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In gels, a critical point at which swelling transition becomes continuous, is characterized by
vanishing of the bulk modulus EC. At this point, however, an instability is triggered by a single
mode representing homogeneous expansion while fluctuations with finite wave numbers are still
suppressed by the finite shear modulus p. Critical divergence of the fluctuation spectrum is ex-
pected not at this critical point but only in an unstable region. This unusual feature has been
overlooked because of small values of p in previous experiments.

A number of elastic materials undergo phase transitions
accompanied by a volume change. The aim here is to
raise and try to resolve a paradox in such systems, which
seems to have not been discussed seriously in the litera-
ture. Our arguments will, however, be limited to polymer
gels near their swelling transitions. ' See a comment on
solid materials at the end of this Rapid Communication.

Let us consider an isotropically swollen gel immersed in
a solvent. Its volume can be changed discontinuously as a
first-order phase transition where an external parameter
such as the temperature is varied. Furthermore, Tanaka
even reached a critical point of second-order phase transi-
tion by changing the degree of ionization of the network
and by diminishing the discontinuity at the transition.
He also observed enhancement of scattered light intensity
on approaching cloud points (or spinodal points). 3

At the critical point the bulk modulus K and its deriva-
tive with respect to p have been claimed to tend to zero.
Here,

K -y(8n/8y) T - —v(8II/8v) T,

where II is the omotic pressure, p is the volume fraction of
the polymers, and v I/p is the specific volume. The re-
quirement, K 0 and (8K/8p)T 0, will look obvious if
we note that II assumes the following form near the criti-
cal point,

II=II,+co(T—T, )

+ao(T T, ) (0 0, )/0&+ b—o((4 0—,)/0, j'+—
(2)

where II„T„and p, are the critical values of II, T, and p,
respectively, and ao, bo, and co are constants independent
of p and T. We are supposing situations in which II is
fixed at an externally given value II,„, (which has been

mostly equal to zero in previous experiments).
On the other hand, the correlation function for the

Fourier component bptt can be calculated in the mean field
theory in the form

G, -(lb', i'&-y'/[(K+ ', i )/k, T+-K,q'1, (3)

where p is the shear modulus and K, is a coeScient
dependent on the average volume fraction p. The q-
dependent term K,q 2 in the denominator has been intro-
duced to make the intensity to take the Ornstein-Zernike
form. The above relation (without the q-dependent term)
generally holds in the long wavelength limit q 0 for any
isotropic elastic bodies characterized by the two elastic
coeScients, K and p. For example, it can be obtained by
calculating the free-energy increase due to small displace-
ments u(r) together with the relation bp(r)/p —V u. 5

The correlation function has been calculated more gen-
erally for affinely deformed gels at long wavelengths.

Now we notice that, even if K 0, the fluctuation in-
tensity Ge must remain finite unless p goes to zero at the
critical point. Here I believe that p should be nearly con-
stant near the critical point in gels. Then we are puzzled
by the unusual nature of the critical point, determined by
(&II/8&)T (8 II/O& )T =0, at which critical fluctuations
seem to be not enhanced. This, however, apparently con-
tradicts Tanaka's claim that he observed critical diver-
gence of the scattered light intensity. 3 Of course (3)
holds only when the wavelength 2tr/q is much shorter than
the linear dimension of the system.

A clue to the riddle can be obtained by analyzin~ kinet-
ics of swelling or shrinking near the critical point. If we
consider only a very small displacement u (r) from a posi-
tion r fixed to a homogeneous reference state of the gel,
the stress tensor II;J due to the displacement can be ex-
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pressed in the standard form 5

II; K—(V u)a; t — + ——a;(V u) . (4)
Buj Bu/

LJ Bx Bx; d"J l

shear stress and (12) and (13) are simplified as

B B + Q A, Q,
Br Br r

(is)

We will discuss the problem for general spatial dimen-
sionality d because our results can then be applied to con-
strained gels allowed to swell only in one or two direc-
tions. 6 The equation of motion is of the form4

(1 —
t.') (d —1)u (R) (1+e)Ru'(R),

(i7)

where u'(r) Bu/Br. The solution to (15) is expressed as
—(d —2)/2 J (g 1/2r )

B .p 2u;+y „u;
Bt Bt / x/

(s) where J„(z) is the Bessel function of order v. The equa-
tion for A, is of the form

where p is the mass density and y is the friction
coefficient. In gels the friction term is dominant due to
relative motion between the network and the solvent.
Hence we obtain

u; D Vu~+e (V u)
t x/

where

zJd/z )(z)/Jj—/2(z) ~2 (d 1)—/(1 +e),
where z k '/2R and use has been made of
dJ„(z)/dz J„-~(z)—vz 'J„(z). If the gel is stable, we
should have a series of positive numbers, 0 & zp
& z ~ &, and the nth eigenvalue X„ is given by

(z„/R) 2. Here we are interested in the case zp~0.
Because the left-hand side of (18) may be expanded as
d —z2/(d+2)+ for

~
z ~ &&1, we then find

K/p+ (1 —2/d) .

(7)
ZJ—=

d(d+2) d —2
e — d(d+2)K/p(1+@) . (19)

d1+e

The quantity g—=V u simply obeys the diffusion equation

g D(1+a)v g. (9)

Notice that the following combination of K and p appears
in (9):

p(1+ e) -K+ [2(d —1)/d] p, (10)

which is inversely proportional to the intensity Gv in the
limit q 0 as shown in (3). Obviously the stability re-
quires 1+e & 0. At the boundary between the gel and the
surrounding solvent, the following relation must be
satisfied:

Namely, if e=-e, —= (d —2)/d or 0 & K« tt, there appears
a slow relaxation mode with the following relaxation rate:

Qp D(1+m)z$/R =d(d+2)K/(yR ) . (20)

From (14) and (17) the eigenvector up(r) for this mode
may be expanded as

up(r) [1 —constx (zpr/R) + ]r. (2i)

Therefore the above mode represents slow homogeneous
swelling or shrinking with only small density inhomo-
geneities. However, this mode has been overlooked by Ta-
naka. For example, if u;(r, 0) apx;/r at t 0, the subse-
quent time development is expressed as

+II;/n/ ~0,
J

where n is the outward normal unit vector to the surface.
Using (4) and (8) we rewrite (11)as

(e—1)(V u)n;+(n V)u;+gn u 0.
Bx; '

u;(r, t) ap(x;/r) g a, u„(r)exp( —Q„t), (22)
n~0

where u„(r) is the nth eigenfunction of (1S) and
Q„D(1+a)z„2/R„, z„being the nth solution to (18).
As zp 0 we can prove apup(R) 1 —z$/[(d+2)
x(d+4)]+ and a„u„(R)~K//t for n~ l. Namely,
the first mode n 0 dominates in (22), leading to

u;(r, t) ~ap(x;/r)exp( —Qpt) for )K/p )
&1.

12
(23)

Thus we are led to the following eigenvalue problem:

V Qi+ (V u) -—Z(1+a)u;,

u; -ux;/r, (14)

with the boundary condition (12).
For simplicity we consider a spherical gel with the

boundary at r R and seek only spherical solutions of the
form

Qp=-d'K/(yR, ') (24)

where Rz is the gyration radius defined by VRz2 fdrr2,
V being the total volume of the gel and the integral being
limited within the gel. More generally, if the first term in
(S) is not negligible, Qp is determined by

Even for general shapes of the gel, the corresponding
slow mode can be readily calculated by expanding u as
r+0(r 3). After some calculations we find up to first or-
der in e —e, Klp,

where u depends only on the radius r. Then there is no
—pQ(+ yQp=-d'K/R, '. (2s)
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Next we examine how the free energy F due to small
deformations behaves at small K. It is expressed as

F „dr -'Kg + —,
' pg t);u, +B,u; ——gb;J, (26)

where g V u. Let the eigenfunctions and the eigenval-
ues of (12) and (13) be u; and Xp with p 0, 1,2, . . . .
Expanding u;(r) as u;(r) p-pApup, we find

F —,
' p(1+a) g A, C A

p~P

where Cp fdr g; ~ u;p ~
. Thus the variables Ap are in-

dependently Gaussian with variance ka T/(p (1+&)&qCp)
near equilibrium.

We have thus shown that only a single mode represent-
ing a homogeneous volume change becomes marginal as
K 0 and an instability takes place for K & 0. Further-
more, in the transient process to a new swollen (or shrunk-
en) state, we should find no appreciable inhomogeneities
like domain structures as long as ~K~ &&p. This is be-
cause such inhomogeneities are suppressed by the finite
shear modulus on the time scale of Rz/D which is sup-
posed to be faster than I/Qp. Phase separation into two
phases can be expected only for

~
K

~

~ p. The instability
point K 0 is thus completely different from the usual
critical point in other equilibrium systems in which an
infinite number of long wavelength fluctuations are
enhanced. We should consider the point K 0 to repre-
sent a mechanical instability point rather than a thermo-
dynamic instability point.

The form of II near the critical point (2) also suggests
that there should be a finite transition probability even for
K & 0 between two different stable states determined by
II const. In the case K«p, this is the problem of meta-
stability for a single mode without any spatial depen-
dence. The transition rate should be proportional to the
factor exp( —~/kit T), ~ being the free-energy barrier.
Some calculations show that M is proportional to the to-
tal volume V as

(27)

b.F/kg T- VK /pkIr T. (2S)

The above rate is, however, extremely small in most con-
ditions and there should be hysteresis in experiments.

There is a considerable difficulty to explicitly calculate
correlation functions in finite systems. s Here we express
the correlation function for the deviation bp(r) in the fol-
lowing expansion form:

(by(r1)by(rg)) = g Cp 'yip(r1) yp(rP),
klan T

p 1+f p~o kp

(29)
where yp(r) =V. up. The first term p=0 gives rise to a
contribution nearly equal to klrT/KV for 0&K&@,

whereas the contribution from large p should be insensi-
tive to the boundary condition with its dominant part be-
ing the Fourier transform of (3). The first term diverges
as K 0 signaling the onset of the instability, but it is vir-
tually negligible in magnitude unless V is very small.
Equation (29) also shows that the fluctuation of the total
volume, bV= —fdrbp(r), is Gaussian with variance
kgTV/K as K 0 as ought to be the case. On the other
hand, if K & 0, an instability occurs and then the first
mode Ao should exhibit large fluctuations in the transient
stage. '

In practice, the time development of the slow mode dis-
cussed above can be followed only when the time I/Qo is
less than the observation time. For example, a 2.5% poly-
acrylamide gel in Refs. 3 and 4 had a very small shear
modulus p of order 2& 10~ dyn/cm~ and the difl'usion con-
stant D defined by (7) was of order 10 cm /sec far from
the spinodal point. ' Therefore, for macroscopic sizes of
gels, the temperature can be lowered into a region in
which K+ —', p =-0 without any appreciable volume
change. In the above gel the scattered light intensity indi-
cated the relation

(K+ ', p)/ksT -3.6x102o(1/T, —1/T)cm deg

where T, was the temperature at a cloud point. Then the
temperature region in which

~
K

~
& p should have had a

width of order 1 deg. It is now very desirable to detect the
difference of the temperature of K 0 and that of
K+ —', p 0 by observing both swelling and light scatter-
ggg

&~

We remark that the slow mode at K=O strongly de-
pends on the macroscopic boundary conditions, whereas
the fluctuation enhancement at K+ -', p 0 does not as
long as gels are kept isotropic. The former even becomes
nonexistent if the gel surface is clamped to solid walls. In-
terestingly the point at which the swelling transition be-
comes continuous and the point of fluctuation enhance-
ment can coincide if gels are allowed to change their
shapes only in one direction. '~ This is simply because
shear deformations are not induced by uniaxial volume
changes. In accord with this, (10) indicates that the
diffusion constant for V u in (9) is just equal to K/y for
d 1. There should be a rich variety of experiments on in-
stabilities and critical phenomena in constrained gels with
various boundary conditions. 6'

Also in crystals an analogous mechanical instability can
occur without critical enhancement of acoustic modes.
For example, this condition is C11+2C1q 0 with
C1q & 0 in cubic crystals, where C;~ are the stiffness con-
stants in the usual notation. This condition can in fact be
realized in some crystals, '3 in which, however, p is not a
small quantity and the two points of K =0 and
K+ 3 p. 0 are much separated.
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