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Tunneling of squeezed states in asymmetrical double-well potentials

D. Mugnai and A. Ranfagni
Istituto di Ricerca sulle Onde Elettromagnetiche del Consiglio Nazionale delle Ricerche, 50127 Firenze, Italy

M. Montagna, O. Pilla, and G. Viliani
Dipartimento di Fisica, Universita di Trento, 38050Povo, Trento, Italy

M. Cetica
Istituto Nazionale di Ottica, 50125 Arcetri, Firenze, Italy

(Received 14 December 1987)

Tunneling of initially squeezed wave packets in asymmetrical double-well potentials is studied;
the fractal nature of the trajectory, previously found in the case of symmetric potentials, is re-

obtained.

In recent works it was shown that a squeezed initial
wave packet in a one-dimensional symmetrical double-
well potential gives rise to irregular tunneling behavior.
The tunneling trajectory, i.e., the time dependence of the
expectation value of the coordinate, was shown to have a
chaotic character, and the result was that a fractal di-
mension could be assigned to the trajectory. '

The purpose of the present work is to extend such an
analysis to moderately asymmetric double-well potentials.
The importance of this kind of potential has to be seen
also in connection with macroscopic quantum-tunneling
phenomena observable, for instance, in Josephson junc-
tions, superconducting quantum interference devices,
etc.

Following the approach adopted in Refs. 1 and 2, the
time evolution of an initial wave packet 4(x, ,O) can be
written

4(x, t)= f K(x, t;x;,0)4(x;,0)dx;,

where the kernel K can be expressed as an eigenfunction
expansion

K (x, t;x;,0)=g g„(x)P„'(x,)exp( iE„t/fi), —

where V( —a)=0 and V(a)= —o.
Once 4(x, t) is determined, the dynamical evolution of

the system can be described by the expectation value of
the coordinate

(x(r)) =f i
4(x, t)

~

'x dx . (4)

g+, ——Hi„(y)exp( —y /2) .

By using the assumption of moderate asymmetry
(0&ir « iricoo) the mixing coefficients in Eq. (5) can be
determined using a truncated matrix formulation by di-
agonalizing the energy matrix '

The eigenfunctions of Eq. (2) are expressed as linear com-
binations of wave functions of harmonic oscillators cen-
tered at x =ka, namely f, and g „respectively,

g4„——(sing„)g, + (cosy'„)P, ,

g4„+ i
——(cosy„)P, —(sing„)f, ,

where

4(x;,0)=

since P„and E„are the eigenfunctions and the eigenval-
ues of the problem, respectively. The initial wave packet,
for a particle of unit mass, is taken to be a squeezed state
described as the Gaussian wave packet

2R '~4
COoe y 2e2R

exp (3)

where R is a squeezing parameter, y =(coo/Pi)' (x+a) is
a local coordinate centered at the potential minima, and
coo is the vibrational angular frequency in each separate
well supposed, for simplicity, perfectly parabolic (see Fig.
l),

V(x)= —,'coo(x+a) + V(+a),

Q

FIG. 1. Asymmetric double-well potential; xz is the bounce
coordinate when the zero is referred to —a.
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—o/2 y„
y„o /2

where y„are coupling coeScients due to tunneling
through the barrier. They enter the energy-shift expres-
sion since the eigenvalues are given by

E4„=E„' ' (rr—/2) 5„—,

E4„+,=E„' '+(a /2)+5„,
where 5„=(—,')[(4y„+o )'~ —o.] is the energy shift of
each level and, for each energy matrix, the energy zero is
referred to as

For o =0 the wave functions of Eq. (5) reduce to an even
and an odd linear combination of harmonic-oscillator
wave functions, respectively.

By substituting Eqs. (5) into Kq. (2), by substituting
Eqs. (2) and (3) into Eq. (1), and by integrating (neglecting
overlap terms), we obtain, assuming that the motion
starts at the upper rninimurn,

4(x, t }=g A2„[ (sing„)$4„exp( tE—4„t /fi}
n

+ ( cosy„ )$4„+&exp( t'E4„+—
&
t /trt )],

E„' '=[2n +(—,')]trttoo —o/2 .

By using this method it is easy to verify that
tang&„=5„/y„and tan(2q&„) =2y„/o so that

where

&(2n )!
2'

1

coshR

1/2
tanhR

2

cos(2y„}=
(~2+4y2 )I/2

(8) The expectation value of the position as a function of
time, Eq. (4), results in

=g(A2„) cos (2y„)+sin (2y„}cos(x(t))
x 0

o +25„
fi

(10)

which, for o. =0, exactly reproduces the corresponding
expression of Refs. 1 and 2, since 2y„=tr/2 and
25„=fibo24„ is the tunneling splitting relative to the nth
level.

The energy shift 5„can be evaluated according to the
relation '

exp( —2So /A')

(2rrn ')'(o +5„)
where So is the classical action, and the density of states
n' is given by

I

further increase in cr completely quenches the n =0 con-
tribution to the tunneling.

Note that these results hold either for a motion start-
ing from the upper minimum, at x = —a, or from the
lower at x =a.

Though a small asymmetry rapidly quenches the aver-
aged tunneling trajectory, it has practically no effect on
the length and fractal dimension of the trajectory. In
Fig. 4 we report the log-log plot of the trajectory length
as a function of the inverse sampling interval; by using a
faster computer than that in Refs. 1 and 2 (Olivetti M24
plus 87 Basic Inline compiler) it was possible to evaluate

I
n =

The frequencies Bz„, for small asymmetry, can be taken
according to Refs. 1 and 2. By using this method we ob-
tain

'2
0 +~4n2

1/2

(12)

where b,F04„——p "/(2n)! and p is related to the energy
barrier Vo by the relation P= 4Vo/fuoo.

The trajectories of Eq. (10) have been evaluated for
several values of the asymmetry parameter cr and by us-
ing the same values for the squeezing and potential pa-
rameters as those in Ref. 2. The cases a =0.5 and 2 are
reported in Figs. 2 and 3, respectively; as can be seen, the
trajectory amplitude in the asymmetric case is strongly
reduced. The quantity o. is expressed in units of the
ground-state tunneling splitting which, with the present
choice of potential parameters, is of the order 10
times the vibrational energy in one of the two wells. A

O
X

X

FIG. 2. Expectation value of the normalized position as a
function of time for R =2, p=48, and rr=0 5in units of th. e
ground-state tunneling splitting. The sampling time is 2m. /157.
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FIG. 3. Same as Fig. 2 but with 0 =2.

the length in 500 points. The curve has a well-defined

slope over several decades, even though structures are
present which are due to the deterministic nature of the
trajectory as discussed in Ref. 2. For any value of o.

small enough for the above analytical treatment to be val-

id, no appreciable change is observed either in the slope
or in the shape of Fig. 4. This can be understood by con-
sidering that for n &0 only very small changes, in the
time-dependent arguments of the cosine function in Eq.
(10), are caused by the considered values of o.

The strong reduction of the amplitude of &x (t) ), even

with small values of the asymmetry parameter cr, can be
quantified as follows. Let us consider Eq. (10) for R =0,
that is, when we have only the n =0 contribution. In this
case it is easily seen that the maximum averaged ampli-
tude & xl ) results in

& x~ ) 2(irtb tao)

&x(0)) tT'+(Rb, to, }' ' (13}

which, for tr=0, rightly gives &xi')/&x(0)) =2, while

for tr=fib, too we have &xM ) /&x(0)) =1 as confirmed by
computer calculation. For tr ))iiib, tao, Eq. (13) can be ap-
proximated as

FIG. 4. Normalized length of the trajectory with the same

parameters as those in Fig. 3. Ato ——m/25; Lo is the length cor-
responding to hto. The slope is Atted to 0.9574, giving a fractal
dimension d = 1.9574.

&xM)

& (0))
==2 exp( 2So/fi), — (14)

This means that the coherent oscillation between the two
wells is quenched by the small asymmetry.

The present analysis has been performed without con-
sidering dissipative effects, whose inclusion is important
especially from the point of view of applications. Dissi-
pation, while strongly increasing the complexity of the
analysis, ' also influences, as mentioned above, the
dynamical behavior of the system which, in a finite time,
tends to decay to the lower minimum. This fact cannot
be predicted in the undamped scheme of the present
work, where an important aspect is represented by the
fractal character of the tunneling trajectory.

being htop=[ci)pexp( So/St)]j/—ir and, according to Refs.
1 and2,

' 1i2
7Tcoo

o= 2~coo
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