting model state.
What is gained from such a parametrization is that the
perturbation or cluster expansion of the operator S then
contains only linked terms. The reason for this lies ulti-
mately with the nature of cumulant-type expansions for
problems of a fundamentally probabilistic nature. The
Ursell-Mayer cluster expansion in statistical mechanics is
another classical example. Coester and Coester and
Kummel showed how the linked cluster operator S
could be used as the generator of a similarity transforma-
tion for the exact ground-state problem, and thereby gave
birth to what was originally called the exp(S) method of
many-body theory, and what later became known as the
CCM. The method has been fairly extensively reviewed
in the literature, and has also been widely applied.

Applications include problems in nuclear physics, '

both for finite nuclei and infinite nuclear matter; atomic
and molecular systems in quantum chemistry; ' ' and
the homogeneous electron liquid. ' ' Recently, the
domain of application of the CCM has been extended to
two systems not normally associated with traditional
many-body physics —namely, the anharmonic oscilla-
tor' ' and the P relativistic field theory (see Ref. 19

and Refs. 1 —6 cited therein). In both of these latter ap-
plications the starting point has been a Bogoliubov-
transformed model wave function, with coeScients that
are determined variationally (and known variously as the
Hartree or Gaussian approximation). CCM techniques
have then been employed to improve systematically on
this starting approximation.

In the present paper we first present in Sec. II a rather
detailed analysis of the Hartree ansatz for a Hamiltonian
that describes a rather general class of quantum anhar-
monic oscillators. We extend the previous work of Hsue
and Chem' on the snharmonic oscillator with a pure
quartic perturbation, by applying our chosen ansatz to
two additional systems —namely, both one with equally
weighted cubic and quartic perturbations (which allows
us to produce a very asymmetric potential) and the stan-
dard symmetric double-well oscillator (with its nearly
doubly degenerate energy levels in the case of a high cen-
tral barrier). The latter system is of particular interest
since, as is by now well known, it can in some sense be
considered analogous to a P -field theory in (0+ I) dimen-

sions. A further variational calculation of the energy-
level splitting is also performed for this system.

In Sec. III the CCM technique is then used to improve
systematically on the preceding initial approximations.
Earlier work concerned with the ground state' is first ex-
tended to the case of our more general Hamiltonian. The
Emrich formalism * ' that has been employed in the
standard many-body problem to extend the CCNI to deal
with excited states, is then employed here to discuss the
excitation spectrum. In particular, we show how the

38 2211 1988 The American Physical Society



2212 R. F. BISHOP AND M. F. FLYNN 38

II. VARIATIONAL APPROACH

A. Formalism

The fundamental system of interest to us here is the
one-body anharrnonic oscillator described by the Hamil-
tonian

H= —,'p +—,'x —ex +yx +A,x

which can be equivalently written in the form

H= ,'+a a ——,'—e(a +a) +2 y(a +a)

(2.1)

excited-state equations can rather easily be obtained from
their corresponding previous ground-state counterparts.
We present and discuss detailed results for each of the
three cases mentioned earlier. Our main aim is not sim-

ply to produce results of high numerical accuracy (since
rather straightforward matrix diagonalization tech-
niques' ' are, for such systems, often technica11y simpler
and more accurate), but rather to assess the strengths and
weaknesses of the standard CCM implementation for the
ground and excited states of what are, as we shall see,
rather challenging systems. In particular, we are interest-
ed in the applicability of the CCM to systems where the
model or starting wave function is a poor approximation
to the exact one.

for the new destruction operator b,

b ~P)=0. (2.6)

It is important to note that we have restricted ourselves
from the outset to real parameters s and t in Eq. (2.3) and
c„c~, and c3 in Eq. (2.4). We shall see explicitly later
that this is not a serious limitation. Use of Eq. (2.6), to-
gether with the constraint that the transformation is a
canonical one, namely [b, b )= 1, allows the three
coefficients c; in Eqs. (2.4) and (2.5) to be expressed in
terms of the variational parameters s and r of Eq. (2.3).
In thjs way we find the result that the Bogoliubov trans-
forrnation may simply be regarded as a rotation plus
translation of the original oscillator Hilbert space to the
new oscillator space,

b =(1 t —) ' (a ta —s)— (2.7)

and

b =(1 t ) —'/ (a —ta —s) . (2.8)

Before proceeding we make two observations concern-
ing this transformation. In the first place, we see clearly
the requirement

~

t
~

& 1 for the transformation to be uni-
tary. Secondly, the effect of the presence of the parame-
ter s in Eq. (2.3) is to produce a translational shift hx in
the spatial coordinate x, given by

+—,'A, la t+a ) (2.2) hx =2'/ s(1—t) (2.9)

and

b=c& + 2 + 3 (2.4)

where a and a are, respectively, the usual destruction
and creation operators for the harmonic oscillator, with
a =2 '/~(x +ip) and a is its Hermitian conjugate. We
further define ~0) to be the vacuum state for these
operators, a

~

0) =0, and as usual we have the standard
commutation relation [a,a ]= l.

In common with previous work, ' ' we start with the
variational ansatz (equivalent to the Hartree approxima-
tion after optimization' ),

~
P) =exp(sa + —,'ta )

~
0), (2.3}

for our trial starting wave function, where s and t are c-
number parameters yet to be determined. It is extremely
convenient to perform the (most general linear) Bogo-
liubov transformation between the operators a and a,
defined as

Thus the special case s =0 implies no translational shift.
By inverting the transformations (2.7) and (2.8),

a=(1 r') '"—(b+rb )+s(1 r)—(2.10)

a =(1—r') '"(rb+b )+s(1 r)— (2.11)

we can now readily express the Hamiltonian (2.2) in
terms of the new operators b and b~. It is convenient to
express it in normal-ordered form by making use of the
simply proven relations,

(b+bt)'= (b+bt)' +1, .

(b+bt) =:(b+bt):+3(b+bt),
(b+b ) =:(b+b ):+6(b+bt):+3,

(2.12)

where:0: represents the normal ordering with respect to
b and b of the operator 8=8(b, b ). The resulting ex-
pression for H is more compactly given in terms of two
new variables,

b =c&a +c2a+c3 (2.5} co:—(1 t) l(1 it), co'=s—/(1 t)—(2.13)

with the proviso that
~ P ) is now the new vacuum state as

H =Eo+
2

(b'+b")+4'
1+co t (1 2E)co' —y 3 12''

~
6'' 8''

2' 1/2 3/2 3/2 1/2 3/2 1/22 cc) co co co

6/Q) 3+ — + 3/2 +~ 2+
2 m 2' :(b+b )'.+ +:(b+b')':+:(b+b')'. ,

2k'
(2 )3/2 ~3/2

'
4 2

(2.14)
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where the constant term Eo is given by

(1—2@+co ) 3)I. 3yco'
0 4 2 1/24' 4co 2 co

+2 /co +4A,co (2.15)
Exact Variational

TABLE I. Comparison of the variational ground-state ener-

gy with its exact counterpart (taken from Ref. 17), for the quar-

tic anharmonic oscillator of Eq. (2.1), with e=O=y, and for
various values of the coupling constant A, . Percentage errors are

given in parentheses.

Using the fact that b
i P) =0=(P

i
b by the definition

of Eq. (2.6), it is clear from Eq. (2.14) that our variational
estimate of the ground-state energy (P i

H
i
P)/(P i P)

is precisely equal to Eo. The expression (2.15) may now
be extremized in the usual way with respect to ro and co',

thereby obtaining the two simultaneous equations for
these quantities,

0.1

1.0
10.0

100.0
1000.0

0.559 15
0.803 77
1.504 97
3.131 38
6.694 22

0.5603(0.21)
0.8125(1.08)
1.5312(1.75)
3.1924(1.95)
6.8279(2.00)

and

ro —(1 2e—+6&2yco'+24Aco' )co —62.=0 (2.16) 2% for very large values of A, , where the Hamiltonian has
become almost pure quartic in nature.

(8Aco)co' +(3&2yco}r0' +[(1—2e)co+6k]ro'

+3y/2 =0 . (2.17)

We note that from Eqs. (2.9) and (2.13) the parameter co'

is directly proportional to the translational shift hx in-

duced by the transformation, co'=Ax /2'~2.

In order to demonstrate the accuracy of the variational
ansatz (2.3) for the trial wave function, we consider below
three special cases of the Hamiltonian of Eq. (2.1). In
each case the procedure is the same, namely, to solve the
two simultaneous cubic equations (2.16} and (2.17} for co

and ~', and to insert these values into the expression
(2.15) for the resulting variational bound on the ground-
state energy.

B. Pure quartic anharmonicity: A symmetric perturbation

We first consider the case where e=O=y and k) 0 in
the Hamiltonian (2.1), which produces a quartic anhar-
monic perturbation M of the harmonic oscillator, and
which is clearly symmetric about the origin x =0. In this
case (and indeed whenever y=0) we see that Eq. (2.17)
has cu'=0 as a solution. It is also clear that since Eq.
(2.17) is a cubic equation in the parameter co', there are
two other roots. These are of no interest here, since they
correspond to pure imaginary values for co' when we re-
strict ourselves to positive values of co as required by the
transformation to be unitary. These extra roots will be
discussed, however, in the case of the symmetric double
well considered below. Restricting ourselves to the solu-
tion co'=0, the remaining equation (2.16) for co becomes

H= ,'p'+ ,'x —+A,(x-'+x ), (2.19)

which consists of equally weighted cubic and quartic
anharmonic perturbations, as used by Hsue and Chem. '

Since this potential is not symmetric about the origin,
x =0, as shown in Fig. 1, we expect from the outset that
our optimal transformation might produce a nonzero
translational shift via a nonzero value of the parameter s
(and hence also of co'). Apart from the asymmetry about
the origin, the potential of Eq. (2.19) has another special
feature which is illustrated in Fig. 1. Thus for values of
A, )—", (=1.78) the potential develops a second minimum

at some negative value of x, apart from the minimum at
x =0, which is present for all values of A.. The two wells
are generally of unequal depth, except for the special case
A, =2, which is symmetric about x = ——,', as shown in Fig.
1.

150/255. 19 0.1

Y(x} 0/105. 1 9 0.0

C. Cubic-plus-quartic anharmonicity: An asymmetric
perturbation

We next consider the special case of the Hamiltonian
of Eq. (2.1) with e=O and y =k, )0,

co —67 —6A, =O . (2.18}

It is easy to see that Eq. (2.18) has exactly one real posi-
tive root, co&0, for each A. )0, and that only this root
therefore corresponds to a unitary transformation
( ir i

(1).
Numerical results are shown in Table I. As has been

reported elsewhere for this case, ' the variational ansatz
gives very good results for the ground-state energy. The
error is no greater than 2% over the entire range of A,

considered, namely, A, (1000. The fractional error in-
creases as the strength of the anharmonicity increases, as
is to be expected, although it approaches a value of about

-150/-4 4. 8 1 -0.1
-1.5 0.0 0.5-0.5

X

FIQ. 1. Potential V(x)= —'x +A,(x +x ) for three values of
1000 (solid line), 2 (long-dashed line), and 1 (short-dashed

line). Note the different scales on the right (for A, =2 and 1) and

the left (for A, =1000). The A. =1000 scale is given as measured

from V =0 and the potential minimum.
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It is important to point out from the outset that, unlike
the case of the symmetric double well to be considered
below, the double-well feature here does not play a major
role in the determination of the energy spectrum. Thus,
for large values of A. , the secondary well (with the origin
as its minimum) is very much shallower than the primary
one. Indeed, on the scale of Fig. 1, the well at the origin
cannot even be distinguished for the case A, =1000. On
the other hand, for smaller values of A, , such as the A. =2
case shown in Fig. 1, the two-well nature is also relatively
insignificant, since the ground-state energy lies far above
the maximum separating the two wells. Thus the main
general effect of the perturbation introduced in Eq. (2.19)
is to produce an asymmetry in the potential.

Numerical results for the ground-state energy in this
case are presented in Table II. We note that in principle
Eqs. (2.16) and (2.17) have multiple pairs of solutions for
co and co'. Although they are all guaranteed to be extre-
ma of Eo Eo(co, c——o') of Eq. (2.15), they will naturally not
all be local minima in general. They all provide, of
course, variational bounds for the energy. In the present
case, just as for the case of the pure quartic anharmonici-
ty, the restriction to unitary transformations, along with
the imposed reality of co and co', leads to a single solution
for the (co, to') pair which is continuous over the entire
range of the parameter A. considered.

As in the case of the pure quartic perturbation, the
agreement with exact results is very good for reasonably
small values of A. , and with the relative error initially in-

creasing as A, is increased. The relative errors are, howev-

er, somewhat larger than in the previous case, with a
value now approaching 5% for values of A, =100. This
relatively larger fractional error than in the previous case
is undoubtedly a reflection of the fact that we are at-
tempting to approximate a wave function which now is
extremely far removed from that of a harmonic oscillator
by one which is essentially tailored to the latter case.
Considering the very large degree of asymmetric pertur-
bation involved, it seems to us remarkable that the Har-
tree approximation still works so well.

When A, is further increased to values A, =1000, the
variational ansatz again improves, giving results accurate
to about l%%uo and comparable to those obtained for values
A, =0.5. The explanation for this improvement in the ac-

As our final example, we consider the double-well
quartic anharmonic oscillator in the specific form used by
Balsa et al. ,

H = —,'(p' —Z'x'+x ) = —,'p'+ —,'(x' ——,
'Z')' —Z4/8,

(2.20)

which can be obtained from our original Hamiltonian of
Eq. (2.1) by the choices e= —,

' (1+Z ), y =0, and A, = —,'.
For this potential the solutions to Eqs. (2.16) and (2.17)

divide conveniently into the following two cases.
Case 1: to'=0. It is clear that Eq. (2.17) permits the

solution m'=0 whenever y=0, and for this root the
remaining equation (2.16) for tu reduces to

co +Z co —3=0 . (2.21)

Case 2: co'&0. The (reduced) equation (2.17) for co'

now becomes

curacy is not difficult to find. We have already explained
that the main feature of the present perturbing potential
for large A, is the deep asymmetric well in the negative
half of the x plane, as seen in Fig. 1 for the value
A, =1000. The well for the case X=100 actually looks
very similar. The main difference between the two cases
A. =100 and A, =1000 is the relative depth within the
respective wells of the corresponding ground-state energy
level. Thus, in the former case A, =100, the ground-state
energy lies relatively farther from the bottom of the well,
and the corresponding system in this state probes the
asymmetric nature of the well rather more than in the
case A, =1000, where the ground-state energy lies very
near the bottom of the well. The system in the latter
state thereby mostly probes the deep part of the well,
which is closely approximated by a (shifted) harmonic os-
cillator. Since our ansatz (2.3) describes such situations
precisely, the relatively smaller fractional error is under-
standable. We point out that the difference between the
relative accuracy of our approximation for these two
values of A,(=100 and 1000) illustrates a very important
general point —namely, that a wave function with the
proper symmetry will much more accurately be able to
reproduce the ground-state energy of the system.

D. Symmetric double-well potential

Exact Variational

TABLE II. Comparison of the variational ground-state ener-

gy with exact results (calculated via the method of Ref. 17), for
the quartic-plus-cubic anharmonic oscillator of Eq. (2.19), for
various values of the coupling constant A.. Percentage errors are
in parentheses. Note that all energies are measured from the
potential minimum.

co' =(Z co —3)/4' . (2.22)

When Eq. (2.22) is inserted into Eq. (2.16), one can readi-
ly show that the equation for co reduces to

co —2Z co +6=0, (2.23)

and a combination of Eqs. (2.22) and (2.23) further shows
that the corresponding associated solutions for co' are

0.1

1.0
2.0

10.0
100.0
200.0
500.0

1000.0

0.553 52
0.72046
0.791 30
1.6115
6.4927
9.6788

15.9174
22.897

0.5551(0.29)
0.7327(1.69)
0.8109(2.47)
1.6766(3.78)
6.8015(4.76)
9.9570(2.87)
16.159(1.52)
23.123(0.99)

(2.24)

Since the shift Ax produced by our Bogoliubov trans-
formation is proportional to co', it is clear that the case-1
wave functions correspond to states centered around
x =0; whereas in the corresponding case 2, there are two
states produced for each root to of Eq. (2.23), which are
shifted from the origin as center and are simply mirror
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reflections of each other. These parity doublets are evi-

dently degenerate in energy as clearly seen from Eq.
(2.15), which is an even function of co' when y =O.

It may be useful at this point to enumerate carefully
the number of states that our procedure has produced.
In principle, case 1 will produce three states, one for each
of the three roots of Eq. (2.21). In practice, only those
roots which correspond to a parameter

~

t
~

&1, and
which hence produce a unitary Bogoliubov transforma-
tion, are allowed. Just as in the previous two examples, it
turns out again that there is only one such case-1 root,
which is real and continuous over the range of values of
Z considered.

The situation for case 2 is more complicated. The cor-
responding (real and imaginary parts of the) three roots
of Eq. (2.23) are displayed in Fig. 2 as a function of Z~.
The real negative root co g0 present for all Z produces a
nonunitary transformation (

~

t
~

& 1) and can hence im-

mediately be discarded. The two remaining roots are
both real and positive (and hence acceptable) for
Z &Z, =3 /2(=3. 1201}. Conversely, for Z &Z, the

two remaining roots form a complex conjugate pair.
Such roots are in principle quite acceptable, although we

remind the reader that for the sake of simplicity our
analysis to date has assumed real values for the variation-
al parameters. It would be quite possible to redo our
analysis with this restriction removed, but in the present
case this is not necessary since we shall find that the
case-2 double roots lead to bounds Eo for the ground-

state energy, which are energetically disfavored relative

to the case-1 root for values of Z less than a certain
crossover value which is somewhat greater than Z, . It is

for this reason that we do not pursue the analysis further
in the case of complex roots, since the merit of simplicity
is needlessly lost, at least for present purposes.

In summary, case 1 produces one viable wave function
centered about x =0, and case 2 produces two pairs of vi-

able wave functions for Z & Z„with each pair being a

degenerate parity doublet, one of which is shifted to the
left of the origin and the other of which is shifted symme-
trically to the right. The corresponding three variational
bounds Eo to the ground-state energy from Eq. (2.15) are
displayed in Fig. 3 for both the case-1 wave function and
both sets of case-2 wave functions for Z ~ Z„and com-
parison is also made with the exact result over the range
0&Z & 10. The exact result has been calculated by the
method described by Balsa et al. In Table III we also
compare both the case-1 energy and the lower of the two
case-2 energies with the exact result. This table quotes
both the percentage error in comparison with the exact
result and the ratios of the various energies to the height,
Vz

——Z /8, of the mid-well peak between the maximum
at x =0 and the two minima. We note also that all of the
results in Fig. 3 and Table III have been shifted upwards
by the amount Z /8, which then renders the Hamiltoni-
an of Eq. (2.20}positive definite.

We see that for Z greater than some crossover value
of approximately 3.4, one of the two shifted case-2 parity
doublets produces the lowest energy, and for Z ~5 it
compares very favorably with the exact result. The varia-
tional calculation in this case is clearly seen to improve as
the ground-state energy level sits deeper inside the double
well (as measured by the ratio E/Vz quoted in Table III),
as is to be expected. We see that for E/V &

—,
' the accu-

racy is better than 1%. It is also interesting to compare
the translational shifts +Ex produced by our case-2 vari-
ational wave functions with the positions +x;„
(=+2 '~ Z) of the two minima in the potential. One
sees clearly from the results shown in Table IV that as Z
increases, the translational shift approaches the position
of the minimum more and more closely. Indeed, in the
limit as Z ~~, our variational ansatz with this corre-
sponding case-2 solution describes the ground state of
this system exactly as that of a harmonic oscillator
separated by an infinitely high barrier from another iden-
tical harmonic oscillator infinitely far away.

In the converse case where Z is less than the cross-
over value of approximately 3.4, the case-1 wave function

3.0

2.0

2 1 6
22

10 0.0
8 10

FIG. 2. Real (solid lines) and imaginary (dashed lines) parts
of the three roots of Eq. (2.23), as a function of the coupling pa-
rameter Z . The nonzero imaginary roots correspond to the
two roots in the upper half of the plane, after their real parts be-
come equal. The solution whose real part lies in the lower half
of the plane is, in fact, real throughout.

FIG. 3. Case-1 (short-dashed line), case-2 (higher energy)
(dot-dashed line), and case-2 (lower energy) (long-dashed line)
ground-state energies, along with the exact answer (solid line),
for Z from 0 to 10. Note that all energies have been shifted by
a factor of Z /8, rendering the energy positive semidefinite.
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TABLE III. Ground-state energies for case-1 and case-2 (lower energy) wave functions versus the ex-

act answer for the symmetric double well. Also displayed are the ratios of the energy to the central

peak of the potential and the percentage error. Note that all energies are measured relative to the po-

tential minimum.

Z2

50
15
10
7
5

4
3.8
3.6
3.4
3.2
Z,
3
2
1

0.5
0

Exact

4.9899
2.7043
2.1832
1.7895
1.4199
1.1448
1.0822
1.0184
0.9542
0.8905
0.8654
0.8282
0.5689
0.4538
0.4663
0.5302

E/Vp

0.016
0.096
0.17
0.29
0.45
0.57
0.60
0.63
0.66
0.70
0.71
0.74
1.14
3.63

14.9

4.9925
2.7131
2.1972
1.8138
1.4972
1.3027
1.2587
1.2120
1.1620
1.1066
1.0817

Case 2
E/Vp

0.016
0.096
0.18
0.30
0.48
0.65
0.70
0.75
0.80
0.86
0.89

0.04
0.32
0.64
1.35
5.44

13.8
16.3
19.0
21.8
24.3
25.0

208.4
18.800
8.408
4.1891
2.229
1.5103
1.3882
1.2733
1.1658
1.0657
1.0278
0.9731
0.6250
0.4770
0.4818
0.5408

Case 1

E/Vp

0.67
0.67
0.67
0.68
0.71
0.75
0.77
0.79
0.81
0.83
0.84
0.86
1.25
3.82

15.4

60.0
31.9
28.3
25.0
22.2
19.7
18.8
17.5
9.86
5.11
3.34
2.00

centered on x =0 has the lowest energy. We see from
Table III that this occurs when the exact ground-state en-
ergy lies higher than about two-thirds of the height of the
central peak. As already mentioned earlier, this cross-
over point occurs at a value of Z pZ, . It is clear that
the region 3 &Z &4 is not described well by either the
shifted or unshifted variational wave function, with even
the better producing errors of the order of 20%%uo in this re-
gion. However, as soon as Z decreases below a value of
about 2, such that the ground-state energy now lies above
the central peak of the potential, the accuracy of the
case-1 wave function shows a dramatic increase.

We see from these results a first indication of the very
important observation that the absence of tunneling in

our model wave functions can give rise to large errors in

regions where such tunneling may physically be expected
to become important. Before proceeding, as in Sec. III,
to consider how systematically to improve upon the vari-
ous variational wave functions considered to date by

CCM techniques, we first consider further the present
double-well case and the consequent energy-level splitting
due to tunneling between the wells.

E. Variational calculation of energy splitting

eo—:& Pi I
0

I fi & =
& 02 I

H
I 42& (2.25)

(2.26)

In situations such as those that arise from the case-2
wave functions above for the symmetric double-well po-
tential, where we have a degenerate pair of wave func-
tions, it seems worthwhile to attempt some calculation
for the level splitting. We consider the general case,
where, for some particular Hamiltonian of the form of
Eq. (2.1), the variational trial wave function of the form
of Eq. (2.3) has two different parametrizations which pro-
duce the same minimum energy. We denote these two
(normalized) states as

~ P, & and
~ g2& and define the

quantities

TABLE IV. Position of the minimum in the positive well vs

case-2 translational shift for the symmetric double-well poten-
tial.

and

(2.27)

Z2

50
15
10
7
5

4
3.8
3.6
3.4
3.2
Z,

Xmin

5
2.7386
2.2361
1.8708
1.5811
1.4142
1.3784
1.3416
1.3038
1.2649
1.2490

4.9849
2.6872
2.1569
1.7527
1.4018
1.1644
1.1051
1.0380
0.9574
0.8425
0.7211

I tt & =—
I gati &+~

I 6& (2.28)

The variational estimate for the energy associated with
the new trial wave function is then given by

(2.29)

In general, we could now treat a and a* as independent
variational parameters. In keeping with our earlier re-
striction to trial wave functions of the form of Eq. (2.3)

We may then define a variationally improved wave func-
tion

~
f& as the linear combination
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with real parameters s and t, we now restrict ourselves for
ease to the case where a, 0, and 5 are all real. The ex-
tremization of Eq. (2.29) with respect to the parameter a
then gives the result

(a —1)(Qeo—b, ) =0 . (2.30)

I

+ & =
I fi &+

I 4z & (2.31)

with corresponding variational estimates for the energy
as

Thus, unless co=6,/0 (in which case either
I g, & =

I l(z &,

or either one is an exact ground-state wave function), the
variation imposes the condition a=+1, which leads to
the two states

We now apply the above to the case where the two
variationally degenerate unnormalized ground-state wave
functions

I P, & and
I P~ & both have the form of Eq. (2.3),

namely,

I P, &=exp(s a ~ ,'t a —), i =1,2 (2.33)

(P& I Pz& =exp[ —
—,'(s ]It, +szltz)]J(s&, sz, t&, t~),

(2.34)

and where the parameters s; and t, are again restricted to
be real from the outset, for ease of presentation. We now
construct the overlap integral of these two wave func-
tions in the form

(2.32)
where the quantity J is defined as

J(s~, sz', t~, tt)—:(0
I
exp[ —,'t&(a+s~/t, ) ]exp[ —,'tz(a +szlt, ) ] I

0& . (2.35)

Rather than attempting a direct evaluation of the quantity J, we now develop a functional relation for it which we
can then solve iteratively. Proceeding anew from Eq. (2.33) we write the overlap integral ( P, I Pz & as

(2.36)

by simply inserting the identity operator I =exp( —s
~
a )exp(s

&
a ) twice. We now make use of the fact that a

I

0 & =0 and
evaluate the two bracketed terms in Eq. (2.36) with the aid of the simply proven general result

e ' f(a )e ' =f(a +s, ),
for an arbitrary function f(a ), to write Eq. (2.36) as

(y Iy&( I

~
1 e2 + le 2 + I I0&

We may again insert into Eq. (2.38) an identity operator of the form

I=exp(saba )exp( —
saba )

at the place so indicated. Then, by using (0
I
a =0, together with the analogue of Eq. (2.37), namely,

e ' f(a)e ' =f(a+st),
we find, by comparison with Eq. (2.35), the result

(2.37)

(2.38)

(2.39)

(2.40)

A comparison of Eqs. (2.34) and (2.40) leads to the functional relation

2 2
1 2

J(sl s2 I 2)=exp + +sis2 (s2 1 sl 2 1 2)
2t i 212

By making the replacements s, ~szt, and sz ~s, tz in Eq. (2.41), it is a simple matter to derive the further relation

(2.41)

S2 S2
1 2J(s„s,;t„t,)=exp (1~t, t, ) ++s,s, J(s, t, t„s,t, t„.t, , t, ) .

2t) 2t2

By repeatedly iterating Eq. (2.42), with a rescaling of each variable s; ~s; t, t~ at each step, we find

2 2

J( st, t„tz)=exp [1~t, tz+(t&tz) + . . +(t&tz)" ] + +s&sz2 2n —1 1 2

2t) 2t2

(2.42)

XJ(s, (t, tz)",sz(t, tz)";t»tz) . (2.43)



2218 R. F. BISHOP AND M. F. FLYNN 38

X(1—r, r, )
'

XJ(0,0;r],rp), (2.44)

The final evaluation of J(0,0;t „t2) is easily done directly
from the definition of Eq. (2.35), by expanding the ex-
ponentials to give

= X X,(2'i), (irz)
pg I

X(0Iu (& ) "I0) . (2.45)

The remaining evaluation of Eq. (2.45) is trivially per-
formed, with the result

n

(2n)! 'i rz
J(0,0;r„r,)= g0(n!) 2 4

= ( 1 —r, r, )
"

,
I
r, r,

I
& 1 . (2.46}

By taking the limit as n ~ ~ of Eq. (2.43) we find simply

2 2
1 2

J(s„s2,t, , tz) =exp + +Sl$2
2tl 2t2

and the notation "0"indicates antinormal ordering of the
operator 0=|)(a,a ) with respect to the arguments a and
a . Thus we have from Eq. (2.33) the result

m ' n

(2.50)
$1 $2

&4i I4'z&

which can be combined with our fundamental relation
(2.47) to obtain the desired quantities. In this way we
may readily also calculate the remaining quantity 6 of
Eq. (2.27). If the Hamiltonian of Eq. (2.2), for the case

y =0 of present interest, is first expressed in antinormal-
ordered form as

H =Ho+Hiaa +H2 "(a+a } "+H4 "(a+at)4",

(2.51)

then it is not difficult to show that the corresponding
quantity 6 of Eq. (2.27), calculated with the states of Eq.
(2.48), can be given as

1 —t
Hp+ 2

1 —s
1 —t 1+t

The final result for the overlap integral is then obtained
from Eqs. (2.34), (2.44), and (2.46) as

(p, I
p&) =(1—rir2) '"exp[( —,'sit&+-,'s2ri+si~&)

x(1—r, r, )-'],
I r, r, I

&1.
(2.47)

2H2 12H4 Q.
1 r(1—r)'

By making use of the simply proven relations

(a+a ) ="(a+a )
"—1,

(a+a ) ="(a+a )
"—6"(a+a )2"+3,

(2.52)

(2.53)

I Pit ) =exp(sa + —,'ta )
I
0),

I PL ) =exp( —sat+ ,'ta )
I
0) . —

(2.48)

Using the result of Eq. (2.47) we may now immediately
calculate the overlap integral 0 of Eq. (2.26) as

0=
( 0'i'll'R PL I AL ~

i&2
——exp — 2, (2.49)

and where the restriction
I
t

I
& 1 is again understood to

hold. The same method that enabled us to evaluate the
overlap integral (P, I $2) also can easily be extended to
give the result for the quantity

where P=P(x,y) is an arbitrary polynomial in x and y,

We note that the restriction
I
t, t2 I

&1 is necessary for
the overlap integral to be finite. In particular, we also see
that the previously mentioned restriction,

I
t

I
& 1, in

connection with the Bogoliubov transformation (2.7) be-
ing unitary, is necessary for wave functions of the form of
Eq. (2.3) to be normalizable.

We now specialize further to the case of most interest
to us, namely, the degenerate parity doublets correspond-
ing to the case-2 double-well wave functions of Sec. II D.
These have the form s, = —s2 =s, t, =t2 =t,

we may simply relate the coefficients H, in Eq. (2.51) to
the coupling constants of the symmetric double-well
Hamiltonian of Eq. (2.20), or more generally of Eq. (2.2)
in the case y=0,

Ho —— ,'+ ,' E+ 3A, I4—, —Hi———1,
H2 = —

—,'e —3A, I2, H4 =A, /4 .
(2.54)

By inaking use of Eqs. (2.32), (2.49), and (2.52) we may
now consider the splitting of the lowest energy level for
the example of the double-well potential of Eq. (2.20),
through the application of these techniques to the degen-
erate case-2 parity doublets of Sec. IID that produced
the lower energy in the case Z & Z, . Results are
presented in Table V for the exact ground and first excit-
ed states Eo and Ei (and their splitting, b E =Ei Eo)of-
the Hamiltonian H+Z l8 of Eq. (2.20); and a compar-
ison is made with our corresponding variational estimates
F+ of Eq. (2.32) calculated as described. A comparison
with the corresponding results in Table III immediately
shows a marked improvement in the corresponding esti-
mates for the ground-state energy Ep in those cases
where the tunneling phenomenon is important. In the
case of very deep wells where the tunneling is very small,
our estimate

I
F. + E

I
for the sp—litting AE is general-

ly too small. However, in the very important regime
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TABLE V. Comparison of variational ( V) and exact (E) energy eigenvalues for the ground and first

excited states, and level splitting, for the symmetric double-well potential. Note that all energy values

are measured relative to the minimum of the potential. Percentage errors are given in parentheses.

Z2

50

15

10

3.8

3.6

3.4

3.2

Z,

E, V

E
V

V

E
V

E
V

E

E
V

E
V

E
V

E
V

E

E
V

Eo

4.9899
4.9925(0.04)

2.7043
2.7131(0.32)

2.1832
2.1972(0.64)

1.7895
1.8135(1.34)

1.4199
1.4738(3.39)

1.1448
1.1902(3.97)

1.0822
1.1177(3.28)

1.0184
1.0440(2.51)

0.9542
0.9762(2.31)

0.8905
0.9312(4.57)

0.8654
0.9515(9.95)

E,

4.9899
4.9925(0.04)

2.7043
2.7131(0.32)

2.1832
2.1972(0.64)

1.7938
1.8141(1.13)

1.4997
1.5207(1.40)

1.3760
1.4252(3.58)

1.3573
1.4199(4.61)

1.3413
1.4202(5.88)

1.3285
1.4254(7.29)

1.3192
1.4342(7.96)

1.3166
1.4448(9.74)

10—10

10—15

1.49 g 10-'
1.25' 10

4.33 X 10-'
5.95 y 10-4

0.080
0.047( —41.2)

0.2312
0.235(1.64)

0.275
0.302(9.82)

0.323
0.376(16.4)

0.374
0.449(20.0)

0.429
0.503(17.2)

0.4512
0.4933(9.33)

3 Z 4, where the tunneling is particularly important,
the estimated splitting is rather accurate. We note also
that in principle the calculation could be further im-
proved by varying the energy estimates with respect to co

and co' after constructing the improved symmetric and
antisymmetric wave functions. We do not, however, be-
lieve that this will lead to a significant further increase in
accuracy.

We note also that since the states
~ P~ ) and

~ PL ) are
linearly independent, the general theory of variational
calculations with respect to wave functions which are
linear combinations of linearly independent functions
shows that as well as the smaller of our two eigenvalues
E+ being an upper bound to Eo the larger is also an
upper bound to E, . These bounds are clearly observed
from the numerical comparisons with the exact results in
Table V. Unfortunately, no such boundedness property
pertains to the splitting AE, which appears to be underes-
timated for large Z (small tunneling), but to be slightly
overestimated when the tunneling becomes more appre-
ciable.

III. COUPLED-CLUSTER METHOD

A. Formalism

The intention in the remainder of this paper is now to
use the CCM to improve in a systematic fashion on the

(3.2)

and

S„=S„(bt)". (3.3)

The exact ground-state wave function
~ g) is thus exactly

parametrized by the set of parameters IS„~ n = 1,2, . . . ).
We note that neither state

~
P) nor

~
g) is normalized as

defined, although (P
~
P) = (P

~
P).

The exact ground-state Schrodinger equation,

(3.4)

may now be decoinposed in the standard CCM fashion,

variational approach of Sec. II. We do this in the stan-
dard fashion by starting from the variationally deter-
mined wave function

~
P) of Eq. (2.3) as our zeroth-order

approximation. Using the fact that
~
P) is the vacuum

with respect to the canonically transformed operator b,
from Eq. (2.6), we then build up the exact (unnormalized)
ground-state wave function g) of the anharmonic oscil-
lator in the standard CCM fashion by explicitly con-
structing the higher-order correlations as

(3.1)

where the operator S is given by
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by premultiphcation with the operator exp( —S ) followed

by projection onto the states (P
~

and (P
~

b", with
n = 1,2, . . . , to give, respectively, an equation for the ex-
act ground-state energy,

(3.5)

and an infinite coupled hierarchy of equations for the pa-
rameters [S„j,

(/t/~ b"( H ) ~$)=0, =1,2, . . . .

In order to evaluate Eqs. (3.5) and (3.6) explicitly it is
useful to express our basic Hamiltonian of Eq. (2.1) in the
somewhat more general normal-ordered form

4 4 —i
H= g g h;, (b )'b'.

i =0 j=o
(3.7)

The parameters h;. can be related to those in the standard
form of Eq. (2.1) by making use of Eqs. (2.14) and (2.15),

hoo=Eo

3y (1—2e) 6A, , 6y, 2 SA.
hO) —h )O

—
3/2 + ]/2 + 3/2 N + ]/2 N + ]/2 N

(2co) N N (2co ) N

hp2
—

h2p
——(1 co )l4co—+1, h „=(1+co)I2co+2X,

e 3A, 6y, 6/(,X= — + 2+ 3/2 N + N
2N 2 N

(3.&)

r 2k
h]]3=h3p= + co' h]2=h2] =3hp3

( 2 )3/2 3/2

hp4 ——h4p
——/(, /4co, h]3 ——h3] ——4hp4, h22

——6hp4 .

We note in passing that when the values of co and co' that extre]nize Ep are used, from the solutions to Eqs. (2.16) and
(2.17), the linear terms disaPPear (hp] ——O=h]p) and the quadratic terms are diagonalized (hp2 ——O=h2p, h» ——co), as is
expected in the Hartree approximation to which our variational method corresponds.

Insertion of Eq. (3.7) into Eq. (3.5) then gives

4

E =hm+ g j!hp S +hp2S] +6hp3S]S2+ 12hp4(S2+2S]S3)+hp3S] + 12hp4S]S2+hp4S]
j=1

(3.9)

for the ground-state energy in terms of the parameters IS„I. These parameters in turn are to be calculated from the

coupled set of multinomials which arise from the insertion of Eq. (3.7) into Eq. (3.6). A very lengthy calculation, em-

ploying the well-known nested commutator expansion for the term in parentheses in Eq. (3.6), leads to the result

4

g h, p5,„+(n +4)(n +3)(n +2)(n +1)hp4S„+4+(n +3)(n +2)(n +1)hp3S„+3

+(n+2)(n+l)(h p+2nh») „S+2+(n+1)(hp]+nh]2)S„+,+n[h»+(n —1)h22]S„

+(n —1)h2,S„,+(n —2)h3]S„

g kl I [2(k 1)(k 2)+3(k 1)(l —1)+2(l 1)(l 2)]hp45k+/ +4+ 3(k+1 2)hp35k+/
k, l

+[hp2+ —',(k+l —2)h, 3]5/, +, „+2+h,25„+/ „+,+h225k+/ „)S„S/

+ g klm[2(k+1 +m —3)hp45k+/+ „+4+hp35k+/+~ pg+3+h]35/(+/+ +2]SkS/S
k, l, m

jklmhp45, +k+/+ „+4SJSkS/S =0, n =1,2, . . .
J, k~ l, m (3.10)
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may also be found within the CCM by using the Em-
rich ' ' pararnetrization for excited states,

~

y'&=s'e'~ y&=s
~ y&, (3.12)

where S is the same ground-state correlation operator as
in Eqs. (3.1)—(3.3), and the new excitation correlation
operator S' has a similar decomposition,

and

S'= g S'„,
n=1

S ~ S~(bt)n

(3.13)

(3.14)

A simple combination of the ground- and excited-state
Schrodinger equations readily gives the result

[H,S']
i P) =(E' E)S'

i g)—. (3.15)

The excitation parameters {S„') may now similarly be ob-
tained by projecting Eq. (3.15) onto the states
(P

~

b "exp( —S),

&0 I
b "(

n!((t
~
P)

=(E' E)S„', n =—1,2, . . . . (3.16)

We note that once the nonlinear ground-state equations
(3.10) for the parameters {S„]are solved, they are simply
input for the excitation equations (3.16}. These equations
are then a coupled set of linear eigenvalue equations for
the excitation parameters {S„'], with eigenvalues which
directly give the excitation energies (E' E). Further-—
more, once we have evaluated the ground-state equations
(3.6}, their excited-state counterparts (3.16) are very easi-

ly derived from them. Thus by using the nested commu-
tator expansions for the respective term in parentheses in
the left-hand side of both equations we see the clear sym-
metry discussed by Emrich, ' ' which amounts to replac-
ing each multinomial in the {S„)arising from the expan-
sion of the left-hand side of Eq. (3.6} with a correspond-
ing set of terms in which each single S; is replaced one at
a time in turn by the corresponding S, and the zeroth-
order term in the {S„}is dropped. Very explicitly, since
Eq. (3.10} is derived from Eq. (3.6) by dividing
throughout by the same expression (n!)((t

~
P) as ap-

pears in the denominator in Eq. (3.16), the left-hand side
of Eq. (3.16) may be obtained from the corresponding
left-hand side of Eq. (3.10) by (i) dropping the (zeroth-
order) first term completely, (ii) replacing each S, by S in
the linear terms, (iii) replacing the product Sks& by
(Sks&+Sks/), or equivalently by 2sks/, in the quadratic

and where (for the cases n =1,2) we interpret
So=S

&
=0. A simpler version of Eq. (3.10), corre-

sponding to the special case of the Hamiltonian (2.1) with
e=O=y, was first reported by Kaulfuss and Alten-
bokum. '

The excited states
~

f' ) and their corresponding
eigenenergies E',

(3.11)

terms, (iv) replacing the product Szs&s by
(Sk S&s +Sk S/S +Sk S&S' }, or equivalently by
3sks&S, in the cubic terms, and (v) replacing the prod-
uct S~SkS&S by the analogous sum of terms, or
equivalently by 4S'SkS&S, in the quartic term.

In principle, the CCM equations (3.9) and (3.10), and
the excited-state counterpart of the latter equation de-
rived as above from Eq. (3.16), provide two infinite
hierarchies of equations that yield the exact ground- and
excited-state energies and wave functions. In practice,
however, it is clear that an approximation scheme is
needed. In the case of the ground-state equations (3.10),
the simplest and most natural such scheme is the so-
called SUB(n) approximation in which all S; with i y n

are set to zero, and the lowest n coupled equations are
then solved consistently. Similarly, the excited-state
equations derived from Eq. (3.10) as already described are
truncated in the so-called SUB(m, n) scheme, where again
the S' with j ~ m are set to zero and the lowest m cou-
pled linear eigenvalue equations are solved consistently
for the lowest m excited states; and where the corre-
sponding ground-state input parameters {S; ] are ob-
tained from solving Eq. (3.10) at the SUB(n) level of ap-
proxirnation.

Before proceeding to our numerical results, it is neces-
sary to address the question of multiple solutions to Eqs.
(3.10) in the SUB(n) approximation. Their general struc-
ture is that of a coupled set of multinornials. If we regard
the ith equation in the SUB(n)-truncated hierarchy as
determining the parameter S; itself, then the order in S;
of the ith equation is 3 for i = 1 or 2, 2 for i =3 or 4, and
1 for i &4. It is clear that numerous solutions exist in
general, at each level of truncation for the set {S;).
There are various ways that one can envisage to choose a
particular solution. For example, Kaulfuss and Alten-
bokurn' perform a stability analysis on their solutions
for the pure quartic anharmonic oscillator by introducing
temperature dependence and requiring stability against
thermal fluctuations.

In the present paper we adopt a more direct approach.
As usual (for bound states), we first restrict our set of
solutions to those wherein all of the S; parameters are
real. The equations are then solved numerically, using
the hybrid Powell method which utilizes the Jacobian
in determining successive approximations. Henceforth
we refer to this method of solution as method 1. The
only ambiguity is in choosing the starting point for the
successive approximation scheme. A natural starting
point is to set all S, =0, and this will generally produce a
solution which is in some (admittedly rather ill-defined)
sense "closest" to our starting variational wave function.
[We note in passing that because in Eq. (3.10)
h &0

——0=6 zo, when we start as here from the Hartree ap-
proximation the SUB(1) approximation produces a solu-
tion S, =0 and the SUB(2) approximation produces a
solution S& ——O=sz.] We note that this simple choice
reproduces, for example, all of the data presented by
Kaulfuss and Altenbokum' using their thermodynamic
stability analysis.

Another way to proceed is to iterate Eq. (3.10) in the
SUB(n) approximation one or more times, by solving the
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ith equation as a polynomial equation in the correspond-
ing parameter S, . One may either continue this pro-
cedure iteratively until convergence is obtained at the
desired level of accuracy, or until one decides to break it
at some point and then use these approximate solutions
in the hybrid Powell scheme. We shall refer to the
straightforward iterative procedure as method 2. This
method 2 is naturally capable of producing multiple solu-
tions as, for example, we solve the cubic equations for S,
and Sz and the quadratic equations for S3 and S4.
Indeed, we have used this procedure to accelerate the
convergence of method 1 by performing one iteration
with method 2 first, and choosing at every opportunity

the real root of smallest absolute magnitude. Wherever
checked, this has always led to the same solution as the
S;=0 starting point, which in turn reproduces all of the
quartic anharmonic data which was presented by Kaul-
fuss and Altenbokum using their thermodynamic stability
criterion. We thus choose the procedure as outlined
above as our standard method of solution and, except
where explicitly noted, all of the data presented were ob-
tained by isolating a particular ground-state set of param-
eters [S;I in the corresponding SUB(n) approximation in
this manner. Finally, we remind the reader that there is
no further uncertainty (in the sense of a multiplicity of
solutions} in the excited-state equations, since these are

TABLE VI. Exact results for the ground and first four excited states of the quartic anharmonic oscil-
lator, for several values of the coupling constant A, , compared with those calculated via the CCM, with
various SUB(m, m) approximation. All energies are measured from the potential minimum.

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

1.0
1.0
1.0
1.0
1.0

10.0
10.0
10.0
10.0
10.0

100.0
100.0
100.0
100.0
100.0

1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0

exact
2
4
6
8

10
12
14
16
18
20

exact
2
8

18'
20b

exact
2
8

16'
20

exact
2
8

16'
20

exact
2
4
6
8
10
12
14
16'
18
20

Ep

0.559 15
0.560 31
0.559 18
0.559 14
0.559 15
0.559 15
0.559 15
0.559 15
0.559 15
0.559 15
0.559 15

0.803 77
0.812 50
0.803 71
0.803 77
0.803 77

1.504 97
1.531 25
1.504 65
1.505 02
1.504 99

3.131 38
3.19244
3.13054
3.131 53
3.13148

6.694 22
6.827 95
6.71091
6.693 52
6.692 33
6.693 23
6.693 98
6.694 39
6.694 57
6.694 59
6.69444

Ei

1.769 50
1.781 50
1.768 39
1.769 31
1.769 50
1.769 51
1.769 50
1.769 50
1.769 50
1.769 50
1.769 50

2.737 89
2.812 50
2.736 81
2.737 83
2.737 77

5.321 61
5.531 25
5.315 57
5.322 58
5.31974

11.1872
11.6663
11.1712
11.1905
11.1802

23.9722
25.0175
23.8629
23.8646
23.9361
23.9732
23.9852
23.9852
23.9798
23.9708
23.9548

E

3.138 62
3.203 86
3.134 65
3.13697
3.13844
3.138 66
3.138 65
3.138 63
3.138 62
3.138 62
3.138 62

5.179 29
5.562 50
5.165 80
5 ~ 179 65
5.178 10

10.3471
11.4062
10.2831
10.3680
10.3316

21.9069
24.3181
21.7438
21.9720
21.8325

47.0173
52.2743
47.1529
46.4855
46.6531
46.8968
47.0638
47.1491
47.1692
47.1149
46.8184

E3

4.628 88

4.802 33
4.623 48
4.621 92
4.627 41
4.628 90
4.629 02
4.628 94
4.628 89
4.628 88

7.942 40

7.854 29
7.961 18
7.955 29

16.0901

15.8324
16.1899
16.3363

34.1825

33.5969
34.4516
35.1731

73.4191

86.9994
75.0964
72.1438
71.8270
72.3808
73.1816
74.0286
74.9300
75.9196

E4

6.220 30

6.640 42
6.237 61
6.202 88
6.213 38
6.219 36
6.220 71
6.220 65
6.220 42
6.220 30

10.9636

10.8754
11.0526
11.0787

22.4088

22.3149
22.4253
25.1474'

47.7072

47.6027
47.6289
47.8227'

102.516

133.125
110.707
102.344
99.1747
98.5224
99.4460

102.276
114.311'
99.6477'

'Highest SUB(m, m) entry without an imaginary pair in the excitation spectrum.
SUB(m, m) entry with imaginary values in the excitation spectrum.

'Level has an imaginary component.
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TABLE VII. Percentage errors of the first excited state for the quartic-perturbation anharmonic oscillator, for A. = 100, calculated

via CCM in the SUB(m, n) approximation.

10 12 14 16 18 20

2
4
6
8

10
12
14
16
18
20

4.28
2.67
2.30
2.24
2.25
2.26
2.27
2.27
2.28
2.28

0.80
—0.45
—0.85
—0.93
—0.93
—0.92
—0.91
—0.91
—0.90
—0.90

1.29
0.01

—0.43
—0.51
—0.50
—0.49
—0.48
—0.47
—0.47
—0.47

1.55
0.38

—0.47
—0.14
—0.13
—0.11
—0.10
—0.09
—0.09
—0.09

1.60
0.51
0.09
1.3 x10-'
4.7x10-'
0.03
0.05
0.06
0.06
0.06

1.60
0.52'
O. 12b

0.03
0.03
0.05
0.07
0.08
0.09
0.09

1 ~ 59
0.51'
O. 1Ob

O.O1'

0.01
0.03
0.05
0.06
0.07
0.07

1 ~ 59
0 49'
0.08

—0.02b
—0.02b

7.2X10-'
0.02
0.03
0.03
0.03

1.59
0.48'
0.06

—0.04
—0.04
—0.03
—0.01
—0.01
—0.01
—0.01

1.59
0.48'
0.05

—0.05
—0.06
—0.05
—0.05
—0.05
—0.05
—0.06

'Excitation spectrum contains complex values at the very top of the spectrum.
Excitation spectrum contains at least one complex-conjugate pair.

simply a coupled set of linear eigenvalue equations in the
parameters S' in the corresponding SUB(m, n) approxi-
mation already described.

In the remainder of this section, we now apply the
CCM as described to the three particular anharmonic os-
cillators already studied variationally in Sec. II. In each
case the variational wave functions that were determined
there to extremize the ground-state energy are now used
as our zeroth-order starting wave function

~ P ). We note
that the CCM has been applied previously' only in the
ground-state formulation, and only then to the case of the
pure quartic anharmonic oscillator.

B. Pure quartic anharmonicity

The exact results' for the ground and first four excited
states of the quartic anharmonic oscillator of Sec. II B are
compared with our CCM results in Table VI for various
"diagonal" SUB(m, m) truncations with 2&m (20. We
note that in this case where the potential energy is sym-

metric about the origin, and the ground state thereby is a
parity eigenstate, the odd-indexed amplitudes S„vanish
identically. Overall, the results are very encouraging.
For small values of the quartic coupling constant A, , the
results are extremely accurate. Thus the ground-state en-
ergy E is already obtained to five-digit accuracy at the
SUB(8) level of approximation. As is to be expected, the
higher states are not reproduced quite as accurately, al-
though the first three or four excited states are obtained
to a similar level of accuracy (i.e., a few parts in 10 ) in
the SUB(20,20) approximation.

For larger values of the coupling constant k, the situa-
tion is still very good. The ground-state energy in the
SUB(n) approximation rapidly approaches very close to
the exact value as n is increased to values as small as
about 6, but then tends to oscillate slowly about the exact
value with a marked decrease in the rate of convergence
thereafter, as has been previously reported. ' The excited
states also exhibit similar convergence patterns. This be-
havior is clearly exhibited in Tables VII and VIII, which

TABLE VIII. Percentage errors of the fourth excited state for the quartic-perturbation anharmonic oscillator, for A, =100, calcu-
lated via CCM in the SUB(m, n) approximation.

10 12 14 16 18 20

2
4
6
8

10
12
14
16
18
20

35.1

29.4
28.3
28.1

28.2
28.2
28.2
28.2
28.2
28.2

5.90
10.2
7.79
7.00
6.85
6.86
6.91
6.96
7.00
7.04

—1.95
1.34
1.05

—0.22
—0.73
—0.87
—0.86
—0.80
—0.72
—0.61

—3.05
—1.24
—1.62
—2.48
—3.20
—3.50
—3.58
—3.56
—3.49
—3.35

—2.03
—1.03'
—1.81
—2.74
—3.43
—3.75
—3.85
—3.83
—3.76
—3.63

—0.94
0.32'

—0.77
—1.85
—2.62
—2.91
—2.81
—2.62
—2.40
—2.15

—0.43
1.83'
O.7S'

—0.45
—1.27
—1.49
—1.03
—0.16

0.74
1.64b

—0.38
2.87'
2.23'
1.02
0.21
O. 12b

1.S4b

5.56
12.8'
13.3'

—0.50
3.22'
3.31
2.34
1.4Sb

1.12
393
1.69'

—2.73'
0.24'

'Excitation spectrum contains complex values at the very top of the spectrum.
Excitation spectrum contains at least one complex-conjugate pair.

'Level contains an imaginary component.
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display the percentage deviations from the exact results
for the first and fourth excited states. respectively, in the
strong-coupling case 1=100 and for various SUB(m, n)
approximations. Figure 4 also presents similar data for
the first excited state in the form of an isometric projec-
tion. Table VII and Fig. 4 show quite clearly the behav-
ior of the SUB(m, n) approximations to the first excited
state. For a fixed value of n, an increase in index m pro-
duces again a rapid initial convergence, followed by slow
oscillations, just as for the ground-state scheme. There is
some indication, for the lower n values, that convergence
does hold, although not precisely to the exact result.

If, on the other hand, we keep m fixed and increase the
index n, this pattern of convergence to a value which is
not precisely the exact result is even more apparent.
Thus an increase in the index n with m fixed produces in-

creasingly accurate results up to about the SUB(m, m}
level. Further increases in the ground-state index n then
produce essentially no further changes in the excitation
energy.

We remark that this pattern of convergence is basically
to be expected, since our method of evaluating the excita-
tion energies from Eq. (3.15) means that these quantities
only converge in principle to the exact results as both in-
dices m and n approach infinity. Thus a finite truncation
in either index leaves either the absolute excited-state or
ground-state energy approximated. We note that this is
not, however, true for the absolute excited-state energies
if these were to be calculated from Eqs. (3.11) and (3.12)
directly. Here, even if S is approximated at the SUB(n)
level, convergence to the exact excited-state energies will
be obtained in principle by continually increasing the
truncation index m for the corresponding operator S'.
We return to this point in our concluding remarks in Sec.
IV.

Finally, on the question of convergence, we note from
Table VIII that the same basic pattern applies to the
fourth excited state as to the first. The main difference is
that to see similar effects one now needs to go to corre-
spondingly higher levels of truncation, as is to be expect-
ed.

4 2 4

FIG. 4. Isometric projection of the percentage error of the
CCM first excited state, calculated via the SUB(m, n) approxi-
mation. The error ranges between 1.0% and —0.93%, with the
zero-error plane marked with a solid line.

We also comment briefly on the choice of "compati-
ble" pairs of truncation indices (m, n), which has been
discussed elsewhere by one of us in the context of linear
response theory. Thus one would like to know, for exam-
ple, whether for a given index n, higher values of the in-
dex m in the SUB(m, n) truncation scheme necessarily
lead to a better approximation. Such questions are
difficult to answer without further information, and it
was in this sense that the theory of linear response was
shown to provide a bridge between the otherwise some-
what disconnected ground- and excited-state CCM for-
malisms already discussed. Turning to the data presented
in Tables VII and VIII, it is clear that a direct compar-
ison with exact results does not obviously favor
SUB(m, n} approximations with m =n as one might at
first thought expect to be favored. It is quite striking to
note from Table VIII that the SUB(m, 2) approximations
are already as accurate for the fourth excited state, as for
calculations with the ground-state input taken from
SUB(n) approximations with values of n even much
higher than 2. One should note, however, that this is not
true for the lower excited states, where an improvement
in the ground-state approximation used as input to the
excited-state formalism does lead to a noticeably im-
proved value of the first few excitation energies, as seen
from Table VII.

Tables VI —VIII also indicate another possible cause of
concern that can arise in practical implementations via
Eq. (3.16) of the Emrich formalism for excited states—
namely, the appearance of complex eigenvalues in the en-

ergy excitation spectrum for intermediate and large
values of the quartic anharmonicity. One should not,
however, be surprised at the appearance of complex ener-

gy eigenvalues at a given level of approximation since the
CCM approach is certainly not manifestly Hermitian. In
particular, the matrix generated from Eq. (3.16) in the
SUB(m, n } approximation, and regarded in the manner
already discussed as a set of linear eigenvalue equations
for the excitation amplitudes IS' I, is certainly not Her-
mitian.

Very little can be said in general about the reality or
otherwise of the eigenvalues of non-Herrnitian matrices
associated with such eigenvalue problems. Of course, in
the limit as m, n ~ ~, Eq. (3.16) will produce the exact,
real excitation spectrum, but as we have previously noted
this is not the case for any finite truncation in either in-
dex. Since Eq. (3.16) yields the difference between the
excited- and ground-state energies, the best that we can
expect, since the associated eigenvalue problem is non-
Hermitian, is that if both the approximations to the
ground and to the excited states are good, then the exci-
tation energies produced by Eq. (3.16) will be both real
and accurate. Conversely, if either approximation breaks
down, one might expect that one signal of this breakdown
may be the appearance of complex eigenvalues in the en-
ergy excitation spectrum.

We should briefly discuss the nature of these complex
eigenvalues. Since Eq. (3.16) is an eigenvalue equation
with real coefficients, any complex roots must arise as
complex conjugate pairs. Let us consider some fixed
SUB(m, n) approximation, and some value of the cou-
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pling parameter A., such that this truncation produces
only real eigenvalues for the excitation energies. As the
parameter A, is increased, we find in general that a critical
value occurs, beyond which a complex conjugate pair of
eigenvalues appears as two previously real roots come to-
gether and then become complex. For example, in the
SUB(20,20) approximation, and at a value A, =0.9, Eq.
(3.16) produces only real eigenvalues, but the twelfth and
thirteenth excitation energies are equal to 59.05 and
60.52, respectively. As A, is increased to 0.91, these same
two levels have become a complex conjugate pair, equal
to 60.02+1.25i, at the same level of approximation. The
imaginary components will obviously start out small, but
as A, is further increased beyond the critical value at
which the complex roots first appear, the magnitude of
the imaginary components will increase.

We have indicated in Tables VI —VIII those calcula-
tions which have produced at least one such complex
conjugate pair of excitation energy eigenvalues. We have
also specifically labeled those entries which have an imag-
inary component, though the value of this imaginary
component is not itself shown. In all cases, only the real
part is shown. For example, Table VI shows that at a
coupling constant X=1.0, complex energy values first ap-
pear in the SUB(20,20) approximation. In this particular
case only the 12th and 13th excited states have complex
energy eigenvalues. The magnitude of the imaginary
components is still only about 8% of the corresponding
real component. We reiterate that the presence of such
imaginary components has nothing to do with rounding
errors or other numerical shortcomings of the calcula-
tions. They are, rather, a consequence of the method it-
self, as described above.

The trends in the appearance of the complex eigenval-
ues largely follow what one would expect. It is most con-
venient to consider these approximations in the three-
dimensional parameter space of m, n, and A, . For calcula-
tions suitably "near the origin" in this space (i.e., for
small A. , m, and n), no complex pairs occur in the excita-
tion spectrum. If both A, and n are held fixed, and m is
increased, there generally comes some point beyond
which complex energies are produced. Further, these
complex values usually occur near the top of the excita-
tion spectrum so produced. This behavior is as expected,
since by the Emrich parametrization for excited states of
Eq. (3.12), we have built the excited states by further
correlations built upon the CCM ground state. We thus
tacitly assume that for a low-order approximation to
work well, the important correlations in the ground state
are largely shared by the excited states. This assumption
is more likely to be valid for the low-lying excited states
than for those higher in the spectrum. As the parameter
m is increased further, one generally sees more and more
states developing imaginary components to their energy
eigenvalues. At the same time, the overall quality of the
approximation to the energy spectrum then worsens. We
also note from Table VI that an increase in A, produces
more complex eigenvalues at a given SUB(m, n) level of
approximation. This is again expected, since we know
that as the strength of the anharmonicity increases, our
approximations for both the ground and excited states

worsen.
In conclusion, we should emphasize, however, that

overall the Emrich parametrization for the excited states
within the CCM works very well indeed. For small
values of A, , the first excited-state energy is produced with
nearly the same accuracy as that of the ground state.
The next few levels are also almost as accurate. As the
value of A, increases, we need to go to higher levels of
truncation to achieve results of similar quality, as is to be
expected. Even the spectra with imaginary components
still produce some eigenvalues which are very accurate.
One should probably view the possibility of Eq. (3.16)
producing complex excitation energies as a help rather
than a hindrance. Thus the appearance of complex ei-
genvalues is an internal signal of a breakdown in the ap-
proximation; and this could clearly be important in other
applications of the method to systems where exact results
are not known.

C. Cubic-plus-quartic anharmonicity

In Table IX we present the SUB(m, m) results for the
asymmetric anharmonic oscillator potential considered
previously in Sec. II C, and consisting of equally weighted
cubic and quartic anharmonicities, as given in Eq. (2.19).
The overall quality of the results is quite similar to the
previous case of the pure quartic anharmonic perturba-
tion. The ground-state CCM again does very well in all
cases, even in the region around A, =100, which was the
most difficult for the variational approach of Sec. II.
Whereas the variational energy had an error of about 5%
for A, = 100, the SUB(20) ground state now has an error of
about 10 % for the energy. The overall pattern in the
errors of the ground-sta'te energies at a given SUB(n) lev-
el of truncation follows very closely that observed in the
variational approach. Thus as A, increases initially, the
accuracy drops due to the increasing asymmetry in the
potential. For very large values of A, the error again de-
creases, as is observed in the A, = 1000 results in Table IX,
since the ground state is now essentially sampling only a
small, almost symmetric region near the minimum in the
potential well.

The asymmetric nature of this potential also has a
rather marked effect on the CCM excitation spectrum.
Thus, in addition to the general decrease in accuracy
with increasing excitation energy that we have already
noted for the purely symmetric quartic potential, here we
have now also to contend with the increasing degree of
asymmetry of the potential which is sampled by the
higher levels. This is particularly apparent in the
A, =1000 results in Table IX. One observes from Fig. 1

that whereas the ground state in this case samples an al-
most symmetric potential field, the excited states experi-
ence higher and higher levels of asymmetry. The third
and fourth excited states clearly demonstrate this behav-
ior. We remark again that the overall quality of the re-
sults for this asymmetric potential is also very encourag-
ing.

The pattern for the appearance of complex eigenvalues
for the excitation energies produced by the CCM Eq.
(3.16) is similar to the case of the quartic anharmonic po-
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tential. There is, however, one important new observa-
tion. We again see that as A. increases, and the accurate
reproduction of the energy spectrum in general becomes
a correspondingly more stringent test of a given CCM
truncation scheme, so complex conjugate pairs begin to
occur at lower levels of truncation. This is t;learly seen in
Table IX for the SUB(m, m) approximations up to values
of A, =100. The A. =1000 case is di6'erent however. Here
the ground-state energy is reproduced very accurately at
low approximations, but the higher excited states are
clearly seen to require higher values of the truncation in-
dex. This behavior is also as observed for the lower
values of A.. What is new in the X=1000 results is that no

complex eigenvalues are now produced by Eq. (3.16) at
similar levels of truncation. These observations are taken
to indicate that the source of the complex conjugate pairs
in the spectra for lower values of k is more likely to arise
from errors in the CCM ground state, and hence the asso-
ciated correlation operator S, rather than from a poor
description of the excited states themselves via the opera-
tor 5'.

In summary, we see that the CCM ground-state
formalism reproduces well, and at low levels of trunca-
tion, the energies of the ground states in even the most
asymmetric potential wells considered. The Emrich pa-
rametrization of the excited states also works well, partic-

TABLE IX. Exact results for the ground and first four excited state of the quartic-plus-cubic anhar-
monic oscillator of Eq. (2.19), for several values of the coupling constant A, , compared with those calcu-
lated via the CCM, with various SUB(m, m) approximations. All energies are measured from the po-
tential minimum.

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

1.0
1.0
1.0
1.0
1.0

2.0
2.0
2.0
2.0
2.0

10
10
10
10
10

100
100
100
100
100

1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0

exact
1

2
3

4
6
8

10
20

exact
1

8
17'
20

exact
1

8
15'
20'

exact
1

8
13'
20'

exact
1

8
12'
20

exact
1

2
3
4
6
8

10
20

Eo
0.553 52
0.555 14
0.555 14
0.554 69
0.553 57
0.553 51
0.553 51
0.553 52
0.553 52

0.720 46
0.732 67
0.720 32
0.72048
0.72047

0.791 30
0.810 86
0.790 95
0.791 33
0.791 39

1.611 49
1.676 56
1.609 11
1.611 51
1.611 33

6.492 65
6.801 49
6.492 14
6.492 63
6.492 74

22.897
23.123
23.123
22.903
22.898
22.897
22.897
22.897
22.897

E)
1.745 51
1.761 51
1.757 53
1.748 31
1.744 60
1.745 35
1.745 50
1.745 51
1.745 51

2.501 36
2.598 49
2.498 84
2.501 24
2.500 73

2.879 79
3.027 52
2.873 02
2.881 24
2.868 69

4.716 79
5.121 51
4.698 96
4.734 33
4.700 87

14.4196
18.8940
14.3490
14.4284
14.4244

64.81
68.16
66.37
65.23
64.92
64.83
64.81
64.81
64.81

E
3.09540

3.177 98
3.15602
3.091 61
3.092 94
3.095 03
3.095 43
3.095 40

4.838 68

4.809 90
4.846 66
4.834 82

5.727 91

5.664 70
5.754 87
5.511 00

9.274 07

9.00008
9.359 65
9.061 75

22.2608

21.5670
22.2207
22.2982

98.24

116.5
105.1
103.0
99.87
98.90
98.47
98.26

E3
4.567 64

4.812 61
4.726 79
4.560 55
4.561 27
4.566 57
4.567 63

7.508 76

7.390 59
7.573 48
7.586 24

9.003 42

8.829 61
9.054 69
8.880 52

14.5847

14.2035
14.1451
13.8618

32.578

30.300
31.496
32.521

116.2

168.2
146.4
135.5
127.7
122.8
116.1

E4
6.14215

6.642 19
6.178 25
6.122 29
6.131 59
6.142 18

10.4455

10.4009
10.4746
11.4977

12.6233

12.6806
11.9706
11.4145

20.512

21.7047
17.6297
21.3181'

44.280

43.247
41.308
43.109

134.5

229.5
182.4
166.0
154.0
125.7

Highest SUB(m, m) entry without an imaginary pair in the excitation spectrum.
SUB(m, m) entry with imaginary values in the excitation spectrum.

'Level has an imaginary component.
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ularly for the lower-lying excitations, although for the
most asymmetric potentials the method is beginning to
experience difficulties not previously encountered. The
overall quality of the results remains impressive, howev-
er, particularly for relatively low values of the truncation
parameters.

D. Symmetric double-well potential

In Fig. 5 we present the results of our CCM calcula-
tions for the symmetric double-well Hamiltonian of Eq.
(2.20), which we investigated earlier in Sec. IID. The
CCM data displayed are obtained by starting with the
zeroth-order (uncorrelated) variational wave functions of
both the case-1 and case-2 (lower-energy) types discussed
in detail in Sec. IID. The case-2 (lower-energy) wave
function is henceforth simply referred to as the case-2
wave function. The results shown, which cover a range
of values of Z with 0 & Z & 50 for case 1 and
Z, & Z & 50 for case 2, were calculated using the
SUB(14) approximation for the ground state and the
SUB(14,14) truncation for the excited states.

We first note that the overall quality of the ground-
state results is again good. For the case 1, which we re-
call corresponds to a wave function centered at the ori-
gin, x =0, the CCM produces a very accurate value for
the ground-state energy for values of the coupling con-
stant Z approximately up to the point where the mid-

E

0 05 1 2

I

I

I

t

] J
I

I

3 1

22

5 7 50

FIG. 5. Results for the double-well anharmonic oscillator for
various values of Z . All energies have been normalized so that
the exact third excited state is equal to unity. Spanning each Z
region is a dashed line indicating the value of the middle-well

potential peak. The first four exact levels are drawn in the
center of each region, with odd and even levels drawn to the
right and left of center, respectively. The firs& and second and
the third and fourth levels have been connected via a line along
the center to emphasize the level splitting. The case-1 and
case-2 (lower energy) (for values of Z &Z, ) results are shown
to the right and left of center, respectively, with all calculations
done at the SUB(14,14) truncation. Odd and even levels are in-

dicated via upward- and downward-pointing marks, respective-
ly. All energy values are measured relative to the potential
minima. A few results are off scale.

well potential maximum becomes higher than the
ground-state energy level. This occurs at a value of
Z =2, at which point the corresponding error in the
variational energy was about 10%. Even increasing Z
to somewhat higher values gives energies which are quite
good. Thus even at Z =Z, the variational error of
about 19%%uo is reduced to about 3% in this CCM approxi-
mation. Of course, if Z is increased still further, the
CCM calculations based on the now increasingly bad
starting approximations of the case-1 type, rapidly
deteriorate. For such values of Z Z, we expect the
CCM calculations based on the case-2 wave functions to
be more accurate, since the case-2 wave functions are
now shifted towards one of the potential minima, as dis-
cussed previously. The results of Fig. 5 clearly bear out
this expectation. Good results are now found for the
ground-state energy in the deep double-well potentials, at
least by comparison with the average energy of the now
nearly degenerate exact ground and first excited states.
We still, apparently, totally miss the effects of tunneling.
This pattern of CCM results built upon the case-2 wave
functions holds for values of Z as small as approximate-
ly 4.

The absence of tunneling is also rejected in the
excited-state CCM results built upon the shifted case-2
wave functions. It is particularly striking for the case of
the deepest well, Z =50, shown. Here the energy of the
first excited state appears numerically to have converged,
but to a value which is very close to the average for the
second nearly degenerate doublet, namely the second and
third excited states. These plateaus of quasiconvergence
seem to be typical of such calculations as the present
CCM ones, which do not intrinsically include the major
effects of tunneling from the outset. Presumably in this
case, one would have to proceed to much higher levels of
truncation for the first excitation energy to become un-
pinned from its quasiconverged value and actually con-
verge to its exact value which is very nearly degenerate
with that of the ground state.

For the CCM calculations based on the centered case-1
wave functions as zeroth-order approximants, we find a
very accurate excitation spectrum around Z =0 (which
corresponds to the pure quartic single-well limit). For
values of Z S 1, the energy of the first excited state is
well represented at the SUB(14,14) level. The same is
true for the second and third excited states in the range
Z ~0.5. We also note in passing that while the actual
values of the energy levels are not so accurately repro-
duced at this level of approximation for deeper double-
well potentials, the excitation spectrum that arises from
use of the case-1 uncorrelated wave function does show
some evidence of the splitting due to tunneling. We also
remark that while the appearance of complex excitation
energies in the calculated spectra is not explicitly indicat-
ed in Fig. 5, such complex values do occur for each of the
calculations shown, except for the Z =0 and 0.5 case-1
and the Z =50 case-2 calculations.

It is clear that the double-well potentials provide the
most severe test of all of the anharmonic potentials con-
sidered, for both the ground- and excited-state forrnal-
isms of the CCM as formulated and implemented here.
With the exception of an inadequate description of phe-
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nomena connected with tunneling between the two wells,
the method does, however, continue to produce results of
high quality. This inability to describe tunneling accu-
rately, at least at a reasonably low level of approximation,
remains the most serious fault of the current implementa-
tion of the CCM approach. It seems clear that the basic
cause of the problem is the use of a single uncorrelated
state as the zeroth-order approximant. A multistate ap-
proach that simultaneously utilized, for example, both of
the parity doublets that arise in the case-2 variational re-
sults, would almost certainly lead to much better results
in this respect. We return to this point in our concluding
remarks in Sec. IV.

IV. SUMMARY AND DISCUSSION

One of our main aims in this paper has been to present
a detailed numerical analysis of the applicability of the
CCM in situations where the initial zeroth-order wave
function is not necessarily very close to the exact one. To
this end we have chosen as our testing ground the model
Hamiltonian of Eq. (2.1), which describes a rather general
class of one-dimensional, one-body anharmonic oscilla-
tors. By choosing different combinations of values for the
three coupling parameters e, y, and A, , it has been possi-
ble to produce models which make widely differing sets of
demands on the CCM.

We presented initially a detailed study of the Hartree
approximation for the ground-state wave function, which
was later chosen as the starting or zeroth-order approxi-
mation for the CCM. The Hartree approximation may
itself be defined in terms of a Bogoliubov-transformed
harmonic oscillator ground state, chosen so as to mini-
mize the energy expectation value, and with the transfor-
mation restricted to be unitary and to involve only real
translations and rotations in the original oscillator phase
space. The Hartree approximation was shown to be quite
accurate in reproducing the ground-state energy for both
the symmetric, pure quartic, and the asymmetric, equally
weighted combination of cubic and quartic anharmonic
oscillators, for a wide variety of coupling constants in
each case. A rather severe and particularly interesting
test of the Hartree approximation was posed by the sym-
metric, quartic double-well anharmonic oscillator. In
this 1atter case we discussed in detail the various solu-
tions that could arise. In particular, we observed a solu-
tion symmetric about the origin, which was seen to pro-
duce the lowest energy for shallow wells. Conversely, for
sufticiently deep double wells, we also observed the possi-
bilities of pairs of asymmetric solutions, shifted towards
either of the two wells. For deep enough wells, these de-
generate parity-doublet solutions produce the lowest en-
ergies in the Hartree approximation. Furthermore, they
become asymptotically exact in the infinite-coupling limit
in this case.

In the double-well case we observed, however, that
there is a large region of intermediate values of the cou-
pling constant where no single Hartree solution produces
an accurate ground-state energy. This region coincides
with the region where quantum tunneling between the
two wells is of particular importance. We concluded the

discussion in Sec. II on the variational estimates with a
calculation of the ground and first excited states and the
level splitting between them, which is based on linear
combinations of the shifted (degenerate parity-doublet)
Hartree states. We thereby obtained a very considerable
improvement in the ground-state energies, especially in
the intermediate regime.

The CCM was then described in some detail both for a
description of the ground state and its energy eigenvalue,
and for the excited states and their corresponding excita-
tion energies. The SUB(rn, n) truncation scheme was
defined in order to effect a practical realization of the
method, which may be systematically improved upon, in
principle, by increasing the truncation indices m and n.
These indices refer, respectively, to the degree of correla-
tions built into the CCM excited and ground states with
respect to the starting or zeroth-order wave function,
which is now chosen as our previously obtained Hartree
wave function. Finally, the CCM was applied to each of
the three earlier benchmark models in turn.

The method was seen to produce extremely accurate
ground-state energies for both the (symmetric) quartic
and (asymmetric) cubic-plus-quartic anharmonicities.
For all coupling constants in these two cases, we ob-
served an extremely rapid initial convergence, followed
by much slower convergence with oscillatory behavior
about the exact result. Even for the cubic-plus-quartic
case with coupling constant A. =100, which has about the
largest error (-5%) for the ground-state energy in Har-
tree approximation, a CCM ground-state SUB(8) approx-
imation decreases this error by a factor of better than
500. On the other hand, by proceeding to a much
lengthier SUB(20) calculation, we obtain a further im-
provement by a factor of only about 5. We especially
note that for practical implementations of the CCM to
more realistic field-theoretical models of interest, it is the
rapid initial convergence which is particularly encourag-
ing, since one is most unlikely in such cases to be able to
proceed beyond the few lowest levels of approximation.

In the case of the double-well potential, the CCM again
gave a considerable improvement over the Hartree ap-
proximation, using the centered solution for shallow wells
and the shifted solution for deep wells. However, for
intermediate-depth wells, where quantum tunneling
strongly inAuences the ground-state energy, neither Har-
tree starting point is satisfactorily improved via the
CCM. It seems clear indeed that no description can be
expected to work here which fails to take tunneling into
account at some reasonably low level of approximation.
It is probable that this is best achieved by including it, at
least roughly, but essentially, in zeroth order. We return
to this point in our concluding remarks.

We saw how the excitation spectrum was described by
our CCM implementation of the Emrich parametrization
for excited states, via the solution of a non-Hermitian ei-
genvalue problem. The method worked very well for the
quartic anharmonic oscillator, even for very large anhar-
monicities, apart from the expected decrease in accuracy
for the higher excited states. The situation is generally
similar for the cubic-plus-quartic perturbation, although
we now face the additional problem that since the higher
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levels are effectively sampling the more asymmetric re-

gions of the potential, the accuracy is somewhat de-
creased. For the double-well potential, the problems ob-
served in the ground-state calculations are echoed in the
excitation spectrum. Thus, for very deep wells, the very
small splitting of the first several pairs of nearly degen-
erate levels is not observed at all. Instead, the CCM exci-
tation spectrum much more closely resembles what one
would obtain in a potential where one of the two wells

was totally removed.
Because the CCM eigenvalue problem of Eq. (3.16) for

the excitation energies is not Hermitian, we are not
guaranteed real energies a priori. One only knows that
the description becomes exact in principle as both of the
truncation indices m and n become infinite. Our expecta-
tion is that, since we are solving directly for the excita-
tion energies, if the CCM description of both the ground
and excited states is good, accurate and real values
should result. Our results seem to confirm this view, with
complex energies generally only appearing for large
values of the excited-state truncation index m, and then
only for the higher excited states. Furthermore, the
problem becomes worse as the strength of the anharmon-
icity is increased. We have also seen some evidence, from
the cubic-plus-quartic anharmonic oscillator data, that
errors in the ground-state description are more important
in this regard than those in the excited-state description.

We should also remind ourselves that it would be quite
simple in the present case to avoid the problem of com-
plex energies by working directly with the excited-state
Schrodinger equation (3.11) and its CCM parametrization
of Eq. (3.12). It is only by combining these equations
with the ground-state equation to arrive at Eqs. (3.15)
and (3.16), which directly yield the excitation energies
rather than the absolute energies of the excited states,
that the non-Hermiticity has arisen. In the present appli-
cation of the CCM to the one-body problems considered
here, a direct application of Eqs. (3.11) and (3.12) by pro-
jecting Eq. (3.11) onto the states (P

~

b "exp( —S), would
be perfectly possible. However, the method implemented
here has two features which become very important in
applications to many-body systems. Since one of our pri-
mary concerns here is to test the CCM on the simpler ap-
plications to anharmonic oscillators, we have therefore
chosen to implement the CCM in the standard many-
body fashion.

In the first place, by calculating the excitation energies
directly we avoid complications connected with the in-
herent loss of accuracy associated with the almost com-
plete cancellations between two nearly identical large
numbers. Thus the ground-state energy of a system of N
particles is a macroscopic variable which will scale like
some power, N, of the particle number (where, for ex-
ample, a=1 for a self-bound, homogeneous system in
equilibrium at finite saturation density), whereas the exci-
tation energies of the low-lying states of particular in-
terest are likely to be truly microscopic variables (i.e., of
order one in comparison with N). This is true both for
the low-lying single- and few-particle excited states and
for the most important collective excitations. Secondly,
the calculation of the excited states, as done here, utilizes

much of the same information as that for the ground
state. This can also be of considerable importance in a
large-scale computation. We stress again that neither of
these concerns is strictly relevant to the present applica-
tion to the one-body problems studied here. Even so, we

regard the non-Hermitian nature of the excited-state ap-
proximation as an intrinsic internal check on the accura-
cy of the method. We have seen that the pattern of the
appearance of complex excitation energy eigenvalues gen-
erally encourages us to believe that at least the few lowest
excited states are accurately represented.

We return finally to the question of the nonuniqueness
of the solutions for the set of ground-state correlation
amplitudes [S;], which arise from the coupled set of mul-
tinomial equations (3.10) at a given SUB(n) level of trun-
cation. For a given truncation index n, these equations
have a multiplicity of solutions, although it is not possible
to enumerate the number of them once we restrict our-
selves to real solutions as we have required from the
outset. We have discussed in Sec. IIIA the numerical
method of solution that we have adopted to obtain the
solutions for the data presented. We refer to the solu-
tions so found as the "standard" solutions. We reiterate
how robust these normal solutions are to variations in the
numerical procedures, and conversely how remarkably
difficult it is to find any other "nonstandard" solutions
out of the large number possible in principle for even
only moderate values of the truncation index n.

Without making a very detailed study, we have, how-
ever, obtained and studied a few such nonstandard solu-
tions by choosing different starting points for the hybrid
Powell method. These alternate starting points were gen-
erated by straightforward iteration of Eq. (3.10) as in the
standard method 2 of solution but not choosing the real
root of smallest magnitude wherever possible, as was
done previously. Frequently, these alternative starting
points will still converge to the standard solution when
inserted into the hybrid Powell scheme previously re-
ferred to as method 1. Occasionally, however, one does
find a different, "nonstandard" solution. When they are
found, convergence is usually much more difficult to
achieve, and the resultant values of the ground-state and
excitation energies are generally less accurate, by com-
parison with exact results, than the comparable ones ob-
tained with the corresponding standard solution.

As an illustration of a case where convergence can be
achieved, by our iterative method of solution, for a non-
standard solution, we present results for the quartic
anharmonic oscillator with coupling constant A, =0.1.
For this example we have found a nonstandard ground-
state solution in the SUB(18) approximation which has an
energy of 0.5589, and hence an error of about 0.03%
compared to the exact result of 0.55915. Although the
corresponding standard solution is more accurate still by
several orders of magnitude at the same truncation level,
the nonstandard solution is clearly also rather accurate.
Furthermore, when the nonstandard ground-state solu-
tion is used as input to a SUB(18,18) calculation of the
excited states, the energies of the first four excited states
are again quite well reproduced, with errors, respectively,
of 0.52%, 0.56%, 1.00%, and 2.69%, although many of
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TABLE X. Comparison of the ground-state correlation
coefficients IS, J for SUB(18), A. =0.1, for the quartic anharmon-
ic oscillator, calculated via the standard method and for one of
the nonstandard root choices.

2
4
6
8

10
12
14
16
18

Standard

1.5974 g 10
—2.8871 )& 10

7.4128 K 10
—2.6550 X 10

1.0950' 10-'
—4.8976 )& 10

2.3219&& 10
—1.0759 X 10-"

3.5769 && 10

Nonstandard

—1.7514K 10
—2.4485 X 10

1.4157 X 10-'
-4.6374X 10-'
—3.9578 X 10

4.1194' 10-'
—6.1199)&10
—2.1472 )& 10

1.1916X 10

the higher levels in this approximation have complex en-
ergies. The standard solution again has much smaller
corresponding errors, as may be seen from Table VI.

We show in Table X the corresponding solution IS, I

for this model in order to contrast the standard and non-
standard ground-state solutions. We clearly observe that
the two solutions are entirely different, particularly with
respect to the relative magnitudes of the higher-order
correlation coefficients. Even the lower-order coefficients
are quite different, often being of opposite sign. It is par-
ticularly interesting to observe the quite different values
for S2 and S~, although the two corresponding estimates
for the energy, which as calculated via Eq. (3.9) depend
only on S2 and S4, agree to about 0.03%.

It seems quite clear that at least at a given SUB(n) level
of truncation the CCM is quite capable of producing
more than one ground-state wave function (and hence,
also, a corresponding spectrum of excited states), each of
which gives the same energy eigenvalue. In principle the
number of these nonstandard solutions grows as the trun-
cation index n increases. It is not possible on the basis of
the information presented here to make very authorita-
tive statements about the convergence properties of any
of these wave functions as n~ao. A discussion of this
point would lead us too far astray from our main themes.
However, it is quite possible that the CCM could produce
a whole class of permissible ground-state wave functions
for a given Hamiltonian in this n ~00 limit, with each
having the same energy eigenvalue, since we are in princi-
ple working in a much enlarged CCM space of admissible
wavefunctions than the usual Hilbert space of normaliz-
able wave functions. Thus our entire CCM program, and
in particular the method of calculating the ground-state
energy, E=(P

i
H

i g)I($
~
P) as the projection of the

Schrodinger equation (3.4) with the model state (P i, [or,
equivalently, E=(P He P)/(P

~
P) as in Eq. (3.5)],

never requires the state
i P) to be normalizable. We can

contrast this with the more usual method of calculating
the energy as E= ( g i

H
i g) 1'( g ~

P). Our only require-
ment has been that the model state

i P) is normalizable
and that the overlap (P i tt ) is nonzero and finite (and ac-
tually equal to (P i P ) by chosen construction).

We note also that none of the truncated CCM wave
functions is normalizable in any finite SUB(n) approxi-

mation with n )2. If the approximations do converge in
some meaningful fashion as n ~(x), it is clear that only
one of the possible multiple solutions will become the
usual normalizable wave function, and it is probable that
this solution will be our previous "standard" solution.
Furthermore, it seems most likely that, in this case, the
remaining "nonstandard" solutions will converge to
different solutions

~
f) which, although nonnormaliz-

able, will all have the same energy eigenvalue when calcu-
lated via Eq. (3.5). Whether these nonstandard solutions
or, equivalently, our CCM enlargement of the usual Hil-
bert space for quantum mechanics, are simply curiosities
or are potentially useful, must await their further study
that we intend to perform.

In summary, by applying the CCM to various classes
of one-body anharmonic oscillator Hamiltonians, we
have found the method to be very resilient to inaccura-
cies in the starting wave function of zeroth order. The
only real problem concerned the double-well potential,
where an intrinsic description of tunneling was seen to be
absent from our CCM prescription built on a single
zeroth-order model (or reference) state. In this respect, it
is likely that one needs to extend our CCM prescription
to one built on a multireference state approach. This is
clearly indicated even at the Hartree level by the results
of our Sec. II E. We note that there exist several variants
of coupled-cluster theory employing a multireference
state approach. " These have largely been
developed with open-shell systems in mind, both for
atoii;ic nuclei ' and for many-electron systems in quan-
tum chemistry. " ' Unfortunately, non of these vari-
ants seems immediately applicable to our present needs,
as we discuss more fully below.

We note that the general topic illustrated in the present
paper by applications to the model Hamiltonian systems
of anharmonic oscillators should also be of particular
topical interest in such areas as quantum chemistry,
where the CCM has become widely applied. For exam-
ple, applications to molecular systems of both the Emrich
approach considered here and the (multireference-state)
open-shell approach referred to previously are currently
being performed by several groups. In this context, such
quantities as excitation energies, ionization potentials,
and electron affinities are probably of most interest. A
new generation of coupled-cluster calculations has been
initiated for these quantities, which may then be com-
pared with the results from such older techniques as, for
example, the Hartree-Fock, configuration-interaction
(CI), and Green's-function methods. The interested
reader is referred to the recent literature for further de-
tails of these quantum chemistry applications. Refs. 12
and 31—35 are an illustrative, but by no means exhaus-
tive, selection of the current work in this area.

One of the very great advantages of the CCM over, for
example, the CI method, is its size-extensivity property.
Thus for a many-body theory to be able to be applied
over a wide range of particle numbers, and to be numeri-
cally stable, it must be size extensive in the sense of gen-
erating values for such extensive variables as the energy,
which scale correctly with particle number. For exam-
ple, the CI method contains disconnected diagrams for
the energy and suffers accordingly from the so-called
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size-extensivity or size-consistency problem. ' ' As is
well known, the ground-state CCM based on a single
reference state, as discussed in Sec. III, resolves this prob-
lem and contains no disconnected energy diagrams. The
same is also true for the straightforward Emrich exten-
sion of this formalism to excited states, which we have
similarly discussed in Sec. III and employed in the
present work. Indeed, one of the particular attractions of
this excited-state formalism is that the spectrum is given
directly in the form of excitation energies, rather than
having to take the differences of absolute excited-state
and ground-state energy eigenvalues.

By contrast, in the extension of the CCM to a mul-
tireference state approach, " ' the size-extensivity
problem is not necessarily trivial to satisfy in practical
applications. In this approach, one chooses some set of
(quasidegenerate) reference states (e.g. , Slater deter-
minants for many-fermion systems, built from single-
particle orbitals which include a set of valence orbitals),
which approximately span the desired set of eigenfunc-
tions. Typically, one then constructs some effective
Hamiltonian that acts on only a small subset of all possi-
ble reference states (the so-called model space), but in
such a way that it exactly reproduces some selected por-
tion (typically the lowest portion) of the eigenspectrurn of
the full Hamiltonian in the full space.

In order to satisfy the size-extensivity property, it is
suScient to ensure that this effective Hamiltonian con-
tains only connected terms. Until relatively recently this
was thought to imply that the model space should be
complete in the sense described below. An N-fermion
model space is typically spanned by some set of N-

particle Slater determinants. These determinantal states
are constructed from a set of single-particle orbitals
which typically are either labeled as core orbitals or
valence orbitals. The core orbitals are, by definition,
completely occupied in each determinantal state by N,
fermions. By contrast, the valence orbitals are only par-
tially occupied by the remaining N, =(N N, ) fermions-.
If the model space includes all determinants such that the
N„ fermions are allocated to the valence orbitals in all
possible ways, the model space is said to be complete.
While such multireference state extensions of the CCM in
complete model spaces retain the size-extensivity proper-
ty, such complete spaces are often prohibitively large for
practical calculations. Recent work ' has shown how

the size-extensivity property may also be retained in suit-

ably defined incomplete model spaces. A discussion of
this point would take us too far afield for present pur-
poses, however, and the interested reader is referred to
the literature ' for further details.

It is not yet clear whether the Emrich approach to ex-
cited states considered here, or the multireference state
approach employing an effective Hamiltonian amd model
space, will ultimately be the more useful in practical ap-
plications to such fields as quantum chemistry. For truly
extended (e.g., condensed-matter or field-theoretic) sys-
tems, the Emrich approach certainly seems more natural,
since the division of single-particle states into core,
valence, and unoccupied states would in such cases usual-

ly be very artificial. Conversely, for relatively small sys-
tems such as many atoms and molecules, the multirefer-
ence state approach seems very physical.

We have already indicated that for applications to
anharmonic oscillators with double-well or multiwell po-
tentials, and to the comparable soliton-bearing field
theories, an extension of the CCM appears to be neces-
sary if one wishes particularly to describe the important
consequences of quantum tunneling. What appears to be
necessary here is some version of the CCM which incor-
porates both the underlying concepts of the Emrich for-
malism as well as a multireference state approach. How-
ever, none of the existing versions of the open-shell mul-
tireference state formalism as described in outline above,
seems easily to adapt itself to the case where the multiple
reference states differ not by small ("local" ) changes in
the occupation of the valence orbitals, but rather by some
global symmetry property. Thus, in the case of the
double-well anharmonic oscillator, for example, we
mould like to employ the shifted parity doublets as a pair
of reference states to be built into the starting-point of
the CCM formalism on an equal footing. One may easily
imagine that such a formalism could also be very useful
in quantum chemistry, for example, for applications to
molecules that exhibit analogous (broken) syinmetry
properties. We hope to return to this problem at a later
stage.
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