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Abrikosov dislocation lattice in a model of the cholesteric —to —smectic-A transition
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The nematic-to-smectic-A transition in liquid crystals is analogous to the normal to supercon-
ducting transition in metals with the Frank director n in liquid crystals playing the role of the vec-
tor potential A in metals. The liquid-crystal analog of an external magnetic field is a field, arising,
for example, from molecular chirality, leading to a nonzero V)& n in the equilibrium nematic phase.
The cholesteric (twisted nematic) phase is the analog of a normal metal in an external magnetic
field. In type-II superconductors in an external magnetic field, the Abrikosov flux lattice phase with
partial flux penetration intervenes between the low-temperature Meissner phase and the high-
temperature normal-metal phase. In this paper we study the analog in liquid crystals containing
chiral molecules of the Abrikosov phase in superconductors. Using a covariant form of the de
Gennes free energy, we find that in mean-field theory a state, which we call the twist-grain-
boundary (TGB) state, with regularly spaced grain boundaries consisting of parallel screw disloca-
tions, intervenes between the smectic and cholesteric phases. We calculate the liquid-crystal ana-
logs of the upper and lower critical fields H, 2 and H, l. The properties of the TGB phase depend on
the angle 2n.a between axes of dislocations in adjacent grain boundaries. a can be rational or irra-
tional. When a =p/q for mutually prime integers p and q, the TGB state has a q-fold screw axis and
quasicrystalline symmetry for crystallographically forbidden q. Our calculations ignore exponen-
tially small terms favoring lock in at rational a. We calculate the x-ray scattering intensities in the
cholesteric phase near the TGB phase boundary and in the TGB phase for rational and irrational a.
We also discuss experimental difficulties in observing the TGB state and the possible effects fluctua-
tions not included in mean-field theory might have on its existence.

I. INTRODUCTION

The nematic-to-smectic-A transition is, perhaps, the
best known and most extensively studied of the phase
transitions occurring in liquid crystals. One of the pri-
mary notions that has emerged from these studies is the
close analogy between this transition and the normal to
superconducting transition in metals. ' The basis of this
analogy is simple: the ordered phases of both smectics-A
and superconductors are characterized by a nonvanishing
complex order parameter g. For a superconductor, the
order parameter is the complex gap function whereas for
the smectic, it is the complex amplitude of the periodic
modulation of the nematogen density. Furthermore, the
coupling in smectics between g and 5n, the deviation of
the director n from some position-independent average
orientation, no, is identical to that between the gap func-
tion and the vector potential in a superconductor. The
analogy can be pushed further since the spatial average of
the twist n. (VXn) corresponds to the magnetic induc-
tion B. The field h thermodynamically conjugate to the
average twist then corresponds to the magnetic intensity
H. Thus, the cholesteric (or twisted nematic) is the ana-
log of a normal metal in an external magnetic field. The
expulsion of twist occurring at the cholesteric —to-
smectic-A transition is then the liquid-crystal analog of

the Meissner effect. These analogies can be made quite
precise by comparing the de Gennes free-energy function-
al for the smectic with the Landau-Ginzburg free energy
for a superconductor. '

Yet the analogy between smectics and superconductors
is incomplete in that, at the time of this writing, no ana-
log of the Abrikosov ' flux lattice has been found in
smectics. Superconductors are characterized by the ra-
tio, a. (the Ginzburg parameter), of their penetration
depth A, to their coherence length g. They are classified
as type-I superconductors if tc& I/V2 and type-II if
a-& I/v'2. The Abrikosov flux lattice occurs only in
type-II systems. Thus one explanation of the absence of a
vortex lattice analog in liquid crystals could be that all
smectic liquid crystals are type-I. This explanation, how-
ever, contradicts our current (albeit incomplete) under-
standing of the nematic —to-smectic-A transition. In
type-I systems, fluctuations drive the second-order mean
field normal-to-superconducting transition first order.
In type-II systems, however, fluctuations are believed to
lead to a second-order transition in the universality class
of the inverted xy model. The nematic —to-smectic-A
transition is observed to be second order in a large num-
ber of materials. On the basis of the analogy with super-
conductors, one would argue that these materials are
type-II and should, therefore, have the analog of an Abri-
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kosov phase when chiral molecules are added. To the au-
thors' now e ge, e' k 1 d, th re has been no direct determination
of the Ginzburg parameter for liquid crystals.

The subject of this paper is the putative Abrikosov
phase in type--II smectic liquid crystals. Such a phase, i
it exists, wou consisld sist of a network of screw dislocations.
Sethna' has argued, however, that a spatially infinite set
of parallel dislocations with nonzero areal density n~ is
impossible. His argument is as follows: Define u to be t e
smectic layer displacement and consider a circular con-
tour of radius R lying in a plane perpendicular to the
dislocation lines as shown in Fig. 1. The contour wi en-

close an area containing m.R n~ dislocations. Therefore,
dl Vu =(nR n„)dwhere d is the smectic layer spac-

ing. This implies that the average of
~

Vu
t

over the con-
tour is equa to —, n~1 t —,'Rdn and grows without bound as
R ~~. In other words, the slope of the smectic planes
re ative o a xe1 to a fixed plane perpendicular to the axis of the

that such adislocations diverges as R ~~ indicating that suc a
configuration oes nfi t' n does not have a well-defined thermodynam-
ic limit We are, therefore, forced to consider a more
complex dislocation network.

We will show that, to a very good approximation, the
minimum energy dislocation network consists of a regu-
lar array of parallel twist grain boundaries composed o

1 1 s aced arallel twist dislocations with axes that
rotate from one grain boundary to the next. e ca is
the twist-grain-boundary (TGB) state. Figure 2 shows a
schematic representation of the cholesteric phase with its
pitch axis parallel to the x axis and the TGB state into
which it transforms. Note the similarity of the direction

FIG. 1. Schematic representation of a circularular area C of ra-
dius R in a smectic liquid crystal containing an average area

f dislocations with Burgers vector o rnagni-
tude d arallel to the z axis. The integral of u around t etue p
b dar of C is equal to m.n„Rd, the number o i2 er of dislocationsoun ary o

f Cis ro-l d
'

C. Thus
~

Vu
~

=tany on the boundary o
'

p
to theportional to R, and the slope ot the smectic layers relative to e

xy plane diverges as R ~ ao.

FIG. 2. (a) Schematic representation of a cho
' 'q '

a cholesteric liquid
t 1. The director n(x) =no(x ) lies in the (y, z) plane and ro-crysta . e

helica1 fashion as the coordinate x along t e p'e itch axis
in a distanceincreases. The director executes one fu11 turn in a i

equal to the pitc h P =2 /k . (b) Schematic representation of
t e TGB state. There are regularly spaced twist grain boun-
daries separate y a i b.d b distance l . Each grain boundary consists
of regu ar y space s1 1 s aced screw dislocations (represented by ar
lines) separate y a is ad b a distance ld. The axes of the dislocations in
the nth grain boundary are at an angle m h p t t t eman with respect to t e
z axis. The configuration of rnolecules between grain boun-
daries is essentia y i en ica

'
ll 'd t' 1 to that of the low-temperature

i -A hase with regularly spaced layers separated by a dis-smectic- p ase wi

tance d. The angles of the normal to the srnectic p a planes se arat-
I . Note that the aver-ed by a grain boundary differ by 00——d/ d. o e

age configuration o e if th director in the TGB phase is very simi-
lar to that of the cholesteric phase.
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of molecular alignment in the two phases. Figure 3
shows why a plane of parallel twist dislocations consti-
tute a twist grain boundary.

To arrive at our results, we use a covariant version" of
the de Gennes model in an external magnetic field

confining the director to planes' perpendicular to the
cholesteric pitch axis. We calculate the upper and lower
fields h, 2 and h„bycalculating, respectively, the limit of
stability of the cholesteric phase and when it is first favor-
able to insert a single twist dislocation into the smectic- A

phase. Near h, z, we use an analysis similar to that of
Abrikosov ' for a superconductor to determine the
properties of the TGB state.

The nature of the TGB state depends on the difference,
2+a, in angle between dislocation axes in adjacent grain
boundaries. If a is irrational, the state is incommensu-
rate along the pitch axis; if a is rational, it is commensu-
rate along the pitch axis. When a=p/q is rational, the
structure has a q-fold screw axis. If this screw axis is not
crystallographically allowed (i.e., if q+2, 3,4, 6), then the
TGB state has quasicrystalline' ' rather than periodic
crystalline symmetry and is incommensurate in the plane
perpendicular to the pitch axis. Our calculations ignore
exponentially small terms in the free energy that might
lock-in rational values of a. Our mean-field phase dia-
gram, therefore, looks identical to that for a supercon-
ductor as shown in Fig. 4(a). When neglected terms are
included, a phase diagram such as that shown in Fig. 4(b)
might result. Because of the anisotropy of the Frank
elastic constants, there are also metastable TGB states in
type-I smectics for which there is no analog in supercon-
ductors.

Information about the spatial structure of any phase is
contained in its x-ray scattering intensity I(q) at wave
vector q. We calculate I(q) in the TGB phase and in the
cholesteric phase just above h, z. Our results are summa-
rized in Fig. 5. If a is irrational, I(q) in the TGB phase
consists of a delta function cylinder parallel to the x axis
of radius qo ——2m/d and height ( ' where g is the smec-
tic coherence length. When a =p /q is rational, I (q) con-
sists of delta function spikes on rings of radius qp ~ In the

(a)

"max
Chal.

T2 NA

cholesteric phase, I(q) is a Lorentzian as a function of
qi =(q~+q, )' with a width tending to zero as Ii ~h, z

and a Gaussian as a function of q„with a width that
remains finite at h, 2.

Our analysis is based entirely on mean-field theory.
Fluctuations about the mean-field result may substantial-

ly alter our conclusions and may, in fact, lead to the
disappearance of the TGB phase predicted by mean-field
theory. The possible effects of fluctuations will be ad-
dressed in Sec. VIII.

This paper is organized as follows. Section II intro-
duces the covariant constrained de Gennes model that is
the basis of all of our calculations. Section III discusses
the geometry of the TGB state. Section IV calculates the
lower critical field h„and Sec. V the upper critical field

h, 2. Section VI is an analysis of the TGB state near h, z.
Section VII calculates the x-ray scattering intensity I (q)
for the TGB and cholesteric states and compares this

I

I

~T

FIG. 3. Schematic representation of a twist grain boundary
consisting of parallel twist dislocations (whose cores are dark-
ened) of Burgers vector dz separated by distances lz. The aver-

age slope relative to the y axis of the smectic planes in front of
the grain boundary is

2
d /lz while the slope of those behind the

grain boundary is ——'d/lz leading to a change in angle of nor-

mals to smectic planes across the grain boundary of
50=2 tan '(

2 d /lq ) —d /lq.

NA

FIG. 4. Phase diagrams in the h —T plane for liquid crystals
doped with chiral molecules showing the cholesteric, smectic-A,
and TGB phases. (a) Diagram obtained by the present calcula-
tions in which a11 exponentially small lock-in potentials are ig-
nored. This phase diagram is identical to that of type-II super-
conductors. There is a single phase intervening between the
high-temperature cholesteric and the low temperature smectic-
A phase. The dashed horizontal line is the line h =h,„where

0h, „=K2(2~/3000A) =0.05 dynes/cm is the maximum experi-
mentally accessible value of h. The temperatures Tl and T2 are
determined by h,„=h,&(T, ) =h,2(T2). (1) Hypothetical phase
diagram of the type that might occur when lock-in terms in the
model are included. There are tongues in the TGB region be-
tween h, &

and h, ~ in which a locks in to a rational value. These
tongues could be further divided into quasicrystalline regions
and crystalline regions as discussed in the text. The positions
and shapes of the lock-in regions are only schematic; they have
not been calculated.
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function with powder and mosaic averaged functions
with which it might be confused. Finally, Sec. VIII sum-
marizes our results, reviews what has been left out of our
calculations, and discusses prospects for experimental ob-
servations of the TGB phase.

II. THE COVARIANT de GENNES MODEL

In this section we will introduce a reformulation of the
de Gennes model suitable for describing situations in
which the Frank director is not necessarily restricted to
be nearly uniform in space. We begin with the Frank free
energy' ' for a nematic,

FF ,' f d———xIK,(V.n) +E2(n.VXn)~

+K, [n X (V Xn)]'), (2.1)

where K&, Kz, and K3 are, respectively, the splay, twist,
and bend elastic constants. In a cholesteric, ' the above
nematic free energy should be replaced by the free ener-

gy
a- (2 GF=FF —E2kp f d x(n VXn) (2.2)

where K2kp —=h is a field arising from the presence of
chiral molecules favoring nonzero n (V X n). GF clearly
has a locally stable minimum with respect to variations of
n corresponding to the cholesteric state with director

np(x) =(0, sinkpx coskpx ) (2.3)

e—q 0 (c) and np V&(np=kp,
The director free energy of Eq. (2.2) for the cholesteric

is the analog of the magnetic Gibbs free energy for a
metal,

G= f d'x
8np

(Vx A)'— H VxA1
(2.4)

FIG. 5. X-ray scattering intensity I(q) near h, 2. (a) I(q) for
the cholesteric phase just above h, 2. The scattering is intense on
a torus obtained by rotating an oval centered at q, =qo and

q„=0about the q„axis. As a function of q„atfixed qz, I (q) is a
Gaussian of width g =(qpk i)'~ . As a function of q, at fixed

q, it is a Lorentzian of width gz
' [Eq. (5.12)]. In this figure the

line shapes correspond to k„=0.25qp, g
' =0.5q&&, and

g, '=O. Iqp. In experimental systems, g
' is expected to be of

order 0. 1qo. (b) I (q) in the TGB phase with a irrational. There
is intense scattering on a cylinder of radius qp and height g
(c) I(q) in the TGB phase with a=p/q. There are Bragg peaks
at equally spaced spots on rings of radius qo in the y —z plane at
q„=Jko/p. If q is even, there are q spots in each ring; if q is
odd, there are 2q spots in each ring. The intensity of the spots
die off' as exp( —q'g'). In this figure, only the Bragg peaks on
rings at q„=O(closed circles) and q„~( ' (open circles) are
drawn. There are actually pg '/k, 2=10p rings between the
two drawn in detail in the upper half plane. These are indicated
as dotted rings.

1
kp ——— d x n V)&n,0 v

(2.5)

of n V)&n. kp measures the average rotation rate to the
director. In the cholesteric phase in mean field theory, kp
and kp are equal. The magnetic permeability is unity in
most cases and is generally not regarded as a temperature
dependent quantity. In liquid crystals, fluctuations cause
K2 to diverge. The field h is unaffected by fluctuations,
and kp ——h /K2 goes to go to zero at the
nematic —to —smectic-A (NA) transition. ' This unwind-
ing of the cholesteric helix as the NA transition is ap-
proached has, in fact, been used to measure the diver-
gence of K2. We will reexamine the behavior of kp in Sec.
VIII and find that it does not go to zero as these naive ar-
gurnents would suggest. In the mean-field study to be

where A is the vector potential, H the magnetic intensi-
ty, and p the magnetic permeability of the metal. It is
clear from Eqs. (2.2) and (2.4) that n is the analog of A,
K2 ' the analog of 4m@, and h—:E2kp the analog of H.
The thermodynamic magnetic induction B is the average
of V X A over the volume V of the sample. The analog of
8 in the cholesteric is the volume average,
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presented in what follows, we will assume E2 is indepen-
dent of temperature.

As discussed in the Introduction, the order parameter
for the smectic phase is the complex density wave ampli-
tude f at wave vector qo ——qono, where no is a spatially
uniform director. The de Gennes free energy describing
the NA transition is normally expressed as a function of
g and 5n=n —no. This description is best for situations
in which 5n is small. For example, it is appropriate for
treating the NA transition since the average director is
uniform in both the nematic and smectic-A phases, and
deviations of the local director from n0 are small. In the
cholesteric phase, the equilibrium director is spatially

nonuniform, twisting in a helical pattern as discussed
above. It is therefore useful to introduce a covariant
form of the de Gennes free energy better suited for situa-
tions with an arbitrary spatially varying director. To do
this we write the deviation of the nematogen density p(x)
from its spatially uniform average p0 as

5p(x) =p(x) —po ——g(x)+ g'(x) . (2.6)

The smectic order parameter it is understood to have
Fourier components with wave vectors of magnitude of

iqo. x
order qo. In the smectic- A phase, f=Pe . The co-
variant de Gennes free energy" is

FG —— d x r + Ci~
—Cz n;n j+CJ 'j V —iq0n; V +iq0n j ' +—,'g

=FG+FG0 NL (2.7)

where FG is the part of FG quadratic in 1{ and FG the
part quartic in

l
l(

l

. It is easily verified that FG is invari-
ant under the transformations g(x)~f(R 'x) and
n(x)~Rn(R 'x) where R is an arbitrary rotation ma-
trix. The usual form of the de Gennes free energy is re-

gained by setting /=Pe ' and n=no+5n in Eq. (2.7).
The coefficient of

l g l
in the de Gennes free energy is

then r so that the mean-field NA transition occurs at
r =0. Therefore,

(2.8)

where XI~ and X~ are, respectively, the magnetic suscepti-
bilities for fields parallel and perpendicular to n. Here we
assume Xl~ &Xi so that alignment of the director perpen-
dicular to H is favored. ' We further take H=Hx to be
parallel to the axis of the cholesteric pitch and consider
the limit H ~ 00. In this case, the director is energetical-
ly confined to the (y, z) plane and can be parametrized by
a single angle variable:

n(x) ={0,sin8(x), cos0(x)) . (2.10)

where TNA is the mean-field NA transition temperature.
The interaction with an external magnetic field H is de-

scribed by

(2.9)

where as before FG is the part of the free energy quadra-
tic in f, FG the part proportional to

l f l, and GF the
director Gibbs free energy depending now only on 8. The
simple form of the term following K2 results because
n (V )(n) =V„H if n(x) satisfies Eq. (2.10). In the
cholesteric phase, /=0 and V„(()=koso that the free-
energy density of the cholesteric phase is
——,'K, k0'= —h /K, . In the smectic phase
(V iqon)$—=0 and

l g l
=( r/g) so that its —free-

energy density is ,'r /g Th—e —therm.odynainic critical
field

h, =(Kzr /g)' (2.12)

obtained by equating these two energies is the analog of
H, in a superconductor. In mean-field theory, the critical
value of ko corresponding to h, is k, =(r /Kig )'

Two important lengths in the free energy of Eq. (2.9)
are the correlation length,

G =FG+FG +GF

=f d x[rlPl +Cl(V iqon)@—
l ]+—,'g f d xlgl

+—,
' f d'x[K(V, O)'+K2(V„8 k)o' ——K,ko ],

(2.11)

This constraint will considerably simplify our analysis. It
inhibits the Landau-Peierls destruction of long-range hel-
ical order ' in the cholesteric phase and eliminates the
symmetric double twist configuration at the core of a
twist dislocation in the srnectic phase. We believe, how-
ever, that the qualitative predictions of this constrained
model will be correct for the more realistic case with less
severe constraints.

As a final simplification, we take Cl~
——C~=C and

E ] —E3:E. Our model free energy is thus

The twist Ginzburg parameter is thus
1/2

~z 1
K2=

Cqo

gK2

2

and the twist penetration depth,

~2={2cqo 0 /K2) ' =qo '(Keg/2C I"
l

)'

(2.13)

(2, 14)

(2.15)
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This is the exact analog of the Ginzburg parameter for a
superconductor. As we shall see, it plays an essential role
in determining the nature of the smectic-cholesteric
phase diagram as a function of T and ko. In particular,
the transition from type-I to type-II behavior occurs at
~2 = 1/&2.

III.THE TWIST-GRAIN-BOUNDARY STATE

b,8=280 ——2 tan '( —,
' d /1d )-d /ld, (3.1)

where, in the final equation, we assume d &&Id. This is
equivalent to the change in angle of dislocation axes from
one grain boundary to the next. The average rate of in-
crease in 8 is then

68
ko ——— dx V' 8=

o lb

d

ld lb
(3.2)

where we used Eq. (2.5) and n. (V Xn)=V„8for n satisfy-
ing Eq. (2.10). There are an infinity of choices for ld and
lb yielding the same value of ko just as there are an

A type-II superconductor in an external magnetic field
undergoes a transition at the lower critical field H, &

from
the Meissner phase with excluded magnetic flux to the
Abrikosov phase consisting of a lattice of linear vortices
parallel to the applied field. Each vortex carries a quan-
tum of flux 4o so that the magnetic induction is simply

n, +0 where n, is the number of vortices per unit area.
The analog in a smectic with chiral molecules of a vortex
in a superconductor is a screw dislocation. As pointed
out by Sethna' and discussed in the Introduction, a lat-
tice of parallel screw dislocations leads to a physically
unacceptable state, and another candidate state must be
sought.

In the superconductor, the magnetic field at the vortex
cores points in the same direction as the applied field. In
the smectic, one should look for a lattice of twist disloca-
tions that produces, on average, the same twisted director
structure as occurs in the cholesteric phase. The rate of
rotation ko of the director should, however, be slower
than in the cholesteric phase, just as the magnetic induc-
tion in the Abrikosov phase is less than it is in the normal
phase. The lattice of dislocations having this property
becomes almost obvious when one realizes that the aver-
age director in the core of a twist dislocation is parallel to
the axis of the dislocation. Thus, it is natural to con-
struct planes of parallel twist dislocations whose axes ro-
tate in a helical fashion as one passes from one plane to
the next as shown in Fig. 2. Each plane is a twist grain-
boundary separating smectic regions with different layer
normals. We, therefore, refer to this state as the twist-
grain-boundary (TGB) state. The parameters characteriz-
ing the TGB state are the distance Id between disloca-
tions in a layer, the distance Ib between grain boundaries,
and the separation d between smectic layers. The aver-
age rotation rate ko can be calculated with the aid of Fig.
3. A given smectic layer rises by a half layer spacing
(d/2) in a half circuit around each dislocation. Thus the
difference 58 in angle of smectic plane normals on the
two sides of the grain boundary is 28o where tan8o is the
average rise of a given layer per unit length:

infinity of vortex lattices yielding the same value of B in a
superconductor.

The nature of the TGB lattice depends on whether
68—:2+a is a rational or an irrational multiple of 2m. .
We, therefore, write the angle of nth grain boundary as

8„=2m an = (k /qo )n, (3.3)

where k =qo48 =2m. /Id is the wave number of the dislo-
cation lattice in a grain boundary. If a=(qolz) ' is irra-
tional, the lattice is incommensurate along the x axis
since there are no grain boundaries with precisely the
same angle. If a is rational, i.e., a=p/q with p and q rel-
atively prime integers, the lattice is commensurate along
the x axis since it consists of regularly repeated unit cells
containing q grain boundaries undergoing a total of p ro-
tations of 2m. Such a lattice, however, has a q-fold screw
axis. Only one-, two-, three-, four-, and sixfold screw
axes are consistent with the existence of a regular period-
ic lattice. All other values of q lead to spatial structures
with quasicrystalline rather than crystalline symmetry. '

Their associated reciprocal lattices have no shortest
length vector and are thus incommensurate. Therefore,
the TGB state with q not equal to one of the crystallo-
graphically accepted values is incommensurate in the
(y, z) plane even though a is rational.

Vectors in any reciprocal lattice' in d dimensions can
be expressed as arbitrary integral linear combinations of r
vectors in a basis (r is the rank of the reciprocal lattice).
In periodic crystals, r (d whereas in incommensurate
and quasicrystals, q ) r & d. The phases of exactly r mass
density waves are not determined by an energy minimiza-
tion procedure. These r independent phases lead to r
elastic-hydrodynamic variables of which d are the usual
lattice displacement variables and d —r are phason vari-
ables. The number of phason degrees of freedom grows
linearly with q for large q. Irrational values of a can be
constructed as limits of rational values in which p and q
become infinite. Thus, there are an infinite number of
phason degrees of freedom (or energetically undeter-
mined phases) when a is irrational. These degrees of
freedom are probably associated with an indeterminancy
in the origin of the arrays of parallel screw dislocations in
each grain boundary. A detailed discussion of the elasti-
city and hydrodynamics of TGB structures is beyond the
scope of this article.

IV. THE LOWER CRITICAL FIELD

where 5n=(0, sin8, cos8 —1) and B=C
~ P ~ qo

=C
~

r
~
qo/g. When the number of dislocations per unit

Now that we have a description of the TGB analog of
the Abrikosov vortex lattice, we can calculate the lower
critical field h„in much the same way as Abrikosov '

calculated H, &
for a superconductor. In the smectic

phase the de Gennes order parameter is g=
~ P ~

where u is the layer displacement variable. The elastic
free energy depending only on u and 5n is then

F„=J d x—,'[B(Vu 5n) +E(V~8) +K—~(V„8)],
(4.1)
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Fei = —BV (Vu —5n),
5u

(KV—i+K2V„}8—B(V u —8) .
(4.2)

The integral of v=Vtt around a contour enclosing a
dislocation of strength n is nd, and

V&&v=m=d g n f 5[x—R (l)]dl, (4.3)

where m is the dislocation density and n and R~(l ) are,
respectively, the strength and position of dislocation line
a. From Eqs. (4.2) and (4.3), it follows that

area is small (lzlb~ao}, F,i can be linearized about
8=0 so that 5n=8y. With this approximation, the ener-

gy of dislocations can be calculated using standard pro-
cedures. Minimization of Eq. (4.1) with respect to u and
0 yields

finite and can be absorbed into a redefinition of the core
energy. We, therefore, have

Bd
e „„=1n(A,2/g)+e„„,SCfeW (4.8)

G /V= ld lb E~«~~ —Iiko

just as in a superconductor. We should point out here
that it is not a priori obvious that the dislocation energy
per unit length in our model with constrained director
should be finite as in a superconductor rather than
diverge logarithmically with the sample size as in an xy
model. In fact, the energy of an edge dislocation is xy-
like and proportional to the log of the sample size.

We can now calculate h„in the extreme type-II limit.
Right at h„,the dislocations are separated by distances
much greater than k2 so that interactions between dislo-
cations can be neglected. The Gibbs free energy per unit
volume is

.qxm qy~v(q)=i z +q
q q

[q2K(g )+B(1 g» )]8(q—) =iB (4.4}

Ib (es«~~ (4.9)

where we used Eq. (3.2) for ko. h, i is the value of h for
which the energy gained by inserting twist first over-
comes the energy cost of creating a dislocation and is
determined by G / V =0. Therefore,

where v(q) and 8(q) are the Fourier transforms of v(x)
and 8(x), and K(g)=Kgi+K2$„, where g; =q; /q
(i =x,y, l ). The linearized elastic free energy in the pres-
ence of dislocations is then

F B f d
(2n. }

qXm
q

q'K(q) —aq,' qy m+ 2q~K(g)+B(1 —g ) q

(4.5)

where t refers to directions perpendicular to the y axis.
For a single screw dislocation of unit strength, with

core parallel to the y axis,

m(x) =d5(x )5(y )z,
m(q)=2nd5(q, )z .

(4.6)

(4.7)

where K(y)=K sin y+Kzcos y. When A.2/g~~l, the
first term in Eq. (4.7) dominates and is identical to the en-
ergy of a vortex in a superconductor. The second term is
not present in a superconductor. It is, however, perfectly

The strain energy per unit length of a single screw dislo-
cation is, therefore,

dqxdV» K(q )

(2m. ) [q K(g)+~„]
=-,'Bd'

C-'
&d& ~

dy
0 2m 0 q+ B/Ky siny

Bd Bd
ln(A, 2/g)+ f dy ln

K(y)
2m 8~2 E2sin y kz

h„=Kk2„=E„„/d~ in(A, 2/g)
Bd
2'
h,

ln(A, 2/g),
&2a-,

(4.10)

where the last two expressions are valid only in the limit
A,2/g &y 1. This is the exact analog of H„for an extreme
type-II superconductor. For sufficiently large A,z/g, the
smectic phase in mean-field theory is always unstable to
the TG8 state before it becomes unstable to the
cholesteric state.

The above calculation of h„does not determine ld or
Ib, just as the analogous calculation of H„in a supercon-
ductor does not determine the lattice parameters of the
Abrikosov flux lattice. To find Id and lb, it is necessary to
include interactions between dislocations. In supercon-
ductors, all vortices are parallel, and their interaction is
isotropic and repulsive implying a close-packed triangu-
lar lattice for the minimum energy state. In the present
case, dislocations in different grain boundaries are not
parallel, and the interaction between dislocations is not
isotropic. Nevertheless, it should be possible to incorpo-
rate dislocation interactions in a systematic way and to
calculate lb and ld near k„.We expect that this calcula-
tion will produce lock-in states with a =(qold )

' rational
and floating states with a irrational. At this point, we
cannot tell to what extent the lock-in states at rational a
are of finite measure in the phase diagram.

V. THE UPPER CRITICAL FIELD

The upper critical field h, 2 is determined by the limit of
stability of the cholesteric phase with n=no(x) given by
Eq. (2.2). The condition for stability is that the eigenval-
ues of the kernel,



38 ABRIKOSOV DISLOCATION LAX I ICE IN A MODEL OF THE. . . 2139

be positive. The condition V no(x) =0 was used in deriv-

ing this equation. The only explicit spatial dependence of
the kernel in Eq. (5.1) arises from the x dependence of
no(x). Therefore, the eigenfunctions of the operator 4,
whose matrix elements in coordinate space are given by
Eq. (5.1), are of the form

1((x)=P (x)e (5.2)

5FG
M(x, x') =

5$*(x)5$(x)

=[ C—V +2Ciqono(x) V+Cqo+r]5(x —x'),

(5.1}

nel associated with the nth harmonic-oscillator wave
functions Pq are

q&

e„(ko,q~) =C[(2n + 1}g + (q~ —qo) +r/C]. (5.6)

q „=qo[1——,'(2n + 1)(ko/qo )+0 (koz /q2o }] (5.7)

The ground-state energy eo(ko qj) evaluated at the
minimum with respect to q~ passes through zero for r & 0
when

Note these eigenvalues depend only on the magnitude of
qz and not on its direction. We will be particularly in-
terested in these eigenvalues in the vicinity of their
minimum. The value of q~ that minimizes e„is

where the vector,

qJ q J ( 0, sing, cosri ) =q j no( q /k o )

=Qqoq~ko ——
~

r
~

/C=g

(5 3) or when ko is equal to

(5.8)

has a vanishing x component. When acting on functions
with this plane-wave dependence on the transverse com-
ponents of position, the stability operator reduces to a
Mathieu operator,

Q = —CB„+C(q~ —qo )

k, =2h, /2K 2=q o
'( r/C—)[1+O(ko/qo)] . (5.9)

The coeScient of the order (ko/qo ) correction term de-

pends on anharmonic corrections to the harmonic ap-
proximation. The eigenvalues Eq. (5.6) can now be ex-
panded about kp=k&z q, =qJg.

+2Cqoq~[1 —cos(kox —g)] . (5.4) e.(ko qx )=Cg I(2n+1)[(ko k z)/k 2]

This operator is the Schrodinger operator of an
electron in a cosine potential. The ratio (qoq~ /k o )

-qp/kp is a dimensionless measure of barrier height
compared to kinetic energy. When this ratio is large, the
electron bandwidths are of order exp[ —const.
&& (qo/ko )]. In a typical cholesteric, qo -2n. /(30 A) and
ko-2m/(3000 A) so that (qo/ko) & 10, implying
negligibly small bandwidths.

The functions diagonalizing 4 are Bloch functions,
which can be expressed as linear combinations of Wan-
nier functions localized about each of the minima, locat-
ed at x„i 2771/ko+gl——ko with I an integer, of the
periodic potential. To leading order in (ko/qo), the
Wannier functions are simply harmonic-oscillator func-
tions Pq (x } centered at x„&.The lowest energy (unnor-

malized) wave function is

+2n+g (q —q „)I . (5.10)

It is clear from this expression that the least stable mode
is the n =0 mode with energy,

eo(ko q, )=C( [(ko k 2)/k&2+( (q, qo) ]-
=Cga [I+4(qj —qo) ]

where

g2 ——g[ ( ko —k~2 ) /k~2 ]

(5.11)

(5.12)

is the twist lattice correlation length that diverges as
kp ~k z. The limit of stability of the cholesteric phase
occurs at h =h, 2

&2a.zh——, or equivalently at
ko=k, 2

——&2&2k„which, to lowest order in g, satisfies

qok, 2
——g . The transition from type-I to type-II behav-

ior occurs at z2 ——I /&2.
(x)=exp[ —

—,'g (x —x„i)]—:(t(x —x„&), (5.5)
VI. THE TGB STATE NEAR h, 2

where g =Qqoq~ ko=qoko. Note that the position of
the maximum of the Wannier functions is determined by
the direction of spatial modulation in the y, z plain. One
can see from Eq. (5.3) that these wave functions, as ex-
pected, describe Auctuations towards a phase in which
the direction of spatial modulation is parallel to the local
director. Corrections to the harmonic-oscillator states
can be calculated in a systematic power series in (ko/qo)
by including anharmonic terms in the expansion of the
cosine potential about its minima. Off-diagona1 matrix
elements of the Mathieu Hamiltonian between states lo-
calized in different anharmonic wells are exponentially
small in (qo /ko ). These exponentially small terms, which
we neglect, lead to lock in of a to rational (or commensu-
rate) values p/q (see Sec. VI).

The eigenvalues of the harmonically approximated ker-

S

P(x)= g C,e ' P(x —x, ), (6.1)

where q~=[qo+O(ko)]no(x, ) and kox, =2mas with s an

In Sec. V we determined the limit of metastability of
the cholesteric phase. In this section, we will study the
TGB phase for h =h, z. Our analysis follows very closely
that of Abrikosov ' for the Aux lattice phase in a super-
conductor just below H, z. We begin by expressing the or-
der parameter as a linear combination of the ground-state

iq& x
wave functions, e P(x —x& I ) diagonalizing the linear-
ized theory at h, z. In general, one should introduce am-
plitudes C„I for each g and l. Instead, we use a some-
what restricted ansatz that, as we will show, leads to the
rotation of planes we expect in the TGB state. We set
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integer. In this wave function, g and 1 are determined by
the single integer s via 1=[akps] aild 'g=I27Tcxkox I

where [w] is the greatest integer less than or equal to m

and IwI is the fractional part of w. In general, the
coefficients C, are complex with an amplitude

~
C,

~

and
a phase u, .

It is useful to see how the ansatz of Eq. (6.1) is related
to that of Abrikosov for the superconductor. If q~ is re-
placed by its form (O, q02nas, 'qo)=(O, ks, qo) valid for
small x„then Eq. (6.1) reduces to

—=e '
QAb, (x,y ), (6.2)

0 1 2

S
qAb .

FIG. 6. Vectors qj lying on a circle of radius qo compared to
the vectors qAb„ that would be used to obtain an Abrikosov lat-
tice of parallel screw dislocations. The vectors q'„b,have a con-
stant x component, and their magnitude increases with increas-
ing s. They are, therefore, unacceptable for creating a low-
energy TGB state.

where g~b, (x,y ) is the Abrikosov solution for a supercon-
ductor. The Abrikosov solution is clearly unacceptable
for the liquid crystal because, as illustrated in Fig. 6, it
would lead to layer spacings far from the preferred value
d of the smectic.

It is easy to see that Eq. (6.1) does in fact produce a
TGB lattice of the type described in Sec. III.

~
P(x)

~

at-
tains its maximum value, corresponding to the greatest
degree of smectic ordering, on the planes x=(x„y,z).
On these planes, there is a one-dimensional mass density
modulation with period d along the direction no(x, ).

~
f(x)

~

attains its minimum value on the planes
x=(x, + —,'lb, y, z) where lb ——2na/ko ——(k/koqo). Thus,
there is a regular sequence of smectic regions with direc-
tions of spatial modulation progressing in a helical
fashion. The planes of minimum

~
P(x)

~

are the grain
boundaries discussed in Sec. III and illustrated in Fig. 2.
One should observe that had we taken a more general

iq&.x
linear combination of the eigenfunctions e P(x —xv I)
than that of Eq. (6.1), then our smectic regions would not
be as evenly spaced.

The ansatz of Eq. (6.1) contains the two unspecified
lengths, lb and ld ——2m/k introduced in the discussion of
the TGB state in Sec. III. There are also two lengths in
the Abrikosov ansatz for the superconductor. In that
case, the ratio R =2lb /lz k l(n ko——qo ) of the two
lengths determines the symmetry of the vortex lattice.
As shown by Kleinert, Roth, and Autlers' (KRA),

R =v'3 in the lowest energy triangular vortex lattice
state. The values of Ib and Id at H, 2 are then determined
by B=H,2

——n, @0 where n, =lb 'ld ' ——g . In what
follows, we will calculate R for the smectic liquid crystal
following the procedures of Abrikosov and Ref. 6. In
general, R depends on K/Kz. For K/I( 2

——0, we find
R = 1.91, rather than &3 = 1.73. Once R has been deter-
mined, Ib can be determined at k, 2 by kp
=k z ='irR /qolb [Eq. (3.2)]. For kp & k 2 kp will de-
crease and Ib increase.

We now turn to the actual minimization procedure
used to determine P and R for ko ——k, 2 . We begin by
setting 8=k,&x+58 and expanding G [Eq. (2.10)] to
lowest order in 58:

G=FG f d —x 58(x)Js+FG +GF,

where FG is FG evaluated at 8=k,2x and

5FG
JO

$g e=k, 2x

(6.3)

Cq.(0—'V 4 4V4')—
8=k„x

(6.4)

FP is zero for any linear combination (Eq. 6.1) of
ground-state wave functions of the linearized theory at
ko ——k, z. 58 is then determined in terms of Js by minim-
izing Eq. (6.3) with respect to 8. We obtain

—(K2V„+KVi)58=Js .

The solution to this equation is 58=kox+58' where

58'= —(K2V„+KVi) 'Je .

(6.5)

(6.6)

x J& x V I( ' V' J& x

+—,'g f d'x
I
f(x)

i

—
—,
' VKzko, (6.7)

where K(V) was defined in Eq. (4.4). This is the funda-
mental equation for our analysis of the TGB lattice near
h, 2.

To proceed with our calculations, we assume, as al-
ready discussed, that kp/qp((1. We further consider
only irrational u and ignore any lock in corrections. The
restriction to kp/qp((1 considerably simplifies our ex-
pression for Js. The product Vg (dn/d8) produces
terms proportional to P(x —x, )sink, 2(x —x, ). The wave
function P(x —x, ) restricts (x —x, ) to be less than
g=(qok, 2)

' . Thus k,2(x —x, ) &(ko/qo)', implying
that sink, z(x —x, ) can be replaced by k,2(x —x, ) to
lowest order in k,2/qp. Using this replacement and the
harmonic-oscillator form of P(x), we find

(6.g)

This is identical to the expression for the supercurrent in

The constant ko is chosen to minimize GF [Eq. (2.11)],
i.e., ko'=ko —k, 2 so that 8=kox+58'. Using FG =0
and the above expression for 58 in Eq. (6.3), we obtain

G=K2(ko —k,2) f d x V„[V K '(V)Jog(x)]
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the Abrikosov calculation. '

With this approximation, Eq. (6.7) for the free energy
becomes

I C, i I I
C,z I

independent of the phase u, of C, leading
to

G= ——,
' VKzko+C(ko —k, z) f d x

I
i/(x)

I

+ —,'g f d'x
I
i/(x) I

z

p2
X 1 —

z z z Ii/(x) I'.
2&z V„+(K/Kz)Vi

(6.9)

~sr'n
& (6 14)

To obtain this result, care must be taken not to double
count terms in which s 1 =s2=s3=s4.

The corresponding solution for the superconductor is
obtained by using Eq. (6.2) rather than Eq. (6.1) for i/ and
by setting C, =C, +2. Minimization with respect to Co
and C& then yields Co =+iC, and

The simple form of the quadratic term results from the
fact that the integrals over y and z set q~=q~ so that
Vz[Vz+(K/Kz)Vi ] '~1 when acting on

I f(x) I

To put G into its final form, we minimize Eq. (6.9) with
respect to the spatial average of gz at fixed

Vz

2mz[ V„+(K /Kz )Vi]

(6.10)

where [A],„=V ' f d x A denotes the spatial average

of A. Wefind

6 1 1

K k, 'V 2 PKz

'2
ko —k, 2

ko
(6.11)

We observe that when K/Kz ~0,

(6.12)

(6.13)

When a is irrational, q~'=q~' if and only if s =s'. In this
case, each factor of C, in [ I

i/ I ],„

is paired with C,' so
that [ I g I ],„

is a sum of terms with coefficients

and Eq. (6.11) reduces to the Gibbs free energy for a su-
perconductor derived by KRA. ' The free energy in Eq.
(6.11) attains its minimum value at the minimum value of
P which we calculate below.

We begin our analysis for K/Kz ——0. Although the
free energy [Eq. (6.11)] reduces to the KRA expression in
this limit, the value of R =21&/lz does not reduce to the
superconducting value of +3 because of the difFerent
forms for i/ in the two cases. The calculation of [ I g I ],„

requires sums over every set of four vectors q~', q~, q~,
and q~ such that qz'+q~ =q~ +q~ . In the Abrikosov
case all q~ are colinear so that there is an infinite number
of vectors qi and qi contributing to [ I i/ I

]„onceqi'
and q~ are specified. In the liquid-crystal case, all vec-
tors q~ lie on a circle of radius qo so that there are only
three possible choices for q&, q&, q&, and qy ~ They are

p~b~=(R /2) (fo f i +2fof i ) (6.15)

where f = g exp[ nR—(2m+p) /2]. Thus, in the
Abrikosov case, there is a single undetermined or free
phase uo (since u, =up+~/2) whereas in the liquid-
crystal case with a irrational, there are an infinite number
of phases undetermined by the energy minimization pro-
cedure. This result is in agreement with our counting of
phason degrees of freedom in Sec. III.

When a=p/q is rational, then qi=qi for s'=s+tq for
any integer t. Consequently, there will be terms in

[ I f I ],„and [ I
i/t

I ],„coupling the phases u, (xi) and

u, +,~(xi) of dislocation lines in identically oriented grain
boundaries (two grain boundaries are identically oriented
if the axes of their constituent dislocation lines are paral-
lel). This coupling produces cusplike minima in the free
energy FF(a) at rational a which can cause the TGB
phase to be commensurately locked to the cholesteric
pitch. A second source of lock-in terms arises from the
tunneling corrections to the spectrum of the linear stabil-
ity operator 1A' in Eq. (5.4). When these are included, the
least stable modes can no longer be chosen to be the
Wannier functions P(x —x, ). Instead one must work

with Bloch functions, Pi, ——g, e '+ "P(x —x, +, ), near

the bottom of the band (i.e., near k=0). Structures in-

commensurate with respect to the cholesteric pitch con-
tain k& 0 components (suppressed due to the finite stabil-

ity bandwidth) or contain overlapping Wannier functions.
The latter would be suppressed by nonlinear terms in the
free energy. Both of these lock-in effects involve the
overlap between P(x —x, ) and P(x —x, +, ) and, there-
fore, are exponentially small in ko/qo. Whether or not
lock in occurs, the number of independent phases is less
than or equal to q, in agreement with our counting in Sec.
III.

In Fig. 7 we plot /3(R) together with P~b, (R) for
K/Kz ——0. The minimum value of P is 1.17 and occurs at
R;„=1.91 and that of P~b, at R~b, =&3. The fact that
R;„&&3 has a simple interpretation: Because disloca-
tion lines in neighboring grain boundaries are not paral-
lel, they must either interpenetrate, which is energetically
costly, or they must separate as much as possible. This
causes the interplanar spacing Ib, and thus R;„to in-
crease above that for the Abrikosov lattice. /3(R) has
only one minimum whereas P~b, (R) has two. This is be-
cause the cholesteric with chiral symmetry lacks the
x ~y, y ~—x invariance of the rotationally isotropic su-
perconductor. A minimum at small R in a cholesteric
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FIG. 7. Functions P~i„(R) [Eq. (6.15)] and P(R) for
K/K, =0 [Eq. (6.14)]. p~~, (R ) has two minima at
R;„=1/R,„=&3=1.73. P(R) has a single minimum at
R;„=1.91 & v'3.

0.6

would correspond to a lattice of highly interpenetrating
flux lines.

When K/Kz ——0, p(R } has a single positive minimum,
and the TGB state is stable when h„gh g h, z and

trz& I/&2. The condition for stability of the TGB phase
as a function of ~z is identical to the condition that the
system be type-II, i.e., h, z & h, . Now, consider the situa-
tion for K/Kz &0. By inserting Eq. (6.1) into Eq. (6.10},
we obtain the following generalization of Eq. (6.14):

0.4

0.2

0.0
lX

'~ —O. z

P=&2R 1—
2]cz

where

1J, = 1—
2K

[1+J (R )]e nRs /2—'

(6.16)

—0.4

—0.6—

; 0.0

f y
2 1

&2m 2az y +nRs K/Kz.

0.80.0
I I

1.0
I

2.0
t I I

5.0 4.0

(6.17)

We see that as K/K&~0, p(R }—+[I—(I/2az)]p(R )

where P(R ) is given in Eq. (6.14). In Fig. 8(a} we plot
P(R ) for K/Kz ——0.0, 0.2, 3.0, and 10 with

az ——0, 80&1/&2. As K/K~ increases from zero, R
increases from 1.91 to 2.94. Physically, this is because
increasing the grain boundary spacing Ib relative to the
intraplanar dislocation spacing Id reduces the twist of the
TGB phase. In Fig. 8(b) we plot p(R ) with

FIG. 8. II(R ) for fixed Ni and K/Kz ——0, 0.2, 3.0, and 104. (a)

Kp =0.80 & 1/&2. The lattice spacing ratios R;„for the values
of K/Kz listed above are, respectively, 1.9, 2.7, 2.8, and 2.9.
Note that I&/ld increases by 50% as the ratio of the bend to
splay rigidity tends to infinity. (b) ~,=0.60&1/&2. p(R) is
not positive de6nite indicating an amplitude instability of the
large R structures to the spatially uniform smectic phase. If
g(R ) had a positive minimum at R&0, there would be a meta-
stable Abrikosov structure even when a& & 1/&2. No evidence
for such a structure was found.
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a2 ——0.600 & 1/~2. Here we see that, except for R & 0.5,
P(R ) is always negative. That P(R ) is negative for some
R indicates that the TGB phase is absolutely unstable
with respect to the smectic phase. %'e also note that
there are no local minima of P(R ) at nonzero R with pos-
itive P(R ). Had such a minima occurred, it would have
indicated the existence of a metastable TGB phase even
when ir2 & 1/v'2.

VII. X-RAY SCATTERING

where A„(qi)=f dx
~

P" i(x)
~

is the normalization

factor for the nth harmonic oscillator wave function.
Fourier transformation of Eq. (7.2) is straightforward.
When ko =k,2, the n =0 mode dominates, and we obtain,

I(q}=2
&m' Cg [(ko —k,2)/kc2+0'(qi —qo)']

(7.3)X-ray scattering is usually our most powerful probe of
structure. In this section we will discuss x-ray scattering,
both from the TGB state and from the cholesteric state
for h just above h, 2. The x-ray scattering intensity I(q}
at scattering vector q is proportional to the Fourier trans-
form of the density-density correlation function. We
need only be concerned with scattering from 5p(x) [Eq.
(2.5)] so that

I(q)= —f d3x f d x'(5p(x)5p(x') }e '~'* *' . (7 1)
1

V

As shown in Fig. 2, we choose the x axis to be parallel to
the cholesteric pitch axis and the director to lie in the
(y, z) plane. This implies that the local smectic planes
contain lines parallel to the x axis and have normals in
the (y, z) plane. As a reference, it is useful to note that in

the absence of twist, I(q) would exhibit two diffuse spots
in the nematic phase and two Bragg peaks in the smectic
phase at q=qono where no is in the (y, z) plane. Twist in-
troduces an ensemble of smectic layer normals leading to
a distribution of directions of high-intensity scattering in
the (y, z) plane.

In the cholesteric phase, (P(x)) =0, and I(q) is pro-
portional to the Fourier transform of the t}'i' —P correla-
tion function, which in the harmonic, zero bandwidth ap-
proximation is

X(x,x') = ( P(x )g'(x') )

d q, ~i«ii iqi(x x)'iI)" i(x )P"'i(x')
, A„(q,) e

n, i (2~)' " e.(ko qi }
(7.2)

The denominator in this equation is simply eo(ko, q~ ) [Eq.
(5.10)]. As kook, z+, eo(ko qi )~0 on a ring of radius

qo, whereas g=(qok, z)
' remains finite. As a function

of qj at constant q„,the x-ray scattering profile is a
Lorentzian centered at q~ =qo with halfwidth

[(ko —k&z ) /k&2] that tends to zero as ko ~k&2. As
a function of q„atconstant q~, the profile is a Gaussian
with width g '=(qok, z)

' that remains finite as
kook, 2. Thus, there is strong scattering on an aniso-
tropic circular torus of principal radius qIi with width
proportional to (ko —k,2)' and height g as shown in

Fig. 4. This form should be contrasted to the approxi-
mate square root of a Lorentzian line shape in q~ ob-
tained by powder averaging the scattering intensity of a
nematic over directions of no in the (y, z) plane. In such
an average, both the height and width of the scattering
torus go to zero at the NA transition. Mosaicity of the
director in the x direction, would, however, lead to a
Gaussian line shape in the q„direction with nonzero
height at the transition. It, therefore, seems likely that qz
rather than q scans will be the best probes of an ap-
proach to the TGB state from the cholesteric state.
Away from h, z, the higher harmonic-oscillator states
(n )0) in Eq. (7.2) contribute to I(q) and broaden its
peaks.

In the TGB state, (1((x)) is nonzero, and there are
Bragg scattering peaks in I(q). The Fourier transform of
(5p(x) ) = ( f(x) ) + ( lt (x) ) follows from Eq. (6.1):

g/2 —i x
(5p(q)) =v'2ng pe

" e " '(2m) IC, 5' '[qi —qono(x, )]+C;5' '[qj+qono(x, )]I . (7.4)

The final form of (5p(q) ) resulting from the sum over s in the above expression depends on whether a is rational or ir-
rational. If a=p/q is rational, we assume C, =C, +, and set s=jq+K where 0&j(N- and 0&K &q —1 where

—iq„x,
NJ. =(L, /2m. )(ko/q) is the number of q-plane unit cells in a sample of length L„.The sum over j of e * is then a
sum of Kronecker deltas of strength N at q„equal to multiples of ko /p. Therefore, when a =p /q is rational,

2 2/2
(5P(q)) =(2n. )

~ g Ie " e ' x~~5(q„—Jko/P) [Ci~5' '(q~ —q~ }+C$5' '(qi+qj )]],
. J,K

(7.5)

where q~ =qono(xx). This equation is valid both for q even and q odd. However, when q is even (p is then necessarily

(5p(q)) =(2m)~~2 g g [e ' ~ (iC i~+Ci~+&2e ™)e 5(q„—Jko/p)5(q~ —q~ )] .
. J= —oo K=O

(7.6)
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When CK ——CK+ &2, there is destructive interference, and only terms with J even survive in the above sum. The scatter-K K+ q/2~

ing intensity, V '
l (5p(q)) l

does not contain the phase information in (5p(q)). I(q) contains delta function spots
equally spaced around rings in the q —q, plane for each q„=Jko/p. If q is odd, there are 2q spots in each ring; if q is
even, there are q spots. We find

2
kog 2)2

I(q}=( ~)' 2 2 I C» l'e 5(q —GJ») q odd
J= —oo K=O

(7.7}
2

ko — 22
I(q)=(2n') P g l C»+CK+q/2e l

e 5(q GJ»)
J= —oo K=O

where

GJ»=(Jko/p, qi '), K=0, 1, . . . , 2q

GJ, » (Jko/p qz) K=0 1 q —1 (7.8)

(7.9)
qOa J= —oo K= —oo

As required, I(q) is invariant under q~ —q.
When a is irrational, the phases u, of the amplitudes C are not energetically fixed as discussed in Sec VI The aver

age density (p(x)) depends on all of the phases u, just as it depends on all of the complex amplitudes C»,
E=0, 1, . . . , q —1 when a is rational. When C, =C for all s, we find

00 2 2

(5p(q) ) =2(2m') ~ C g g e " e ' "5(qi —qo)5(q„—Jko/a —2Kko),

x, , (g, gz)=(x, +pi)x+tdno(x, )+$2ei(x, ), (7.11)

where ei(x, }= (0,coskox„—sinkox, ), —Ib /2 & g, & Ib /2,
and —~ & g2 & ~. When a is rational, the x-ray scatter-
ing intensity from this structure depends on whether q is
odd or even. If q is odd, there are Bragg peaks at (Jko/p,
Iq~ ) for I and J arbitrary integers and E=0,
1, . . . , 2q —1. For q even, there are Bragg peaks at
(J'ko/p, Iqi ) for I an arbitrary integer, J' and even in-

where rt is the angle of qi. Although (5p(q) ) depends on
the phases u„the scattering intensity I(q), when a is ir-
rational and

l
C, l

=
l

C l, does not. In this case, we find

I(q)=2(2n)
l

C
l

e " 5(qi —qo) .
aqO

Thus when a is irrational, there is scattering of uniform
intensity on an infinitely thin cylinder of radius qo and
height g

The scattering intensity from the TGB state is restrict-
ed to a cylinder of radius qo and height g '. There are no
higher harmonics because there is only a single mass den-
sity wave in our low-temperature smectic state. It is in-
teresting to see how our expressions for I(q) would be
modified in a model with higher Fourier components in
the smectic phase. We, therefore, consider a model sys-
tem (depicted in Fig. 2) in which the smectic layers be-
tween grain boundaries are well developed and in which
the directions of the normal to the smectic layers undergo
an abrupt rotation through an angle 2m.a at each grain
boundary. In this case, the position of a mass point on
the tth layer in the region between grain boundary s and
s+1 is

teger, and K=0, 1, . . . , q —1. Thus, for this ideal struc-
ture, C» =C»+ &2 [Eqs. (7.4) and (7.6)]. The Bragg peaks
for a rational, therefore, are at the intersection of the
spokes of wheels and circles of radius Iqo in planes per-
pendicular to the q„axisas shown in Fig. 9. When a is ir-
rational, there are Bragg cylinders of radius Iqo.

Bragg scattering from any material occurs at points on
a reciprocal lattice consisting of linear combinations with
integer coefficients of vectors in some basis. Arbitrary
linear comb'inations of the vectors GJK and GJK gen-
erate reciprocal lattices with S-fold rotational symmetry
with S=2q for q odd and S =q for q even. If S=2, 4, or
6, the resultant reciprocal lattice has crystallographic
symmetry with a shortest length vector. For any other S,
the lattice has quasicrystallographic symmetry' ' with
no shortest length vector and vectors densely distributed
in reciprocal space. The most familiar quasicrystal re-
ciprocal lattice is that with tenfold symmetry' ' gen-
erated by Penrose tilings of the plane. The general
properties of 2d lattice with S-fold symmetry and of 3d
lattices with S-fold screw axes are discussed in Ref. 17.
Quasicrystal reciprocal lattices have colinear wave vec-
tors with relatively irrational magnitudes and are a spe-
cial class of the general class of incommensurate lattices.
Thus, even if a is rational, the TGB state can be incom-
mensurate in the (y, z) plane.

In general, one would expect scattering on all
symmetry-allowed points in the reciprocal lattice. In the
case of the TGB state below k, z, there is scattering only
on the vectors GJ» (a =e,o) because of the existence of
only a single Fourier component of the mass density in
the low-temperature smectic-A phase. In the more gen-
eral model with an infinite number of Fourier com-
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FIG. 9. This figure i11ustrates the positions of Bragg peaks in

scattering from the well-developed TGB state illustrated in Fig.
2 and described by Eq. (7.11}for a rational and q =5. At each
q„=Jko/p with J an integer, there are Bragg peaks at the inter-
section of rings of radius Iqo (I = 1,2, ...) and the ten equally
spaced spokes of a wheel. A similar set of Bragg peaks results
when q =10. In this case, there are Bragg peaks on rings with

q„=2Jko /p.

ponents in the smectic phase, scattering occurs only at
the intersections of spokes of a wheel and circles of radius

Iqo. Thus neither of the ideal TGB structures shows
scattering on a dense set of spots in reciprocal space as
would be expected on the basis of their high rotational
symmetry. Presumably, these ideal structures are unsta-
ble with respect to distortions with wavelengths of other
vectors in the quasicrystal reciprocal lattice. If the am-
plitudes of these distortions are small, then the scattering
intensity would be approximately that shown in Fig. 9
with additional light spots at other reciprocal lattice vec-
tars. It is unlikely that chiral doped smectics with a sin-

gle mass density wave in the smectic-A phase will ever
show any evidence for this behavior. Bilayer and frus-
trated smectics with two or more well-developed mass
density waves might, however.

It is interesting to contrast the scattering pattern from
a TGB state with fivefold symmetry with that of a Pen-
rose tiling with the same rotational symmetry. In the
former case, as we have seen, there are Bragg peaks at the
intersections of spokes of wheel and circles of radius Iqp.
In the latter case, there are Bragg peaks at all vectors G
in the reciprocal lattice, but their intensities' ' fall off as

the inverse square of a vector G associated with G.
Thus the distribution of visible Bragg peaks is far more
uniform in the Penrose than in the TGB case.

As a final observation, we note that there could be
terms in the free energy favoring lock in into structures
with crystallographic symmetry with possibly very large
unit cells. Thus the phase diagram as a function of T and
h could be very complex indeed with regions of irrational
a and locking regions with rational a divided into subre-
gions with crystallographic and quasicrystallo graphic
symmetry as sketched in Fig. 3.

VIII. DISCUSSION

In this article, we have studied the analog of the Abri-
kosov vortex state in smectic liquid crystals consisting of,
or doped with, chiral molecules favoring a high-
temperature cholesteric phase. We found that this state
(the TGB state} consists of a regular array of twist grain
boundaries composed of parallel screw dislocations as il-
lustrated in Fig. 2. In our analysis, we used a covariant,
constrained version of the de Gennes —Frank free energy
in which the director, confined to planes perpendicular to
the cholesteric pitch axis, is parametrized by a single
variable 8. We calculated in mean-field theory the ther-
modynamic, lower, and upper critical fields h„h„,and

h, 2 and showed that the TGB state in type-II smectics is
stable for h„&h,&h, 2

——v'2)r2h, where az is the twist
Ginzburg parameter. We calculated the x-ray scattering
intensity in the cholesteric phase near h, 2 and in the TGB
state for both rational and irrational values of the param-
eter a measuring the angle of rotation between the axes
of screw dislocations in adjacent grain boundaries.

Our analysis is based on a mean-field theory of the sim-
plest possible model, and it is important to know how
what we have neglected might affect our results. First, by
constraining the director to lie in a plane, we have
neglected the Landau-Peierls fluctuation destruction of
long-range order in both the cholesteric ' and smectic
phases. ' We do not believe that removal of this con-
straint will qualitatively alter our results, but this asser-
tion should be checked. Second, we did not treat ex-
ponentially small terms in the free energy contributing
when a is rational. These terms will presumably lead to
regions of nonzero measure in the T —h phase diagram
with a rational. Within these regions, there is the further
possibility of lock in to periodic crystal rather than quasi-
crystal lattices. Third, and most important, we neglected
fluctuations in our mean-field analysis. At one level the
effects of fluctuations appear to be benign. Critical fluc-
tuations in the vicinity of the NA critical point at h =0
lead to scaling of the Gibbs free-energy density
G/V =r "g(h /r' '"}where d is the spatial dimension
and v is the correlation length exponent (we ignore here
the possible anisotropy of v). The correlation length and
bend elastic constants obey similar scaling laws:
g=r "Y(h/r(d —2)v} and K =r —(4 d)vW(h/r(d —2)v—}
From this, one predicts that both h, and h, 2 are propor-
tional to r'" ' rather than r. Indeed, recent measure-
ments of H, 2 in extreme type-II high T, superconduc-
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tors are consistent with this scaling analysis. Thus,
ko ——h!I(.z decreases as hr' '" for h ((r' '" and is

proportional to h ' ' for h))r'" '. At h, 2, ko
should be of order h, 2'" '. These considerations imply
that there should be a well defined phase boundary in the
h —T plane separating the cholesteric and TGB phases.
The small value of ko could, however, make it very
difficult to distinguish the TGB phase from the smectic
phase. A potentially more damaging effect of fluctuations
arises because the order parameter correlation function
X(q) [Eq. (7.3)] diverges on a ring as h, 2 is approached.
As discussed by Brasovskii, such fluctuations lead to a
first- rather than a second-order transition. (This transi-
tion should be more strongly first order than that predict-
ed for the normal to Abrikosov phase transition in su-
perconductors as a result of fluctuations. ) It is thus possi-
ble that the first-order upper critical field h,'2 is depressed
below h„so that there is a first-order cholesteric-
to-smectic-A transition as would be predicted in a type-I
system.

In Sec. VI, we calculated x-ray scattering intensities for
the cholesteric phase near h, z and the TGB phase for
both rational and irrational a. Though there are clear
mathematical differences between the ideal scattering in-
tensities in these phases, it will be difficult to distinguish
the TGB phase from a powder averaged smectic with
some director mosaicity. Optically, the TGB phase will
be almost indistinguishable from the cholesteric phase.
This is a possible explanation of why there has been no
experimental observation of the TGB phase. The direc-
tor (and hence the index of refraction) in the TGB phase
rotates in a helical pattern as it does in the cholesteric
phase. There are, however, modulations of the director
at wave vectors G+kox where G is a low-order integer
linear combination of GJ&, and one might imagine a
light scattering experiment to probe satellites of the fun-
damental cholesteric Bragg scattering peak at kpx.

Since the TGB phase might easily be misidentified as a
cholesteric, it is possible that experiments to date have
identified the line h„(T) as marking the transition from a
cholesteric to a smectic-A phase. It should be pointed
out that the mean-field theory presented here predicts
that the area in the experimentally accessible part of the

h —T plane for T(T&„occupied by the TGB phase
represents a significant fraction of the area that might be
identified as a cholesteric. To see this, let h,„bethe
maximum experimentally realizable value of h

[=K&X(2m/3000A) =0.05 dynes/cm] and let v& and r2
be the regions in the experimentally accessible part the
h —T plane occupied, respectively, by the TGB and
cholesteric phases for T (Tz„.I-et TI be the tempera-
ture at which the line h =h„(T ) and h =h,„crossand

T2 that at which the lines h =h, z(T) and h =h,„cross.
Then ~, is the triangle with vertices (h,„,T, ),
(h,„,T2), and (0, Ttv„),and rz is the triangle with ver-
tices (h,„,T2), (h,„,Tv„),and (O, Tiv„). The entire
combined region 'TI U72 could mistakenly be identified as
a cholesteric. It is straightforward to show that the ratio
of the area of ~, to the area of r, Urz is [1—(2trz) 'lntr2]

so that the TGB phase occupies a significant fraction of
the region for T(T&„that might be identified as a
cholesteric as long as tc2 —I/~2 is not too small or nega-
tive.

In conclusion, we predict the possibility of a whole
class of incommensurate and quasicrystalline structures
in smectic liquid crystals composed of chiral molecules.
These TGB phases may be very difficult to observe be-
cause they do not have a clean optical or x-ray signature.
Nevertheless, because of the unusual properties of the
TGB phases, we encourage experimentalists to look for
ways to detect them, possibly via the appearance of
unusual textures.
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