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Several different models are used to investigate reaction-limited cluster-cluster aggregation and
the crossover from diffusion-limited to reaction-limited aggregation. The results obtained from
these models are consistent with each other, if finite-size and finite-concentration effects are taken
into account. For reaction-limited aggregation in three dimensions we find, in the case where the
probability that two clusters will combine depends only on the time that they spend in contact with
each other, that the mean cluster size S(t) increases exponentially with time t and that the cluster-
size distribution N, (t) (of clusters of size s at time t) decays as N, (t)-s with ~ having a value
larger than 1.5. For the case where the probability that two clusters will combine depends only on
the number of times they collide with each other, we find a power-law growth in the mean cluster
size, S(t)-t with z-2.0-2.5, and a cluster-size-distribution exponent ~ close to 1.0. Our results
indicate that the approach to asymptotic behavior may be quite slow and that the effective fractal
dimensionality of the clusters depends both on the aggregation kinetics and on the extent of aggre-
gation. We find that if the rate of bonding between two clusters depends on their collision frequen-
cy, then the exponent v has a value close to 1 for the aggregation of small rigid clusters and close to
2 for the aggregation of large floppy clusters.

I. INTRODUCTION

In recent years considerable interest has developed in
the aggregation' of particles to form large clusters
which frequently have a fractal structure. Although
power-law mass-length scaling relationships were found
in a variety of real systems and simulated aggregates
more than a decade ago, much of the present high level of
interest in fractal aggregates was stimulated by the obser-
vation of fractal geometry in iron particle aggregates
and the subsequent development of the diffusion-limited
aggregation (DLA) model. In the DLA model, particles
are added, one at a time, to a growing aggregate of parti-
cles via random-walk trajectories. Although DLA does
not provide a satisfactory description of colloidal aggre-
gation, it has led to the development of other more realis-
tic models. One of these models is the diffusion-limited
cluster-cluster aggregation (DLCCA) model. ' which
(for the ease of three-dimensional space or lattices) leads
to clusters which have a fractal dimensionality D of about
1.78. This is in quite good agreement with experimental
studies of colloidal aggregates. "

During the past few years a good understanding of
both the structure' and kinetics of DLCCA has been
developed. However, real systems only rarely come close
to satisfying the conditions assumed in DLCCA (irrever-
sible fast aggregation to form rigid clusters). In most ag-
gregation processes many encounters between pairs of
clusters are required before two clusters are combined to
form a larger cluster. In the limit where the number of
encounters required for permanent bonding is very large
(a condition frequently satisfied in practice), all possible

bonding configurations (or at least a representative sam-
ple of them) can be explored before combination occurs.
Under these conditions the aggregation process is limited
not by cluster diffusion but by "chemical" details which
determine how many collisions are required for cluster-
cluster bonding. Although relatively few examples of
chemically limited cluster-cluster aggregation have been
studied experimentally, ' ' ' it seems apparent that
chemically limited aggregation is more common than
diffusion-limited aggregation. In dilute systems we might
expect a crossover from chemically limited aggregation at
short times (small clusters separated by relatively small
distances) to diff'usion-limited aggregation at long times
(large clusters separated by large distances) providing
that other processes (such as mechanical instability' and
settling' ) do not intervene.

A model for reaction-limited cluster-cluster aggrega-
tion (RLCCA) was proposed by Kolb and Jullien and
Family, Meakin, and Vicsek, which was a generaliza-
tion of DLCCA. In this model the reactivity of the
clusters is dependent on a sticking probability which de-
pends on the product of the masses of the reacting clus-
ters. The results indicated that for a small sticking prob-
ability cluster-size distribution and its moments asymp-
totically scale with the same exponents as for the case
when the sticking probability is unity. Only in the limit

p ~0, does the model reduce to RLCCA. A hierarchical
model for RLCCA was developed by Jullien and Kolb. '

In this lattice model 2" particles are combined in stages
so that after the nth stage the system contains 2" clus-
ters each consisting of 2 particles (or occupied lattice
sites). In this model all possible ways of joining pairs of
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clusters are found and one of these is selected at random.
Using clusters containing up to 512 occupied lattice sites
effective fractal dimensionalities of 1.53+0.04, 1.98 0.04,
and 2.32+0.04 were found for hypercubic lattices with
Euclidean dimensionalities d of 2, 3, and 4, respectively.
Jullien and Kolb also determined the number of possible
configurations C~ for two contacting clusters containing
S occupied lattice sites. They found a power-law rela-
tionship between CN and N,

C~-N (1)

Values for A. of 0.74, 1.16, and 1.44 were found for d=2,
3, and 4, respectively. For the most important three-
dimensional case the fractal dimensionality of about 2.0 is
in quite good agreement with experimental results, but
most experiments' ' ' give a slightly higher value for
the effective fractal dimensionality (2.05—2.15).

Brown and Ball have investigated a model in which
pairs of clusters are selected and placed at random on a
cubic lattice. Only if the two clusters are adjacent but
not overlapping is a new cluster formed. Depending on
how the clusters are selected, the cluster-size distribution
may be monodisperse (in the case of a hierarchical model)
or may evolve in a natural way into a polydisperse distri-
bution if the clusters are selected at random, irrespective
of their sizes. Brown and Ball found that the effects of
polydispersity are much larger for RLCCA than for
DLCCA. For d= 3, fractal dimensionalities of 1.94+0.02
were found for the monodisperse case and 2.11+0.03 for
the polydisperse case. For d=2, values of 1.53+0.01 and
1.59+0.01 were obtained. The exponent k was also mea-
sured and values of 1.16+0.04 and 1.06+0.02 for 1=3
and 0.75+0.01 and 0.73%0.02 for d=2 were found for
the monodisperse and polydisperse cases, respectively.

A theoretical model for RLCCA has been proposed by
Ball et a/. The analysis of Ball et al. is concerned with
RLCCA under the conditions where all bonding
configurations between any two pairs of clusters have an
equal probability of being accepted to form a new cluster.
They find that under these conditions the reaction kernel
E(i,j) can be described in terms of its scaling properties
E(i j)-ij ' fori »jand K(i j)-i fori =j with A, =l
in three dimensions. A reaction kernel with these scaling
properties leads to exponential growth in the mean clus-
ter size S defined by

gs N, (t)

S(t)= (2)

g sN, (t)
s=l

where S(t) is the mean cluster size at time t and N, (t) is
the number of clusters of size s at time t. A power-law
cluster-size distribution N, (t)-s 'is also predicted with
~ having the value of 1.5.

In this paper we describe the results obtained from
three different models. Model I is a modification of the
time-dependent DLCCA, ' in which the probability
that two clusters will combine is proportional to the
amount of time they spend in contact with each other. In
this model, which is carried out at finite densities p, the
reaction probability is reduced as far as is practical to ap-

proach the chemically controlled limit. Model II is close-
ly related to model I, except that the chemically con-
trolled limit is reached by allowing particles or clusters to
move with equal probability to any set of unoccupied lat-
tice sites after they have been selected. In model III,
pairs of particles are selected at random from the entire
system and brought into contact with each other. If the
two particles are contained in clusters, the associated par-
ticles constituting the clusters are moved with them and
the two particles are combined (to form a single cluster
containing all of the particles associated with the two
selected particles) only if there is no overlap between par-
ticles in the two clusters. This model, which was pro-
posed by Leyvraz, is closely related to the model of
Brown and Ball.22 Results from both lattice and nonlat-
tice versions of this model will be presented.

In the simplest version of the RLCCA mode;1 the prob-
ability that two clusters will combine with each other is
proportional to the amount of time that the two clusters
spend in contact with each other. However, in real sys-
tems the reaction rates may depend on the cluster masses.
We have explored the effects of such mass-dependent
reactivities and find that the cluster-size distribution (and
fractal dimensionality) is sensitive to such details.

The outline of this paper is as follows. In Sec. II we
define the three models that we use to simulate reaction-
limited aggregation, and present the results of the simula-
tions. Discussion and conclusions are given in Sec. III.

II. MODELS AND RESULTS

A. Model I

Model I is based on the time-dependent cluster-cluster
aggregation model which has been described previously.
In this model, clusters are selected at random and moved
by one lattice unit in a randomly selected direction if a
random number X uniformly distributed in the range
0 ~X& 1 satisfied the condition

g)(s)
(3)

+max

Here 2)(s) is the diffusion coefficient for the selected
cluster of size s and 2),„ is the maximum diffusion
coefficient for any cluster in the system. In most cases we
assume that the cluster diffusion coefficient depends only
on its size or number of particles s (i.e., shape effects are
ignored) and that 2)(s) is related to s according to

2)(s)-s~ . (4)

Scaling arguments and calculations using the
Kirkwood-Risemann theory indicate that for the case
of colloidal aggregation in a dense fluid the exponent y is
given by y = —1/D.

After each cluster has been selected, the time is incre-
mented by I/(NX), „)where N is the number of clusters
in the system. The time is incremented whether or not
the cluster is actually moved. This procedure (which is
described in more detail in Ref. 25) introduces a time
scale in units of the time required (on average) for a single
particle to move by one lattice unit.

In the DLCCA model two clusters are combined as
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soon as they come into contact with each other via

nearest-neighbor occupancy. This model can be modi6ed
to include the effects of sticking probabilities P smaller

than 1 by allowing sticking to occur with a probability of
P each time one cluster attempts to move onto the lat-
tice sites occupied by another cluster. In this model clus-
ters would be selected at random and a direction in the
lattice would also be selected at random. If movement of
the cluster in the selected direction would cause it to
overlap the sites occupied by one (or more} other cluster
then these two (or more) clusters would be combined if
X & P (where X is a random number uniformly distri-
buted over the range 0&X&1). If X &P the two (or
more) clusters would remain side by side but would not
be combined. In the limit P ~0, this model corresponds
to reaction-limited aggregation.

Instead of testing for sticking after each cluster has
been selected, we calculate the probability that two clus-
ters will stick as soon as they move into contact with
each other (or remain in contact after attempting to over-
lap). An estimate of the probability that two adjacent
clusters will combine before one of them is randomly
selected and moved is given by

6-
z
c 5-

8
In (t)

8 9
ln(t)

10 12

12

13

0P =
[o'(i )+S(i )+2)(j)]

a more detailed analysis gives

o+[$(i}+2)(j)]/2—tr[2)(i}+&(j)]/2 '

(5)

(6)

FIG. 1. Dependence of the mean cluster size (S) and number
of clusters (N) on time obtained from three-dimensional simula-

tions using model I. These simulations were carried out assum-

ing that 2)(s)-s ' . Each curve was obtained using a different
value for the parameter cr [Eq. (6)].

where 2)(i) and 2)(j) are the diffusion coefficients of the
two contacting clusters. The parameter o' in Eq. (5) can
be regarded as a rate constant describing the rate at
which two contacting clusters "react" to form a com-
bined cluster. The limit o'~ 00 corresponds to DLCCA
and the limit cr'~0 corresponds to RLCCA. The pa-
rameter cr in Eq. (6) is the probability that two clusters
will combine after they either move into contact with
each other or remain in contact after one of the two clus-
ters has been randomly selected but not moved. In this
case the limit o ~1 corresponds to DLCCA and o ~0
corresponds to RLCCA.

The procedure outlined above was adopted in the in-
terest of reducing computer time requirements. For a
typical simulation with 10000 particles (occupied lattice
sites} on a 128 lattice it is possible to reduce o to values
of about 10 . Such a simulation requires about 5 h of
central-processing-unit (CPU) time on an IBM 3081 com-
puter. It should be possible to reduce cr to about 10
but very large amounts of computer time would be re-
quired to explore still smaller values of o..

Simulations have been carried out using both Eqs. (5}
and (6) to calculate the probability of combining two
clusters after contact. For the smallest value of o.' or o.

(10 ) used in this work nine simulations were carried
out using Eq. (5) and 16 simulations were carried out us-
ing Eq. (6) with 10000 particles (sites) on 128 lattices.
Very similar results were obtained using both Eqs. (5) and
(6}. Only results obtained using Eq. (6}are shown here.

Figure 1 shows the time dependence of the mean clus-
ter size S(t)and the number of clusters N(t) for several

different values of the parameter cr in the range
0.1&o (0.001. In these simulations the parameter y
[Eq. (4)] was set to a value of —

—,
' which is approximately

equal to —1/D for RLCCA. The results shown in Fig. 1

show a crossover from the behavior associated with
DLCCA for large values of rr and/or short times
[S(t)-t', N(t)-t ', where the exponent z has a value
close to 1] to a quite different behavior for small values of
o and/or long times, which we associate with RLCCA.
The results shown in Fig. 1 indicate that in the RLCCA
limit S(t)-t' and N(t)-t ', where the exponent z has a
large value )4. However, such large exponents are
diScult to measure accurately and we cannot, on the
basis of these results, rule out either exponential growth
or gelation [S(t)-(t tg) ", where t —is the gel time].
For values of o. larger than 10, the results from 20—30
simulations were averaged to obtain the results show in
Fig. 1.

The time-dependent cluster-size distributions N, (t)
were determined in all of our simulations. Figure 2
shows some of the results obtained using the lowest value
for o (10 ). In Fig. 2(a) the cluster-size distribution is
shown at several different times and Fig. 2(b) displays one
of these size distributions. Figures 2(a) and 2(b) indicate
that for intermediate times, which are accessible in both
experiments and simulations the cluster, size distribution
can be described approximately by the power law

N, (t)-s
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periodic boundary conditions. After the Xo sites have
been selected, clusters of sites joined by nearest-neighbor
occupancy are identified. At this stage, the system con-
sists mainly of single occupied sites with no occupied
nearest neighbors, together with a few clusters containing
two or more sites. Clusters are then selected at random
and moved if a random number X satisfies the condition

G(s)X(
Gmax

where

G(s)-s (9)

0 cr = 0.001
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FIG. 2. Cluster-size distributions X,(t) obtained at various

times (t) during simulations of DLCCA using Model I with

y= —
z and a value of 10 ' of o [Eq. (6)]. (b) The cluster size

distribution obtained for t =46290.

where the exponent ~ has a value of about 2.0.
Simulations carried out using model I suffer from

several disadvantages. They must be carried out at finite

densities (p-4. 77X10 particles per lattice site in our

case) which do not closely approach the limit p~0 in

which the simplest behavior is expected. They require

large amounts of computer time so that it is not possible

to reduce statistical uncertainties to very low levels or
carry out simulations on very large systems. Also, it is

not possible to closely approach the limit o ~0. Howev-

er, the effects of nonzero densities p and reaction parame-

ters 0. are important in real systems and model I allows

us to explore these effects.
In order to obtain information about cluster-cluster ag-

gregation in the limit o ~0 (reaction-limited aggrega-
tion}, two new models closely related to the models of
Brown and Ball and Leyvraz were developed. These
models and the results obtained from them are described

in Secs. II 8 and II C of this paper.

B. Model II

In model II we retain a finite particle density but the
simulation is carried out in the reaction-limited regime.
The simulations are carried out on cubic lattices which

typically contain 128 sites with periodic boundary condi-
tions. A fixed number No of sites are selected on cubic
lattices at random and filled to represent single particles.
In most of our simulations Xo was set to a value of 10000
on cubic lattices typically containing 128 sites with

K(i,j)-[2)(i)+2)(j)]Ko(i,j), (10)

where Ko(i,j) is the number of possible bonding
configurations between the two clusters. The quantity
Ko(i,j) is automatically included in our simulations using
model II. The dependence on the cluster diffusion
coeScients is included by using a nonzero value for the
exponent 5 in Eq. (9).

The appropriate choice for the exponent 5 will depend
on the physical details of the aggregation process. For
relatively small rigid clusters with a short-range activa-
tion barrier, it is reasonable to use a value of —1/D for

In this model the cluster is moved with equal probability
to any set of unoccupied lattice sites in the system. If all
of the sites occupied by the cluster in its new position are
vacant, the move is accepted; otherwise, a new random
position is selected. This process is repeated until a set of
vacant sites has been found and the cluster remains in
that new position. After a cluster has been successfully
moved, its perimeter is examined and it is combined with
any cluster with one or more occupied sites on the perim-
eter. Here the perimeter consists of all empty sites which
are nearest neighbors to the occupied sites in the cluster.
After a cluster has been moved and combined with any
contacting clusters, a new cluster is randomly selected
and moved if X ~G(s}/G,„. The whole process is re-
peated until only a few clusters remain in the system.

A time scale can be associated with this model by in-
crementing the time by 1/(NG, „)after each cluster has
been selected (irrespective of whether or not it is actually
moved). Except for the fact that a finite density of parti-
cles is used in this model, it is very similar to the model
introduced earlier by Brown and Ball. If the exponent
5 in Eq. (9) has a value of 0, then each bonding
configuration in the system has an equal probability of
reacting to advance the aggregation process. Conse-
quently, 5=0 corresponds to RLCCA. The definition of
reaction-limited cluster-cluster aggregation in terms of an
equal reaction probability is equivalent to assuming that
the probability that two clusters will combine depends
only on the amount of time they spend in contact with
each other. However, it is possible that the probability
that two clusters will combine will depend also on the
number of times that they move into contact with each
other. Under these conditions it is reasonable to assume
that the effective reaction rate between two clusters of
size i and j will be given by
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the exponent 6. For larger or more floppy clusters, the
collision frequency between two clusters will depend on
internal motions in the two clusters, and a value of 0 for
the exponent 5 seems to be more reasonable. Since all
clusters will become floppy in the limit s ~ 00, it might be
argued that 5=0 is the appropriate value to use if we are
interested in the asymptotic (long-time) behavior of the
system.

As has been pointed out by Brown and Ball, the
structure of clusters formed by reaction-limited cluster-
cluster aggregation is sensitive to the reaction kinetics.
This effect can be more clearly seen in two-dimensional
than in three-dimensional simulations. Figure 3 shows
the results obtained using 10000 particles on 512X512
site square lattices with periodic boundary conditions.
This figure shows results obtained at or near the end of
simulations carried out using four values for the exponent
5 ( —1.0, —0.5, 0.0, and 0.5). Under these conditions
only one or a few clusters reinain. For the case 5=0.5,
the very broad cluster size distribution can be seen.

The dependence of ln(Rs) on ln(s) is shown in Fig. 4
for all of the intermediate clusters formed in two-
dimensional simulations carried out using three different
values for the exponent 5. Here Rg is the cluster radius
of gyration. The results from more than 100 simulations
were averaged for each value of 5. Figure 4 shows that
for clusters in the size range 20 & s ( 1000 the dependence
of ln (Rs ) on in(s) is quite linear, indicating that a single
fractal dimensionality D&, defined by

R -s~, Dp 1/P, ——

can be used to describe the structure of the clusters in the
above size range. Figure 5 shows the dependence of the
effective exponent P [obtained by least-squares fitting
straight lines to the dependence of ln(R ) on ln(s) for
clusters in the size range 25&s&2500 lattice sites] on
eight values of 5 in the range —1 to 0.75. The results
shown in Fig. 5 indicate that P decreases continuously as
5 is increased. However, because of finite-size and finite-

512 LATTICE UNITS
=-10

512 LATTICE UNITS
Q = -0.5

I

a+ÃF

11%

)~~ ~iir

5&2 LATTICE UNITS
$= 00

512 LATTICE UNITS
8= 0.5

FIG. 3. Some results obtained from a two-dimensional version of model II. Here the system is shown near the end of simulations
carried out using 10000 occupied sites on 512' 512 lattices with periodic boundary conditions. Results are shown for four different
values of the parameter 5 [Eq. (10)]. This figure illustrates the increase in fractal dimensionality and increasing breadth of the
cluster-size distribution with increasing 5.
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FIG. 4. Dependence of the radius of gyration (Rg ) on cluster
size (s) obtained from 2D simulations carried out using model II
with 5 set to values of —1, 0 and 0.75.

concentration effects we cannot be certain that the varia-
tion of p with 5 is continuous over the whole range of 5
values. In the limit 5~ ao this model becomes equivalent
to an Eden model (random addition of single particles
to large clusters} in the limit of zero density, so that we

expect the exponent p to approach a value of —,
' in the

limit p~O, 5—+ac. Although p has not approached
closely this limiting value for 5=0.75, our results are
consistent with this idea. Similarly, in the limit p~0,
5~ —ee, we expect p to have a value close to that found
in the hierarchical model of Kolb and Jullien ' ' who
found that D& l.53+0.04——or p=0. 65+0.02. Our results

indicate a limiting value of about 0.64 for P, in good
agreement with those of Jullien and Kolb. The value for
p obtained from the hierarchical model should be an

upper limit for our model and our results are certainly
consistent with this. Results similar to those shown in

Fig. 5 were presented earlier for the three-dimensional
(3D) version of model III.

Although the structure of fractal aggregates is still a
subject of considerable interest, our main motivation for
carrying out the work described in this paper was to ex-
plore the kinetics of reaction-limited aggregation. Simu-
lations were carried out for values of 5 in the range —1.0
to 0.75. Only results for the cases which seem to be the
most important (5=0 and 5= —1/D = —O.S) are report-
ed here. Figure 6 shows the dependence of the mean
cluster size S(t) on time t for the case where 5=0. These
simulations were carried out using 10000 sites on 128
lattices. The results shown in Fig. 6 are equally con-
sistent with a power-1aw or exponentia1 increase in the
mean cluster size with increasing time. It also seems pos-
sible that the time dependence of the mean cluster size
could be represented by an expression of the form
S(t)-(t ts—) r for times close to ts (the gel time). In
our simulations the growth of S (t) saturates at long times
as a result of the finite system size. In addition, the
effects of the initially almost monodisperse distribution
take some time to decay. For this reason the range of
times over which S(t) displays reasonable power-law or
exponential behavior is at best quite narrow and we can-
not distinguish between them.

The time-dependent cluster-size distributions obtained
from the same simulations are shown in Fig. 7. Each of
the curves in Fig. 7(a) shows the number of clusters of a
particular size as a function of time and the curves shown
in Fig. 7(b) are the cluster-size distributions at various
times. The results shown in Fig. 7(b) indicate a power-
law cluster-size distribution [Eq. (8}]with a value close to
2.0 for the exponent ~ at intermediate times. The results
obtained from model I (with 5= ——,') and from model II

10
~- 30 8=0

064 I

I = 2 standard errors 2D

2-

Q62- 00
In (t)

0.60—

4
CA

c 3

I

-05 0.5 1.0
0

10 ZO 30 40 50 60 70 80 90 lO0
t

FIG. 5. Dependence of the radius of gyration exponent (Pl
on 5 obtained from the dependence of ln(Rg ) on ln(s) (see Fig.
4) using two-dimensional versions of model II with eight values
of 5 in the range —1 & 5 & 0.75.

FIG. 6. Dependence of the mean cluster size (S) on time ob-
tained from model II with 5=0. These results were obtained
from 3D simulations using 10000 particles on 128 lattices.
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FIG. 7. Time-dependent cluster-size distributions obtained
from the simulations used to generate Fig. 6. (a) The number of
clusters of size 1, 2, 3, 5, 10, 19-20, 38-40, and 75-80 as a func-

tion of time. (b) The cluster-size distributions at nine different
times ( t= 1.72, 3.12, 5.68, 10.4, 18.8, 34.3, 62.4, 114, and 207).

(with 5=0) which both represent reaction-limited
cluster-cluster aggregation are qualitatively very similar.
They are also in reasonably good quantitative agreement.
In particular, both models indicate effective values for the
cluster-size distribution exponent v which are larger than
1.5.

Simulations have been carried out at several different
concentrations from model II with 5= —0.5. This value
for the exponent 5 is close to —1/D [measurement of the
radius of gyration for clusters of different sizes for simu-
lations carried out using model II with 5= —0.5 indicate
that P=0.470(D&-2.13)]. Figure 8 shows the depen-

dence of ln[S(t}]on ln(t) obtained from simulations car-
ried out using 5000, 10000, and 20000 particles on lat-
tices containing 128 sites. The corresponding densities
are 2.38&10, 4.77&10, and 0.54X10 occupied
sites per lattice site, respectively. The results shown in
Fig. 8 indicate that the effective value for the exponent z
[S( t }—r '] increases with increasing particle concentra-
tion. However, these results also indicate that the
effective value of z is probably not more than about 10%
larger than the value which would be obtained in the zero
concentration limit for p=4. 77)(10 (10000 particles).

Figure 9 shows the cluster-size distributions obtained
from simulations with 5= —0.5 and 10000 particles per
1283 lattices. Figure 9 shows that at intermediate times
the cluster-size distribution can be described in terms of a
power law with an exponent v. of about 1.0. Consequent-
ly, it appears that the exponent ~ can have an effective
value in the range 1.0(~&2.0 at intermediate times in
reaction-limited cluster-cluster aggregation, depending
on the physical details associated with the aggregation
process.

The reaction kernel describing reaction-limited
cluster-cluster aggregation processes is a quantity of con-
siderable interest. Simulations such as those described
above can be used to determine the values of the elements
in our effective reaction kernel (IC; ) by measuring how
often clusters of size i combine with clusters of size j to
form clusters of size i +j. ' Results from a large number
of simulations are required to reduce statistical uncer-
tainties to reasonable levels. Figure 10 shows elements of
the reaction kernel (X;~ ) of the type Kz [Fig. 10(a), diago-
nal elements] and of the type K, [Fig. 10(b), the most
off-diagonal elements] as a function of time during the
simulations. Additional details concerning the deter-
mination of an effective reaction kernel from such simula-
tion results are given in Refs. 30 and 31. The results
shown in Fig. 10 were obtained from 1650 simulations,
each carried out with 10000 particles on 128 lattices
(i.e., a total of 1.65)& 10 particles). The results shown in
Fig. 10 indicate that the elements of the binary reaction
kernel are time-independent quantities at all times for
which data with reasonably small statistical uncertainties
exist. In the case of diffusion-limited aggregation an ini-

10

4Vl
2

0

00
In (t) In (s)

7

FIG. 8. Dependence of the mean cluster size (S) on time ob-
tained from 3D simulations carried out using model II with
three different particle densities (5000, 10000, and 20000 parti-
cles on 128' lattices).

FIG. 9. Time-dependent cluster-size distributions obtained
from 3D simulations carried out using model II with 5= —0.5
(ppproxirnately —1/D). Results are shown for the times (t) of
2.75, 8.44, 25.9, 79.7, 245, 752, 2310, and 7100.
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FIG. 12. Dependence of [(i~+j~]/2)KO, on i and j. Here
E;J is the ij deviant of the reaction kernel obtained using model
II with 5=0. (a) The results obtained with 5'= —

z
and (b) the

results obtained with 5'= —1. The results shown in (a) and (b)
should be compared to those shown in Figs. 11(b) and 11(c), re-
spectively.

C. Model III

Model III simulates RLCCA in the zero density limit.
In this model we start with a list of particles (in most of
our simulations 200000 particles were used}; pairs of par-
ticles are selected at random from the list and brought
into contact with each other. If both particles are isolat-
ed particles (not part of a cluster) they are joined and re-
turned to the list as a binary cluster. As the simulation
proceeds many of the randomly selected particles, which
have other particles associated with them, will be part of
a cluster. If the two particles belong to the same cluster,
another selection is made. If they belong to different
clusters, the two clusters are rotated to random orienta-
tions (for the off-lattice model only) and the two particles
are placed into contact with each other. If no overlap
occurs between any pair of particles in either of the two
clusters, the two clusters are combined in this
configuration and returned to the list. This process is
continued until the largest cluster size exceeds a predeter-
mined value (s,„)or until only a single cluster remains.
This model can be made time dependent by incrementing
the time by a constant amount each time a pair of parti-
cles is selected from the list (whether or not their associ-
ated clusters are combined). Simulations were carried
out using both a cubic lattice and off-lattice version of
this model.

Figure 13 shows the dependence on In(Rs/s' } ob-

tained from both the lattice and off-lattice versions of
model III. The lattice model results were obtained using
200000 particles in each simulation and the simulations
were stopped where the maximum cluster size exceeded
300 or 10000 particles. For s,„=300 the results from
1000 simulations were averaged and for s,„=10000the
results from seven simulations were averaged. The
effective exponent P [Eq. (11)] was found to depend
slightly on s,„and values of 0.458 and 0.453 (D& —2.18
and 2.21, respectively} were found for s,„=300 and
10000. Results obtained from the off-lattice model with
s,„=300and 3000 are shown in Fig. 13(b). For the case
s,„=3000 a value of about 0.478 was found for P
(Dtt-2.09). The development of a higher fractal dimen-
sionality for larger values of s,„ is related to the evolu-
tion of a broader cluster-size distribution as the aggrega-
tion process proceeds.

The time dependence of the mean cluster size [S(t)]
obtained from 22 off-lattice simulations, each using
200000 particles, is shown in Fig. 14. In these simula-
tions the maximum cluster size (sm, „) was 3000. These
simulations are less subject to finite-size effects than those
carried out using models I or II. Although the results are
consistent with a power-law growth in the mean cluster
size [S(t)-t' with z-4.2; Fig. 14(a)] the dependence of
S(t) on t can be fit by an exponential growth form over a
longer time range [Fig. 14(b}]. Similar results obtained
from the lattice model are shown in Fig. 15.

Both the lattice and off-lattice versions of model III
have been used to obtain time-dependent cluster-size dis-
tributions N, (t}. Some of the results from the off-lattice
model have been presented earlier and are consistent
with a power-law cluster-size distribution [Eq. (8)]
characterized by an exponent ~ with a value of about 1.7.
Figure 16 shows similar results obtained from the lattice
model. In this case our results indicate that N, (t)-s
with v having a value of about 1.9. The results obtained
from both the lattice and off-lattice versions of model III
are quite similar to those obtained from model I (Fig. 2)
with y = —

—,
' and from model II [Fig. 7(b)] with 5 =0

An important quantity in understanding the aggrega-
tion kinetics associated w&th model III is the probability
(P;J ) that two particles in clusters of size i and j, respec-
tively, can be brought together without overlap between
any pair of particles in the two clusters. Figure 17 shows
some of the results obtained from both the lattice and
off-lattice versions of model III for pairs of clusters in the
size range 1&i &100 and 1&j &100. These simulations
indicated that P,, -i for the off-lattice model and
P,, -i for the lattice model. These results would
correspond to values for the exponent A, describing the
dependence of the diagonal elements of the reaction ker-
nel (K;; i ) of 1.12 a—nd 1.16, respectively, in good agree-
ment with the results obtained from model II (A.=1.16,
Ref. 30). For the off-lattice model the dependence of
ln(P;;) on ln(i) was linear for all cluster sizes (i) in the
range 1&i &100. For the lattice model, the effective
value of A, decreases (increased in magnitude) with in-
creasing cluster size.

Because of the possibility that the asymptotic value of



38 STRUCTURE AND KINETICS OF REACTION-LIMITED AGGREGATION 2119

-0.80 I I

LATTICE MODEL (a)

-0.90—
CV

o -095—

-l.05

In (s)

—0.6 5
OFF LATTICE (b)

-0.70 ~ smax = 300
lV

0 F-5.

c-
—080—

Smax= 3000

—090
5
l

In (s)

FIG. 13. Dependence of ln(Rg/s' ') on ln(s) obtained from the lattice version (a) and the off-lattice version (b) of model III with

the exponent c set to a value of 0. The simulations carried out to obtain these results were started out with 200000 particles and were

terminated when the largest cluster exceeded a size of s,„. In these figures Rg is the cluster radius of gyration and s is its size (num-

ber of particles or occupied lattice sites).

A, might be 1.0 a considerable effort was made to extend
these results to larger cluster sizes. For the lattice ver-
sion of model III, 377 simulations were carried out, each

using 200000 particles with a value of 3000 for s,„. For
the o8'-lattice model 123 simulations each using 200000
with a value of 3000 for s,„were carried out. The re-
sults from these simulations, which were presented in
Ref. 30, indicate that P,-,--i for the ofF-lattice model
for clusters in the size range 1 &i & 1000 particles. From
the lattice-model simulations we found that P,-,--i
for clusters in the size range 100&i & 1000 lattice sites.
This result is consistent with the idea that the asymptotic
value for A, might be 1.0. However, it is apparent that if
this is the correct asymptotic value the approach to this
limiting (i ~ ao ) behavior is quite slow. For both the lat-
tice and off-lattice versions of model III our results are
consistent with the idea that P„approaches a constant
value with increasing i.

It is possible that in real cluster-cluster aggregation (at
least for reasonably small cluster sizes where translation
is more important than internal modes) the rate at which
two clusters join may depend on the frequency with
which they "collide" as well as on the amount of time
they spend together. It is also reasonable to suppose that
the collision frequency for clusters i and j will be given by
U (i,j)=2);+2)J when 2); and Xl~. are the cluster diffusion
coef5cients. Consequently, versions of model III have
been developed in which pairs of particles (i and j) are
selected at random with probabilities (s,.'+s') where s,.

and s are the sizes of the clusters containing particles i
and j, respectively. Figures 18 and 19 show some of the
results obtained from simulations carried out with
E= ——,

' (approximately —1/D). Figure 18 shows the
dependence of ln(R /s'~ ) on ln(s) for both the lattice
and off-lattice models. As expected, ' the effective
fractal dimensionality (D& I/P) is slightly sma——ller for
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' can also be approached with a

modified version of model I. In this model we use a value
of —

—,
' for the exponent y and the probability that two

adjacent clusters will combine before one of them is ran-
domly selected and move is now given by p =0. instead of
Eqs. (5) or (6). Some results from this model (model Ia)
are shown in Fig. 20. The dependence of ln[S(t)] on
In(t) suggests that S(t)-t', with a value of about 2.3 for
the exponent z. Simulations carried out using the off-
lattice version of model III with a value of ——,

' for c. give
similar results and the effective value of z obtained from
these simulations is about 2.25 (Fig. 21).
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FIG. 18. Dependence of ln(Rg /s '
) on ln(s) for clusters gen-

erated using model III with c= ——,'. (a) The results obtained
from the lattice model, and (b) results obtained using the off-
lattice model. In each case s,„was 3000 and the results were
obtained by averaging a number of simulations starting with
200 000 particles.

III. DISCUSSION

We have investigated three models for reaction-limited
aggregation. All three models give results which are in
good qualitative agreement with each other. Because of
finite-size effects, statistical uncertainties, and in some
cases finite concentration effects, the qualitative results
are not in perfect agreement. Under conditions in which
the probability that two clusters will combine is propor-
tional to the amount of time that they spend in contact
with each other, our results indicate that the mean clus-
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FIG. 19. Time-dependent cluster-size distributions obtained
from the lattice version (a) and off-lattice version (b) of model
III with c= ——'. In each case the curves correspond to cluster-
size distributions obtained at the stage where the number of
clusters had been reduced from an initial value of No ——200000
particles to No/2, NO/4, . . . , No/64 (No/2", n = 1 —6).

FIG. 20. Dependence of the mean cluster size [$(t)] (a) and
cluster-size distributions [N, (t)] (b) on time obtained from 3D
simulations carried out using model I with y set to a value of

(approximately —1/D). (a) Results for several different

values of the reactivity parameter o [Eq. (6)]. (b) The time-
dependent cluster-size distribution for a small value of cr (10 )

at the times 555.9, 2019, 7335, 26650, 50780, 76790 and
184 500.
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FIG. 21. Dependence of the mean cluster size [S(t)]on time

obtained from the o8'-lattice version of model III with 5= ——,'.
These results were obtained from 20 simulations each using

200 000 particles.

ter size S (t) grows exponentially with time, S(t)-e" for
large t. We cannot, on the basis of our simulation results
rule out power-law growth, S(t)-t', or gelation,
S(t)-(ts t) r. E—xponential growth is in agreement
with the theoretical results of Ball et al. and a variety
of experiments under slow aggregation conditions. ' '
However, it is as difficult to distinguish between power-
law growth with a large-z exponent, exponential growth,
and gelation experimentally as it is in our computer simu-
lations. If the probability that two clusters combine is
proportional to the number of times that they collide
with each other, then we find power-law growth
[S(t)-t' with z in the range 2.0—2.5] for the mean clus-
ter size if the clusters are rigid.

In all cases the cluster-size distribution at intermediate
times can be described in terms of a power law

N, (t)-s ', at least to a good approximation. If the
probability that two clusters will join depends only on the
time that two clusters remain in contact with each other,
then our simulation leads to a value for the exponent r
which is close to 1.75. On the other hand, if the probabil-
ity that two clusters will combine is proportional to the
number of times which they collide with each other, then
we find a value for ~ which is close to 1.0.

Weitz et al. ' have determined the exponent ~ under
slow aggregation conditions. They find an exponent ~
close to 1.5 for the aggregation of colloidal gold particles.
Schaefer et al. ' found a similar value for ~ for aggrega-
tion of silica colloids. Similar results have been found in
other systems. For example, von Schulthess et a/. have
found a value of 1.40+0.15 for ~ associated with the anti-
body aggregation of antigen-coated polystyrene latex par-
ticles. However, the structure of these aggregates is less
we11 characterized than that of the gold particle aggre-
gates' and the clusters observed are relatively small.
Similarly, Martin and Rarity and Pusey have found
values for ~ close to 2 in other systems undergoing what
is believed to be reaction-limited aggregation.

The aggregation of large floppy clusters might be ex-
pected to depend only on the time that two clusters spend

in contact with each other since the number of contacts
between the two clusters would then be controlled by lo-
cal internal motions which would be independent of the
cluster size. Under these conditions our results would in-
dicate that the exponent ~ should have a value of about
1.75. The aggregation of rigid clusters should depend
only on the number of times that their Brownian trajec-
tories bring them into contact with each other. Conse-
quently, we might expect a value for ~ which is close to
1.0 for the aggregation of rigid clusters. In practice, we
might expect an effective value for ~ in the range
1.0&r &2.0 with smaller values of ~ for more rigid (or
smaller) clusters. Consequently, the smaller values for ~
obtained for the slow aggregation of colloidal gold than
for the slow aggregation of colloidal silica might be a re-
sult of the higher rigidity and/or smaller size of the col-
loidal gold aggregates. For model I we have carried out
simulations using values of the parameter tr [Eq. (6)] or
o'' [Eq. (5)] in the range 10 3&0'& l.

This has allowed us to investigate the crossover from
diffusion-limited to reaction-limited aggregation. For
real systems the effective value of 0 or 0' might be much
lower than 10 . In fact, values as low as or lower than
10 are quite reasonable. Nevertheless, for systems of
the size used in our simulations a value of 10 for tT' or
cr is sufficient to closely approach the reaction-limited re-
girne, and for values of 0. or o' close to 10 results very
similar to those generated by model II or model III were
obtained. For large systems smaller values of 0 would be
required. In principle, diffusion-limited aggregation will
always be seen in infinite systems which are sufficiently
dilute at long enough times. However, such conditions
may be difficult to attain in practice and other effects
such as settling under gravity, convection, mechanical in-
stability of large clusters, etc., may prevent the diffusion-
limited regime from being attained.

Of the models discussed here only model I takes into
account the fact that all possible bonding configurations
might not be geometrically accessible. However, this
model overestimates these effects since no cluster rota-
tions are allowed, thus restricting the ability of two clus-
ters to interpenetrate. Similarly, model II does not allow
clusters to rotate but the "zero-dimensional" trajectories
allow pairs of clusters to find bonding configurations
which would be inaccessible in model I. In model III all
possible configurations can be found, though some of
them might be geometrically inaccessible. The magni-
tude of these effects is difficult to assess. However, the
similarities between the results obtained from these mod-
els suggest that they are not large. We would expect that
the effects of geometric inaccessibility would be larger in
two-dimensional systems and smaller in higher-
dimensional systems. It would be possible to develop an
off-lattice model in which only accessible bonding
configurations were selected. However, such a model
would be cumbersome and it would not be possible to ob-
tain results from simulations carried out on the scale
presented here. Consequently, it would probably not be
possible to reduce finite-size effects and statistical uncer-
tainties to a satisfactory level in order to make rneaning-
ful comparisons with models I, II, and III of this work.
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