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An associative memory network with local variables assuming one of g equidistant positions on
the unit circle (g-state phasors) is introduced, and its recall behavior is solved exactly for any ¢
when the interactions are sparse and asymmetric. Such models can describe natural or artificial
networks of (neuro-)biological, chemical, or electronic limit-cycle oscillators with g-fold instead of
circular symmetry, or similar optical computing devices using a phase-encoded data representa-

tion.

Solvable neural-network models can be helpful for un-
derstanding some of the basic aspects of biological infor-
mation processing, and can aid the emerging technology
of “neurocomputing” by suggesting or analyzing new
design strategies. Until recently, most of the theoretical
attention was concentrated on models having either binary
variables or scalars constrained to the unit interval by sig-
moidal nonlinearities.! 3 Very recently, a model with
continuous variables ranging over the unit circle (phasors)
was introduced,* and its performance as a phasor associa-
tive memory was solved exactly,’ assuming the (vector-
valued) interactions to be sparse and asymmetric. In this
paper, I propose and solve a class of related models in
which the phasors are discrete g-state variables on the cir-
cle. The fundamental difference with Kanter’s® recent g-
state Potts neural network lies in the cyclic group struc-
ture of the value-space of g-state phasors, which allows for
simpler synapses and yields different dynamical behavior.
The motivations for studying general phasor models
derive from natural as well as technological back-
grounds.*> Interacting limit-cycle oscillators occur in a
wide variety of settings,’ and some parts of the brain (e.g.,
olfactory bulb® and motor-pattern generators in simple
animals) seem to use local feedback neural circuits as
building blocks in networks. Problems for which phasor
networks would be especially appropriate involve the pro-
cessing of signals with a circular value space, such as edge
orientations or optic-flow directions in images, or phase
patterns over detector arrays. Finally, it seems technolog-
ically attractive to encode information in the phases of
beams in optical neurocomputers, enabling the relatively
slow optical switching used so far in amplitude-based
machines to be replaced by much faster saturating optical
amplification. First attempts at the design and construc-
tion of phasor devices are now being made.®!°

The models analyzed here are meant to be associative
memories, i.e., given a noise-corrupted pattern as initial
state, they should relax towards the nearest pattern occur-
ring in a set of learned patterns. Exact results and useful
approximations are derived for the accuracy and speed of
recall in sparse, asymmetrically connected g-state phasor
nets. From a statistical physics point of view, such phasor
models are clockface or planar Potts (not standard
Potts)!! models with rather unusual sparse, asymmetric,
and vector-valued interactions. I shall use complex num-
ber notation for all two vectors with |x | denoting the
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modulus, and X the complex conjugate of x.

The network has N— oo phasors s;, with |s;| =1 and
si€ {o" (n=0,...,g—1), the set of gth roots of unity,
i.e., o"=exp(v/—1n2n/q). Interactions occur via cou-
plings ¢;; =K;;C;j. The K;; € {0,1} represents the sparse-
ness and asymmetry of the connection matrix by taking
them as N2 independent samples from the distribution

p(K,-j)-%é‘(K,-,-—l)+ [1 —%]a(x,-j). )

The exact results apply to very sparse connectivities,
Z~(InN)? as N— oo, for some fixed 0 <z < . Note
that this causes almost sure asymmetry. The numbers Z;
of inputs K;; =1 per cell have mean Z and variance Z,
hence become deterministic as N (and thus Z) go to
infinity. Sparse, asymmetric connectivity is biologically
more realistic, as well as easier to implement in Si chips,
but may be unnecessary in optical networks. In this pa-
per, I am more motivated by the theoretical advantages of
sparseness, introduced and applied successfully to various
binary automata and neural networks by Derrida and co-
workers'>!3 and Hilhorst and Nijmijer.'* The analysis
becomes much simpler because no buildup of correlations
occurs during the evolution of the model. A cell’s state at
time ¢ depends only on that of roughly Z* cells at time 0.
These ancestors are all distinct as long as Z'< N2,
which is guaranteed for any finite ¢ by the chosen scaling
of Z. To complete the specification of the interactions, the
C;j are defined via a complex-valued generalization® of
Hebb’s rule '’

P
Cij -klei(k)fj(k) , )

where ;%) is phasor i in the kth of P learned patterns.
The s*’ will be assumed independent and uniformly dis-
tributed over the set {c™}, n=0,...,g—1. It should be
possible to realize such interactions by means of holo-
grams in optical networks, and via (multiple) real-valued
synapses in networks of (biological) oscillators, where the
complex-valued couplings represent the phase shifts due
to finite propagation delays or hidden variables.>

The dynamics of the phasors depends only on their local
fields

h,' =n; + LEC','_,'SJ' , (3)
Z7j
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where Z is the average number of inputs K;; =1 per cell.
The n; are complex-valued local white Gaussian noise, i.e.,

(i (On; (")) =bs(i — j)s(t—1") .

Stochastic dynamics is defined via the Gaussian noise, not
via a more usual finite-7" spin dynamics. Assumption of
detailed balance would be unrealistic because of the non-
symmetrical interactions. Noise due to nonequilibrium
physical phenomena will be present in any realization, and
will usually be Gaussian. In any event, generalization
to other noise distributions would not involve great
difficulties.

The evolution of the model will be analyzed under a
range of discrete-time dynamics differing in their degree
of parallelism, but all having the same rule for updating
individual phasors:

sit+6t)=0" if | Arglhi(t)/6™1| < n/q, @)

where Arg(x), the phase angle of x, is taken to range over
(—n,7). Thus, each updated phasor assumes the value
o” closest to the direction of its local field. Borderline
cases can be resolved randomly without effect since they
occur with vanishing probability. The degree of parallel-
ism of the updating is allowed to vary from random purely
sequential (type A) to fully parallel (type B). The natural
time scale for type-A dynamics is obtained by taking the
time interval 8¢ as 1/N; the proper choice for type-B dy-
namics is 6t =1. Extension of the results to intermediate
degrees of parallelism is easily done by taking 6t =x/N,
and updating a random subset (fraction 0 < x/N < 1) of
the phasors per time step.

Similarity of a networkstate to the patterns is expressed
by overlaps My

M= %zi:s,-s-,fk’ . (5a)

Although the evolution of the overlaps will prove to be
fundamental in the analysis, it is useful for many practical
applications to define another measure Ey, the fraction of
phasors “in error” with respect to a pattern k.

E =%Card{si | si=s®, i=1,2,... N}, (5b)
where Card is the cardinality. Note that the M; rotate
and Ej vary under rigid kphase rotations transforming all
si (or 5%) to Ss; (or Ss{*?) with a fixed SViand | S [ =1
(i.e., picking a new global reference phase), whereas the
¢;j and the dynamics are invariant under such pure gauge
transforms. It is convenient to work in the standard gauge
in which s; is transformed to s;M /| M | ; this rotates M
to the positive real axis, and removes from E; all unin-
tended sensitivity to the global phase. If necessary the
same can be done to the My and E; (k> 1), independent-

ly for each k, by rigidly rotating the s{R.

The memory-recall behavior of the model is analyzed
using an ensemble average over the Gaussian dynamical
noise n;, the random connections Kj;, the patterns {s,-(")},
and all initial conditions having some fixed finite overlap
with only one pattern, say M(¢) >0 and M > ;(¢) =0 at
t=0. I shall drop the k and ¢ from M} (¢) and E;(¢) when
k=1 and ¢ > 0 are meant. Let d; denote the set of input-
cells of cell i, 6,~:={j|K,~,~=1}, and let Z; be their size,
Z;=Card(9;). From (2) and (3), the local fields become

h; =n,~+—é—%‘,sj [kélsi(k)gj(k)] = +h O +h*
where

D -%s,-(” [%‘.Ej(”sjl 6)
and

1 < _
. -7k§23i(k) [%:sj(k) s ] _
In the standard gauge, the x* =h V5" are sums of Z;
biased vectors with mean (x{))=M(¢) and variance
() xM—(x VY| =< 1/Z, at any time ¢. Thus, k" be-
come deterministic as N and Z~(InN)? go to infinity.
From here on, I will first discuss ¢ > 2 models, and then
the special case ¢ =2. The h;* are sums of (P—1)Z; ran-
dom vectors ¢”, so their distribution as Z— oo becomes a
complex Gaussian with circular symmetry around 0 and
variance (P—1)/Z. Recall that the complex noise n; has
(ll,') =( and ( | n; I 2) =h,

Clearly, with a low loading (P/Z— 0) and no noise
(b=0), recall is perfect [M (1) — 1] in just a single paral-
lel updating step. The more interesting cases are exten-
sively loaded and noisy nets with P/Z =a >0 and b > 0.
Then the distribution of x; =h;5;" is Gaussian with vari-
ance d =a +b, and circular symmetry about M (¢). Since
the s;(t +5¢) depend only on the phase of A;(¢), the evolu-
tion of the model can be written in terms of a dimension-
less “reduced” overlap m=M/~/d. As N— oo, the distri-
bution of x; in terms of Cartesian coordinates (v,w)
=[Re(x),Im(x)1/Vd/2 becomes

p(v,w)=21—”exp{—[(v—x/5m)2+w2]/2}. %)

The error measure E equals the probability mass falling
outside the sector satisfying v>0, |w| <vtan(x/q).
This will be studied in detail below. To analyze the exact
evolution of m(z), it is more appropriate to transform Eq.
(7) to polar coordinates, integrate out the radial depen-
dence, and thus obtain® the distribution p(u) of the phase
errors u; =Arg(x;)

p(u) =%(exp[ —m 2+ Vrm cos(u) expl —m 2sin?(u)1{1 +erflm cos(u)1}) , 8)

where erf(x) is the standard error function.'® A useful approximation for p(u) in the m < 1 regime is

p(u) -ﬁ{l +Vamcos(u) [1 —m?sin?(u) 1+ m2cosQu)} +O(m*) . )
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The evolution of m(t) can be calculated from (8) by choosing some specific type of dynamics (degrees of parallelism)
based on the update rule Eq. (4). For type-B (parallel) dynamics, the states of all 5;(z + 1) are thus given in terms of the

si(¢) by substituting m () =M (¢)//d, given M(0) > 0. Each new s;(t +1) =o"s!

) contributes Re(c”)/N to M(t +1).

The evolution of the model in terms of M, a, and b becomes M (t +1) =F(a,b,M(2)), where

-1

q
F(a,b,M(t))=G(m)= Zo [cos (2mr/q)f

Qn+1)r/g
- Dar/q

Extension to type-4 (serial) dynamics is easy, since this
corresponds to

M@+6t)=(0—=1/N)M@)+QA/N)M©@+1)
=M@)+6t[F(a,b,M())—M@)].
Thus, as N— o with 6z =1/N,

LMW =Fla,b,MO) = M)
Extension to dynamics with intermediate parallelism
should be obvious. In any case, the attractive fixed points
M*(d) =G(M*/\/d) represent the t— oo recall accura-
cy of the phasor models with loading a and noise b.

Equations (10) and (11) are the exact solution of the
recall process, and the integrals and sums can be evalu-
ated numerically without serious difficulty. However, a
bit more analysis will extract useful closed-form results
and approximations of the solution in the low-m and
high-m regimes. Substituting Eq. (9), the third-order
m <1 expansion of p(u), into Eq. (10) one finds that
after some trigonometric algebra that the trivial fixed
point M =0 becomes unstable for d below the critical
point

d.=q?sin?(x/q)/(4x) foranyq>2. (12)

For all ¢ > 3, a stable recall solution M* > 0 branches off
as

(1)

M*=A4,(d.—d)"? with A>4=+2, but A4=+/3.
(13)

The characteristic relaxation time 7 of M (z), which is
of order 1 for d<1, shows critical slowing down
T~ |d.—d| ~! for d near d. and ¢ > 3. The case g=3 is
peculiar; here, an unstable fixed point M' > 0 branches off
towards higher d, behaving as M'=4x(d —d.)/(3/3).
The fixed-point line now bulges out above d.=0.537,
leading to a first-order transition above d.. Numerical
evaluation of Eq. (10) shows that the attractive upper
branch still has M*=0.7027 at d., and extends to
d=0.613 where M * =0.39.

The high-m regime is more interesting for practical ap-
plications since this is where the recall process converges
well to the proper pattern. Crossover to the high-m re-
gime occurs when the bulk of x;=h;§ M vectors fall
within the n=0 sector (|u;| <=/q). This begins as
m > q. The error-density E can be detcrmmed using two
simple bounds E " <E<E™Y. I take E¥ as twice the
probability mass in the halfplane w > vtan(x/q). This
overestimates E by double counting the mass in the v <0
mirror image of the n=0 sector, which suggests subtract-
ing (once) the mass in the halfplane v <0 from E * to get

up(u)].

10)
[
a lower bound E ~. The bounds then become
+ o )
E 2/r \/_msm(ﬂ/q)dy exp(—y?%/2)
=erfclmsin(z/q)], (14a)
and
—=ft— # ® —y2
E " =E Jz_”fﬁmdyexp( y3/2)
=F* —erfclml/2, (14b)

where erfc[x] =1 —erflx] is the standard complementary
error function. For x>>1, the first term of its asymptotic
expansion will usually suffice erfclx] =exp[—x2]
x (x+v/z) "' [1+0(x ~?)]. Note further that E ¥ is an ac-
curate m>> 1 appr0x1matlon of E, since the sin(z/q) <1
in the argument of £ * makes the difference £+ —E ~ de-
cay much faster than E % itself. Estimating the mass in
wider sectors one finds, as expected, that almost every
phasor with an erroneous value s; #s,( merel?' falls into
one of the nelghbormg sectors around s{’¢” with
|n| =1, as soon as m is moderately larger than q. We
still have to find the fixed point m* =M *//d in order to
compute the fixed point error E*. Since |n| =1 errors
dominate, this means solving M*=1—E*+E*cos(2x/
q). Using the approximation E*=E * proposed above,
one obtains the asymptotic behavior for d <sin?(x/q)

1 —M* =2d/xsin(z/q) expl —sin(x/q)/d] , (15a)
and
E* =d[rexpl—sin*(z/q)/d)/sin(z/q) . (15b)

Finally, the case ¢ =2. The reason for treating it sepa-
rately is that the distribution of the x; is no longer circu-
larly symmetnc around M since the signal h{" and in-
terference h;* vectors are now distributed on the real axis,
while the noise #; is still complex. In view of the dynamics
Eq. (4), which is now independent of Im(;), only the pro-
jections on the real line play any role. Thus, half of the
noise variance b has no effect, but all of the variance a
from interfering k > 1 patterns does. Defining d'=a
+5/2, the evolution equation for type-B dynamics be-
comes M(t+1) =erf[M(t)/~/2d'], leading to the fixed-
point approximations

M*=[20d;—

and

d)1'? as d'— d!=2/z from below, (16)

1-M*=V2drexpl—1/Q2d")] ford'< 5. (17)

For =0 Egs. (16) and (17) equal the T=0 results for
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the fully binary network of Derrida, Gardner, and Zip-
pelius.'> The relation between E and M is now simply
E=(1—-M)/2.

I conclude with a few remarks about these results. The
maximal memory capacity [Eq. (12)] converges for large
q to the value #/4 obtained earlier for the continuous pha-
sor model.*> The fixed-point overlap M * and error densi-
ty E* [Egs. (15a) and (15b)] are very flat for small load-
ing and noise. Their derivatives of all orders vanish at
d=0, where they possess an essential singularitg' only.
This is similar to the standard binary networks,*!? but
quite distinct from the asymptotically linear 1 — M error
found recently in the continuous phasor model.*> This
feature of the g-state models is due to the strong non-
linearity that enforces the discreteness of state space. It
persists in the limit for g— oo, but applies to the low-
error regime shrinking with ¢ as v/d <sin(x/q). One has
to study the 1>>d>q ~? regime to notice the linear error
emerging in the ¢g— oo limit. The effectively recallable
number of bits in the low-E regime of the ¢ =3 model is
2.37 times that of the g=2 case, but this ratio drops for

larger g, since the log,(g) gain from the increasing resolu-
tion per phasor looses out against the decreasing width of
the low-E regime.

As for applications, it is at present somewhat unclear
which biological realizations of g-state phasor nets may
exist. Most likely candidates are interacting limit-cycle os-
cillators”!7 with g-fold cycle symmetry, based on local
feedback involving several chemical species or hidden neu-
rons. The latter seem to occur in the olfactory bulb,® and
as primitive motorpattern generators'® in small animals.
In any event, it is very likely even now that technical im-
plementations of phasor models in optical hardware are
feasible; in fact, two different kinds of designs for such
machines have been proposed independently®'® while this
paper was being written. Other architectures (back-
propagation nets, etc.) could also be used with phasor en-
coding. On the theoretical side, further generalizations
seem possible. For example, one can let the variables
range over other value spaces, or use interactions that are
more general functions of the distance in value space be-
tween the local variables.
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