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We consider the quantization of slowly varying optical fields in a dispersive nonlinear medium
and the application of phase-space methods to the resulting quantum field equations. A pragmatic
approach to the quantization of the electromagnetic field is adopted whereby we apply canonical
quantization to the Hamiltonian expressed in terms of the slowly varying electric field envelope, all
approximations (quasimonochromatic and paraxial) having been made at the classical level. This
approach allows us to include material dispersion, diffraction, and nonlinearity. Using phase-space
methods we then develop a c-number functional Fokker-Planck equation from which the quantum
statistical properties of propagating optical fields can be deduced.

I. INTRODUCTION

The aim of this paper is to develop systematic methods
for the calculation of quantum statistical properties of
propagating optical fields.! We adopt a pragmatic ap-
proach to the quantization of classical field theories with
respect to the approximations typically made when
specific examples are investigated; these are often neces-
sary so that even numerical progress can be made.

In classical nonlinear optics, beam propagation
methods are well developed to deal with envelope field
equations. These are sufficiently accurate to describe a
wide variety of nonlinear, diffractive, and dispersive phe-
nomena.>~* The envelope equations are derived by mak-
ing use of paraxial (restriction on spatial frequency con-
tent) and quasimonochromatic (restriction on temporal
frequency content) approximations. Lax et al.’ have
shown that under the paraxial approximation even the
freely propagating field only obeys Maxwell’s equation
V-E=0 in a perturbative sense consistent with the parax-
ial approximation, i.e., the field is not explicitly trans-
verse under the paraxial approximation. We should also
note that the use of such envelope equations is not gen-
erally valid for certain boundary value problems such as
reflection and transmission at the interface between linear
or nonlinear media.

The procedure used in developing a quantum theory of
a free or interacting electromagnetic field (in the nonrela-
tivistic domain) is to use the Coulomb gauge and demand
that fields be transverse.® Canonical quantization then
results in the introduction of the transverse § function
into the equal time commutation relations. Heisenberg
equations for the field operators may then be derived. To
address the problem of making approximations it is
necessary to define norms for the operators and their spa-
tial and temporal derivatives, and this requires
knowledge of the states of the system, or equivalently the
density operator. Since such a treatment has not been at-
tempted to our knowledge, and would be difficult, to for-
mulate, we propose a simpler approach: to make approx-
imations at the classical level and then quantize. This is
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motivated by physical considerations such as the fact that
classically paraxial fields are not explicitly transverse.
The quasimonochromatic approximation (QMA) was dis-
cussed in this way by Graham and Haken’ when develop-
ing a quantum propagation theory for thermal and two-
level media, though they did not consider the paraxial ap-
proximation. Essentially this procedure allows us to
derive envelope equations at the classical level and then
quantize in canonical fashion. Operator equations of
similar form to the classical equations of motion are then
obtained, with some justification. We note that such a
procedure has already been used implicitly by many au-
thors, most recently by Garrison et al.® When the par-
axial approximation is made it is not necessary to
demand the quantized fields be transverse. Indeed Gra-
ham and Haken’ showed that when the QMA is made
postquantization, it is necessary to alter the full trans-
verse field commutation relations. Our approach has the
useful feature that transverse effects are included in the
quantum theory at a realistic level of approximation.
Furthermore, our free space propagator is the same as
that derived by Yuen and Shapiro.’

In this paper we concentrate on situations where the
medium may be treated as a classical nonlinear dielectric,
and we include the effects of dispersion. Although dissi-
pation is not considered explicitly, it may be added to the
formulation straightforwardly. Indeed the effect of
squeezed inputs may also be included.'®

To calculate moments and correlations from a quan-
tum theory it is often convenient to use phase-space
methods. This involves converting the operator master
equation into a c-number equation for a quasiprobability
distribution over the phase space. Popular among these
are the Glauber-Sudarshan,!! Wigner, Q,!? and positive P
distribution of Drummond and Gardiner.'”> For the
latter distribution, equivalent (in the distribution sense)
Ito-type stochastic differential equations (SDE’s) exist,
and these have proved useful for the analysis of nonclassi-
cal states of the field in a variety of optical systems. Nu-
merical simulations also then become possible by averag-
ing over an ensemble of stochastic realizations.
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For the field theories of interest here we extend the
Drummond-Gardiner P distributions to spatially distri-
buted systems. Thus we derive functional Fokker-Planck
equations and associated stochastic partial differential
equations (SPDE’s). The techniques may be applied to a
whole range of propagation problems. We note that
Drummond, Carter, and co-workers! have recently de-
rived SPDE’s using a discretization procedure which cir-
cumvented the definition of functional P distributions.
They applied their results to discuss the squeezing of soli-
tary waves in optical fibers. Yurke and co-workers have
investigated a related problem, and the squeezing of a
train of mode locked pulses in parametric amplification
using “phenomenological” operator equations.'

The remainder of this paper is organized as follows. In
Secs. II and III we develop our classical theory and
quantization procedure with reference to a nontrivial ex-
ample including material dispersion, diffraction, and non-
linearity. In Sec. IV functional phase-space distributions
are defined, and functional Fokker-Planck and SPDE’s
are derived and justified. Section V gives our summary
and conclusions.

II. CLASSICAL THEORY

In this section we develop the classical theory of slowly
varying optical fields in a dispersive nonlinear medium.
Initially we consider only the linear problem and careful-
ly outline the various approximations which are made in
obtaining envelope equations.

A. Maxwell equations

Our staring point is the Maxwell equations for propa-
gation in a homogeneous, lossless and isotropic dielec-
tric'®

JB oD

E:———— =
VX 3’ VXH a

V-D=V-H=0,

2.1

(2.2)

where B=puH, the medium being assumed nonmagnetic,
and

D(1)=¢, [E(t)-i— J7drR(nEG—7) 2.3)
Here R(7) is the linear polarization response function,
and we have ignored its tensor character for the sake of
clarity in presentation.'®!” For the moment we omit the

explicit spatial dependence of the field. In the usual
manner we obtain the wave equations

3’D
VE=p, >, 2.4
Ko atz ( )
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where we have used Egs. (2.2) which imply that
V-E(t)=0 also.

B. Quasimonochromatic approximation

So far the classical theory is exact. We now discuss
these equations in the QMA by considering fields with

mean carrier frequency w, and write them as

E(t)=E*(t)e "“'4c.c. , (2.6a)
B(z)=B™*(t)e "' +c.c. , (2.6b)
D(t)=D*(t)e "“'+c.c. , (2.6¢)

where the + superscript denotes a positive frequency
component (vector) envelope. Substituting Egs. (2.6) into
(2.3)-(2.5) yields

’D* . aD*
VZE* =, g Ao —o’D" |, 2.7
+
VB* = —poV X a]a)t —ioD* |, 2.8)

D*()=¢ [E7(0+ [ “drRET(t—n)e™" | . 2.9)

In the QMA the field envelopes are assumed to be
slowly varying with respect to the exp(iowt) factor. We
therefore perform a Taylor series expansion of E* (¢ —7)
in powers of 7. If we do this and define!®

elw)=¢, [1+f0°°dTR<r)e"M] (2.10)

and retain only terms up to order 7, or alternatively
truncate beyond 3*E* /312, then D can be written as

.| 9e | OE*(¢)
+ _ + _ |==1"7
DT (t)=€e(w)E*(t)+i ™ o
1 | 3% | d’E*(1)
"2 e | a2 210

The expression (2.10) for the permittivity e(w) ensures
that its real and imaginary parts are related by a
Kramers-Kronig transformation.'® However, in the
remainder of this paper we shall neglect the imaginary
part of the permittivity which is responsible for absorp-
tion on the basis that we are considering a nonresonant
interaction. By substituting Eq. (2.11) into (2.7)-(2.8)
and using Egs. (2.1) with (2.6), neglecting third- and
higher-order derivatives, we obtain after some manipula-
tion

dkj | e+ 1 | 9%k} | BPE+
2B+ kIBY i |— — = =0,
VE kB i S T o T2 | ae? | a2
(2.12)
with an identical equation for B*, and we have defined
2
k3= Eelo 2.13)
Ceo

In Eq. (2.12) all fields are defined at time ¢.
For our purposes it is adventageous to consider w as a
function of ky, w=w(ky). Then using the chain rule for

partial derivatives Eq. (2.12) can finally be written in the
QMA as
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where o' =0dw/0dk, is the group velocity, and the last
term in the equation describes material dispersion,
" =3%w /3k ] being the group velocity dispersion.'®

The QMA imposes constraints on the temporal fre-
quency content of the fields, which for E* can be written

’E*
at?

OE*
ot

|0’E* | >> o > (2.15)

Since no restrictions have been made concerning the spa-
tial field structure the condition V-E* =0 should still be
enforced.

C. Paraxial approximation

We now consider linearly polarized, traveling-wave
solutions which are propagating mainly in the z direction,
and write the field envelopes as

ikgz

E*(r,t)=xE(r,t)e , (2.16)

iknz
eO

B*t(r,t)=yB(r,t) , (2.17)

where x and y are unit vectors transverse to the direction
|

r
kow

’
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where V% is the transverse Laplacian describing beam
diffraction [r=(r,,z)].

As it stands, Eq. (2.20) is not suitable for applying non-
relativistic canonical quantization due to the presence of
the second-order time derivative. However, it is possible
to transform this equation so that this term is replaced by
a second-order spatial (z) derivative. We outline the pro-
cedure here: (1) Transform Eq. (2.20) to a moving coordi-
nate frame defined by ¢t'=t, {=z —w't, and drop the term
J2E /31" —20'd’E /3EDt’ in comparison to (w')?d%E /dE>
since the group velocity o’ >>1. (2) Transform back to
the original coordinates via t=t', z={+'t’. The re-
sulting equation for E is

koﬂ)” a2

o' 3z?

V2 +2iky | o+

3% T o o E(r,t)=0.

3 11]

(2.21)

The basis of the derivation of Eq. (2.21) is that the quanti-
ty

9’ 1 @
_— — |E(r,t)
9z (')? ar?
is of order 0. Thus for a monochromatic field

9’E /3t*=0, and 3E /dz? should correspondingly be set
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of propagation; thus E* and B™ are orthogonal to each
other and to the direction of propagation. These field
representations are consistent with Egs. (2.1), (2.4), and
(2.5), but not with Egs. (2.2). Only for the case of plane
waves (E and B constants) are the conditions
V-E=V-H=0 satisfied. However, Lax er al.” have
shown that within the paraxial approximation the fields
are transverse to lowest order in a perturbation expan-
sion. The paraxial approximation applies subject to con-
straints on the spatial frequency content of the fields. In
particular, Lax et al.’ show that if the characteristic
width w, of the optical field is much less than the corre-
sponding Rayleigh range kow3, then the fields may be
treated as transverse to zeroth order in the perturbation
parameter

<«<1. (2.18)

kowg

The constraints on the spatial frequency content of the
fields may be written

2
| k3E | >> % (2.19)
Z

ko%lzi >>

along with identical equations for B. We shall assume
throughout that these conditions are satisfied. Then sub-
stituting Eq. (2.16) into (2.14) yields the following equa-
tion for the scalar electric field envelope E

(2.20)

equal to O also. Equations (2.20) and (2.21) therefore
reduce to the same equation for a monochromatic field.
Equation (2.21) is our basic equation describing propaga-
tion in a linear dielectric in the QMA and paraxial ap-
proximation.

D. Nonlinearity

To include a nonlinearity in our model a nonlinear dis-
placement vector term DN must be added to Eq. (2.3).
For an isotropic Kerr medium with instantaneous
response this term may be written'’

DN =¢X*(E-E)E , (2.22)

where the third-order susceptibility X'*’ is real and we
have ignored its tensor character for simplicity. By fol-
lowing though the analysis of the previous subsections
and neglecting all the time derivatives of DN we obtain
the following nonlinear envelope equation for E:

. |l8a 19 koo 32
2
—t—— — |E(r,
VT+21k0 az+w, at w, 322 (r t)
2
=32 | x¥E|ZE. (23

This result is our basic equation describing propagation



of the scalar electric field envelope in a dispersive Kerr-
type nonlinear medium.

A relation between E and B can be obtained by putting
Egs. (2.16)-(2.17) into (2.6) and then into Eqgs. (2.1):
172

o) | gty .

c 260

B(r,t)=

(2.24)

Here we have used Eq. (2.11) and have neglected all non-
linear and derivative terms. Under the same conditions
the cycle-averaged energy of the optical field is easily cal-
culated as'®

U(t)=—’z—fd3r(:14;[we(w)]E-E+B-H>

_ 2e(w)w
T w'ky
We shall adopt Egs. (2.23)-(2.25) as the appropriate
classical theory of a traveling-wave optical field. Thus all
assumptions concerning the quasioptic nature of the
theory are being made at the classical level. In particu-
lar, in contrast to the exact theory we do not impose the
constraint V-E=0, this being consistent with the paraxial
approximation.

[dx|Exn|?. (2.25)

E. Hamiltonian formulation

By multiplying through Eq. (2.23) by a constant m
which has units of mass and rearranging we obtain

. dE & . ,OFE
iK a1 -—sz TE —ikw 3%
2
ko' ?E 3w'k 3) 2
2 a2 2k, X' |E|“E, (2.26)

where k=mw'/k, is a constant with the dimensions of
action. Since m is arbitrary we can choose 1t such that
k=#. We further define scaled fields ¥ and W'

Ao'ky m\p E* ko mw* (2.27)
2e(w) ’ T | 2ew) '
for which the field equations can be written
v ﬁ2 , 0¥
ifi = V V¥ —ifiw 32
" a2
_f" W svtew (2.28)
2 9z?
A h_ 2wt s g 00
—ifi = VTW +ifiw 0
”n 2
_ 3T = —foVivly (2.29)
T2 a2
and we have defined
(3) 2, 1)2
_ IR o (w') (2.30)
de(w)c?
The field energy is then given by
U=t [ d* ¥y . (2.31)

Equation (2.28) has the form of a nonlinear
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Schrodinger equation for the field W. It is important to
note, however, that although we have chosen to intro-
duce Planck’s constant # into the formalism at this stage
the theory is still classical: Egs. (2.28) and (2.31) are
equivalent to (2.23) and (2.25) which do not involve 4.
Our scaling has been adopted for later convenience when
we apply canonical quantization (Sec. III).

To write the field equations in Hamiltonian form it is
necessary to introduce a new field II related to NP

n=iav'. (2.32)
The Hamiltonian can then be written as
H(n= [ d*H(x,1) (2.33)
where the Hamiltonian density is given by
ifi o v an
H(r,t)=— om Vv v— > I 2z az
oIl oV
— | = — .34
> |5z | |3 [t2AYY - @39
One can easily verify that the Hamilton equations

or e8I’ at  &v

are identical to the field equations (2.28) and (2.29), where
& means a functional derivative.!” Thus II is identified as
the momentum canonically conjugate to V.

It is important to note that the energy U(¢) and the
Hamiltonian H(?) are distinct objects. U (t) given by Eq.
(2.25), or (2.31), is an expression for the field energy, and
is that generally used in classical nonlinear electromag-
netics. In contrast, the Hamiltonian H (¢) does not in
general equal U (¢) and it contains in it the dynamics of
the electromagnetic system, including the nonlinearity.
Hillery and Mlodinow,?® and Abram?! have critically ex-
amined the model Hamiltonian approach to field quanti-
zation, and pointed out the conceptual problems which
arise when one attempts to develop an exact quantized
theory starting from the full Maxwell equations. Even
after such a procedure has been carried out successfully it
is necessary to make the quasioptic approximations to ad-
dress the problems of interest here. In this paper we
avoid such a route by making quasioptic approximations
at the classical level. Our justification is the belief that
the two methods must result in essentially the same final
quantum theories, although further work is required to
fully clarify this.

For our purposes it is convenient to consider a system
of volume ¥, to which periodic boundary conditions are
applied. The volume may be taken to infinity later. In
this case one can prove using Noether’s theorem?? that
the field energy U and the Hamiltonian H are constants
of the motion, and both have energy units.

III. QUANTUM THEORY
A. Commutation relations

To quantize the classical field theory given in the previ-
ous section we replace the classical fields ¥ and II by field
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operators which we postulate to obey the equal-time
commutation relations'®

[W(r,t),¥(r',t)]=0, (3.1a)
[I(r,¢),II(r,)]=0, (3.1b)
[W(r,2),II(r',t)]=iAd(r—1') . (3.1¢)

Note that since we do not require V-E=0 we use a stan-
dard & function instead of the transverse & function re-
quired in the exact quantized theory. By using the

definition of I1 in Eq. (2.32) we obtain from (3.1c)
[W(r,0), ¥ (r,t)]=8(r—1") . 3.2)

The Hamiltonian and energy operators of the quan-
tized theory are

H(= [d#(r,1), (3.3)

U(t):ﬁwfd3r vl | (3.4)

where the Hamiltonian density is written in terms of W
and W' as

_# t ifio’ | 13V W'
Hr,0)= V¥V ¥ — == 9 e
fio” | W' v of ot
e -l B B ALY : :
1o | |5, Ve ()

Here we have used normal ordering of the operators in
the nonlinear term of Eq. (3.5) and in the energy operator
(3.4).2° The operator ordering of the remaining terms of
the Hamiltonian density (3.5) can be shown to be ir-
relevant.

B. Heisenberg equations

In the Heisenberg picture, for a general operator O we
have the equation of motion'®
90(r,t)

l‘ﬁ—at——"=[0(r,l‘),H(l‘)]

= [d’r[Oo(r,0,%(r',1] . (3.6)
By substituting O =\P,\I/T and using the commutation re-
lations (3.1) and (3.2) we obtain the field operator equa-
tions

LY A L QY fiw” 3V t
ifi % = " 2m V¥ —ifiw 2 2 o2 —fioV'VVY ,
(3.7)
—q M..._ﬁ V2‘I/T+ﬁ la_\lﬁ_
a 2m T dz
#iw' 2V to, t
- 922 —hoV'V'Y (3.8)

Thus the classical equations are reproduced in operator
form in the quantum theory. This implies that in the ab-
sence of nonlinearity (0 =0) the Green’s function of the
classical scalar problem is the propagator for the quan-
tum theory. This result is well known and has been used

by Hopf and Meystre,! and Yuen and Shapiro® when
dispersion is also absent (o'’ =0). It can be easily shown
that even in the quantum theory U(¢) and H (¢) are con-
stants of the motion. Furthermore, the field equations
(3.7) and (3.8) preserve the commutation relations (3.1)
and (3.2), which is a requirement of a consistent quantum
theory.

The operator solutions may be expressed in terms of
boson operators via a plane-wave expansion

1 ik-r
W(r,t):—ﬁgak(t)e k N (39)

1 + —ik-
Vir,t)=—= S al(r)e " (3.10)
> ) ‘/V % k ’
where the boson operators ak,aI satisfy the usual
nonzero commutation relation

[ay(0),al ()]=8 (3.11)

consistent with (3.2). The quantization volume V on
which periodic boundary conditions are applied may
later be taken to infinity. The wave vector k is defined
relative to the carrier wavevector ko=kyz, i.e,
k=kr+Ak,z, with Ak, =k, —k, and ko+k=k+zk,.

Some comments on the representations (3.9) and (3.10)
are in order. If the range of summation is unrestricted
the equal time commutation relations (3.2) and (3.11) are
immediately satisfied through Fourier transformation.
However, since we assume the field to be paraxial and
quasimonochromatic in nature, it is necessary to restrict
attention to states of the field which are paraxial
(k3 >>k?), and occupy some bandwidth small compared
with the carrier frequency w. This excludes for example,
evanescent wave states which decay exponentially in the z
direction.’ Effectively the domain on which the opera-
tors act is restricted to some finite range of k vectors,
without altering the validity of the physical theory. Re-
stricting the range does however alter the commutation
relation (3.2), which becomes proportional to the range of
k. This notion has been used widely in the literature,?
usually in relation to the detection of a finite bandwidth
of field states. It is worth stressing that altering (3.2) is
consistent only because attention is restricted to a finite
range of field states.

IV. PHASE-SPACE METHODS

In this section we develop c-number phase space
methods which enable the quantum statistical properties
of propagating optical fields to be investigated. Our
analysis represents a field-theoretic extension of the P dis-
tribution methods of Drummond and Gardiner.'?

A. Review

Given the operator field equations, we are faced with
the task of calculating observable correlations and mo-
ments of the field. Graham and Haken’ used phase-space
methods based on functional Fokker-Planck and
Langevin equations to discuss the quantum statistics of
propagating fields in thermal and two-level media. More
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recently the Drummond-Gardiner P distribution!® has
been widely used to discuss the quantum statistics of
few-mode optical systems. The P distributions are associ-
ated with a phase space integration measure du, and the
equation of motion for the P distribution specifies the dy-
namics. Often the equation of motion may be written in
Fokker-Planck form, for example in the case of a single-
field mode
2

ot 3t 2 9a*da”
where 4 and D are the drift vector and diffusion matrix,
respectively, and a,a' are the complex random variables
associated with the mode annihilation and creation
operators. Indices p and v indicate dagger and non-
dagger variables, and the summation convention is em-
ployed. In the case of the positive P distribution, which
always exists for a physical density operator, the diffusion
matrix is explicitly positive semidefinite (D=BB7) when
expressed in real variables, and a,a’ are then indepen-
dent random variables which are complex conjugate in
the mean. This establishes an equivalence (in the distri-
bution sense?*) between (4.1) and the set of Ito SDE’s

———DM'P, 4.1)

dat L u guvev
i AP+ BFYEY(t (4.2)
where the zero mean, white-noise sources £"(¢) obey
(EE)) =(ET T =8t —1) ,
(EEfe))=o0. 4.3)

Often it is more efficient to work with the SDE’s directly,
since approximation methods are well developed, and this
has commonly been the route taken in quantum optical
applications.”> Moreover for nonlinear problems where
analytical progress is limited, numerical simulations of
(4.2) are possible.?®

Extending these ideas to spatially distributed systems,
it is at once clear that the equation of motion for a suit-
ably defined P distribution will be functional in nature.
One may expect that a functional Fokker-Planck equa-
tion for the functional positive P distribution (with a suit-
ably defined functional measure) will have a positive
semidefinite diffusion matrix and be equivalent to a set of
Ito SPDE’s. For the example of guided wave propaga-
tion in an optical fiber, Drummond, Carter, and co-
workers!# have derived such SPDE’s, by taking the con-
tinuum limit of multimode Ito SDE’s. This circumvents
the problem of defining functional P distributions as the
continuum limit is taken at a later stage in the formula-
tion. However, from our viewpoint, with the coherent in-
teractions expressed in terms of a Hamiltonian density, it
is most natural to derive equations for functional P distri-
butions, and from these deduce the SPDE’s. As we shall
show, this method has the advantage that the effects of
diffraction in addition to dispersion, may be naturally in-
corporated into the formulation, at a realistic level of ap-
proximation.

The quantum statistical properties of propagating
fields in nonlinear media are likely to be very complex,
however, when quantum fluctuations act as a small per-

turbation, linearization of the SPDE’s may enable some
degree of analytical progress to be made. We have, how-
ever, succeeded in finding some exact moments for the
field in the case of self-phase modulation of optical
pulses, and these will be published elsewhere.?” In cases
where a linearization procedure is not used numerical
simulation of the SPDE’s may be the most efficient means
of investigation.

B. Heuristic deviation of a stochastic
nonlinear Schrodinger equation

To introduce our methods and also serve as a useful
and nontrivial example we use the quantized Hamiltonian
density derived in Sec. III, which describes optical propa-
gation in a lossless, dispersive nonlinear medium to define
and derive a functional equation for the functional com-
plex P distribution, and from this infer associated
SPDE’s. This method is heuristic in the same sense as in
the case of the usual complex P distribution (when it ex-
ists), as only the positive P distribution implies the ex-
istence of associated SDE’s. However, the naive and fas-
ter derivation based on the complex P or Glauber-
Sudarshan P distributions, leads to the same set of SDE’s
suitably interpreted.!> In Sec. IV C we present a general
justification of the heuristically derived SPDE’s based on
the functional positive P distribution and its associated
measure.

We introduce the multimode coherent states | {a}),
defined by

ay | {a})=a,|{a}) forallk, 4.4)

where k is defined relative to kj, the plane-wave wave-

vector component. Thus the field operator ¥ given by
(3.14) satisfies

Y(r) | {a})=9(r)|{a}), (4.5)
where
=L
#n= Sae 4.6)

Following Drummond and Gardiner!® we expand the
density operator for the system p(¢) in terms of a func-
tional P distribution P({a}) and associated measure
Dul{a}), using the off-diagonal coherent state projector
Al{a}) (with {@} ={a,a'})

p()= [ P({a})A({a}))Dul{a}) , 4.7
where
T
Afa])=Llal2 el | 4.8)

({a"}* | {a})
In terms of a Hamiltonian density #(r) the
Liouville—von Neumann equation reads

72 _ (a3 t 4
inl [ &> #(0),p(1)], (4.9)
and substituting the generalized P expansion (4.7) for p(t)
we have

zﬁffl);u\

= [Du [ d’r P[#(r),A] . (4.10)



218 T. A. B. KENNEDY AND E. M. WRIGHT 38

Now with the Hamiltonian density (3.5) expressed in
terms of the field operators ¥ and ‘IIT, an equation of
motion for a P distribution may be derived as follows. (1)
Evaluate the commutator on the right- hand side of (4.10)
usmg the mode expansions for ¥ and W' and the identi-
ties!?

akA=akA 5 (4.11a)

ala=laf+-2- |A, (4.11b)
aak

Aal=alA , 4.110)

Aak= ak+_.'.' A . (4.11d)
aak

(2) For the case of the functional complex P distribution
define the measure

Du. = [[dadaf . 4.12)
k

Now integrate by parts over independent contours for
each of the independent variables. Then an equation of
motion is found by equating the functional integrands on
both sides. (3) Where necessary, integrate by parts over
configuration space so that the equation of motion can be
expressed entirely in terms of the random fields ¥(r)
defined by Eq. (4.6), 1// (r) which is found from (4.6) by
the replacements y—v¢', a, —»aL and i — —1i, and the
functional derivatives defined by

) 1 _ikr_ O

Sutr )E e 29 3 4.13)
and
5 1 e d
=L gikr 9 (4.14)
90 - VY 2 aal

The order of the configuration and phase-space integra-
tions may be reversed. For the case of the positive P it is
more convenient to perform the configuration space in-
tegrations before the functional integrals (see next sec-
tion).

For the Hamiltonian density (3.5), this leads to the
functional Fokker-Planck equation

orLwir] _ [ 8Un) | if

= [ &p(r) O o T, V¥

1., %)

+21w 622

+ioyi(r)yr) ’
+ 1 8 ] tee | Plgi]
2 85¢*(r) e T
(4.15)

where c.c. indicates similar terms with 1/;—»1/;', [— —I,
and 8/8¢,8%/6y*—8/8¢",82/6¥', respectively. We

may naively convert this into equivalent stochastic par-
tial differential equations by means of the correspondence

JP[y;
B _ [ |- ran

18
2 syey”

- ag;: — A4 BRE(L,1)

[B*B™] |P[¢;t]

(4.16)

where, as before, superscripts indicate dagger or non-
dagger indices, the summation convention for repeated
indices is employed, and £ is a vector of white-noise fields
defined by the nonzero correlations

(g(r,t)g(r',t')):(gf(r,t )§+(r',t’)>

=8(r—r")8(t—1t') . (4.17)
This gives
9, ,0 L .
3 793, ’dr(r,t)— Vr+ioy (r,t)y(r,t)
ia)"iz_
2 9z?
+Viok(r,t) |¢(r,t), (4.18)

with a similar equation for ¢T found by the replacements
1[}—»1/! ,i— —i,and é’——»é’

Equation (4.18) and the corresponding equation for 1/1
are nonlinear multiplicative stochastic partial differential
equations and form the basis of our quantum statistical
theory. Standard stochastic methods appropriate to spa-
tially distributed systems may be used to calculate the
linearized quantum fluctuations about any deterministic
solution.!®1* By definition of the P distributions, Eq.
(4.18) allows only normally ordered moments of field
operators to be calculated. In the deterministic limit that
the noise &, § —0, Eq. (4.18) reduces to one form of the
nonlinear Schrodinger equation, with an additional term
represented by the transverse Laplacian which accounts
for diffraction.

C. Functional positive P distribution

Here we attempt to justify the correspondence between
the functional Fokker Planck equation and the set of Ito
SPDE’s given in Eq. (4.16). Our treatment is merely a
field-theoretic extension of the arguments made by
Drummond and Gardiner.'? In their treatment there ex-
ists a rigorous mathematical correspondence, in the dis-
tribution sense, between the Markovian solution of a
Fokker-Planck equation and the Markov process defined
by the solution of associated Ito SDE’s.?* Although the
solutions of SPDE’s have been shown to exhibit the Mar-
kovian property,?® to our knowledge the precise relation-
ship between functional equations and associated SPDE’s
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remains to be shown. Nevertheless we assume that an ex-
tension of the usual arguments of Drummond and Gar-
diner will be sufficient to establish the correspondence in

the functional case considered here.
J

d
= _ _* —in(pkz_Y
f:DA fi)yfdzP‘/ Ate =ik —=
where
1 if p is a dagger variable
nw=1_1 i i is a non-dagger variable,  (4.20)

and summation over y, v, k and k’ is implied. The form
of Eq. (3.19) may generally be found by using mode ex-
pansions for the field operators and where necessary per-
forming integration by parts over configuration space,
which is taken to be one dimensional (z) for simplicity
here: L is the quantization length.

Since by construction D is a symmetric matrix, it may
be written in the form D=BB7, where the complex ma-
trix B is unique up to orthogonal transformations. We
write all complex variables in terms of their real and
imaginary parts (indicated by subscripts x and y, respec-
tively), that is

ak=af , 4.21)

J

+id, ,

fﬁDA

where we have defined the differential operators

AR = L cos[n(p)kz] 3 —sin[7( ,u)kz]

\/L ak,x ‘It
and
AR, = \/lf sin[n(w) kz] 3ot ~+cos[n(u) kz] 72

We assume that from an underlying field theory which
may include dissipation, a Markovian master equation
may be derived, and in terms of a functional P distribu-
tion may be expressed in the general form

2
+ __l__D;Lv —i[n(pwk+n(vk']z a A, (4.19)
2L dakday,
[
Af= Al 4 A 4.22)
B=B,+iB, 4.23)

and define the (real) functional positive P measure

Dp, =[] dak dak, .
uk

(4.24)

The pro;ectlon operator A is analytic in the complex
variables {a,a'}, so that

O Apo O A% 4. (4.25)
dak dak , aa’,i,y

We now substitute expressions (4.21)-(4.24) into Eq.
(4.19), and choose the derivatives using the analyticity
property (4.25) in such a way as to make the term in
parentheses completely real. We find

= [Du, [dz PL(AY, AP+ A% AP+ L(BEBYAE A}, +BIB AL A}

+BIBIAL AL +BLOBAL AL VA, (4.26)

(4.27)

(4.28)

Now integrating by parts, and assuming that at least one solution is obtained by equating the integrands of the func-
tional integrals, we find the functional Fokker-Planck equation

82
Sykdyy

{3 ) 1
dyk Syk 72

a—l;zfdz —

where ¥ and ¢/ are the real and imaginary parts of ¥*,
and the real functional derivatives are defined by

o) 1 a J
—_— = —§, — (4.30)
sk - VL 2 [%aar, “3ar,

and

BABYO +

8’ 52 52
gy BE B+ BB+~ BB | P,
Y8y SYSY SYLSY)
(4.29)
[
8 1 3 3
—=— s, —— ¢ , (4.31)
syt~ VL % *dak + ok,

which follow directly from the definition of ¢* and the
functional derivatives (3.13) and (3.14). We have also
used the shorthand notation ¢, and s, for the cosine and
sine functions in (4.27).
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We now define the vectors

V=97, ¥;=(, )7,

with similar definitions for the drift A and noise & vec-
tors, and the semi positive-definite matrix

ji=xy, (4.32)

B,B! B, B/
D= =887, (4.33)
B,B] B B]
where
B, 0
B= B, 0" (4.34)

We assume the semipositivity of D is sufficient to enable
us to write the equivalent Ito equations

¢X BX.g
v, B,-§

which on combining real and imaginary parts may be
written in the form

9
at

A,
A.V

+ ; (4.35)

(r,2)= A*[Y]1+B*[¢1&"(r,1) . (4.36)

ot
The last equation is the same as that which we would
have found by using the functional complex P distribu-
tion and the procedure of the previous section. Note that
the drift is generally an operator valued vector on the
function space, as was illustrated in the example above.

V. SUMMARY

In this paper we have presented a quantum propaga-
tion theory of slowly varying optical fields. After
quasioptic approximations are made at the classical level,
canonical quantization is applied. To illustrate the tech-
nique we considered an example which includes the usual
complications associated with propagation in a dielectric
medium: linear retarded response, nonlinearity and

diffraction. To properly resolve the operator ordering is-
sue associated with the nonlinearity, it is perhaps neces-
sary to quantize the medium from a microscopic model.?°
We adopt normal ordering.

Having derived quantum field equations, the systems
quantum statistical features may be investigated. This is
conveniently done by imbedding the dynamics in a sto-
chastic process defined on a suitable phase space. To this
end we extended the coherent-state phase-space methods
to cover spatially distributed systems.!* Our treatment in
terms of functional Fokker-Planck equations and sto-
chastic partial differential equations is complementary to
that recently developed by Drummond and Carter,'* who
consider guided wave propagation in an optical fiber,
while we include diffractive effects. Diffraction may re-
sult in interesting quantum statistical properties for prop-
agation in planar slab waveguides where the balance be-
tween self-focusing and diffraction allows stable trans-
verse profiles to propagate.?®:>°

The methods described are applicable to a wide variety
of nonlinear optical processes and configurations, and
may be extended to propagation in anisotropic media.
Quantum optical propagation theory has already provid-
ed interesting predictions on the squeezing of scalar soli-
tons."*!> We have recently extended this to a vector
theory of a class of anisotropic nonlinear dispersive
media, for example, birefringent optical fibers or Kerr
liquids with static-field-induced birefringence.’! Our re-
sults predict wide band squeezing of quadrature fluctua-
tions in regimes of modulational polarization instabili-
ty.3 This calculation illustrates the use of the formalism
developed here.
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