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Symmetry property of the Lyapunov spectra of a class of dissipative dynamical systems
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It is shown that the Lyapunov spectra of a class of dissipative dynamical systems with viscous

damping are symmetric with respect to a constant determined by the dissipation of the system. A
property of the associated linearized flow similar to the symplectic property is established. Further-
more, numerical computations of the characteristic exponents of 15 coupled damped Duffing oscil-
lators driven by a van der Pol oscillator are presented.

I. INTRODUCTION

The numerical calculation of Lyapunov spectra of
dynamical systems has become a standard but expensive
tool in the investigation of dynamical systems. For Ham-
iltonian systems it is known' that the Lyapunov spec-
trum is symmetric with respect to zero because the
linearization of the How is symplectic (see Definition in
Sec. III). In this case it is therefore sufficient to calculate
only half of the Lyapunov exponents to determine the
whole spectrum. It is the purpose of this paper to show
that a certain class of dissipative systems also possesses a
mirror symmetry of the Lyapunov spectrum.

Consider a periodically driven chain of damped
Duffing oscillators. The dissipation is introduced as usual
via a damping term proportional to the velocities of the
oscillators with a proportionality factor d. It was in cal-
culating numerically whole Lyapunov spectra with
respect to a Poincare hyperplane for such a system that
we realized a symmetry of the Lyapunov spectra with
respect to the point —(d/2). Note that if the damping
factor d goes to zero, the center of symmetry of the Ham-
iltonian case is recovered, as are the Hamiltonian equa-
tions of motion. It is therefore quite natural to conjec-
ture that the observed symmetry of the Lyapunov spectra
is not a numerical artifact or an oddity of the chosen
Duffing potential but a general feature of dissipative
dynamical systems which are non-Hamiltonian only due
to viscous damping. In the following we establish for this
class of dissipative systems a property of the associated
linearized flow which is related to the symplectic proper-
ty of Hamiltonian flows and implies the symmetry of the
Lyapunov spectra.

II. EQUATIONS OF MOTION,
DESCRIPTION OF THE COMPUTED MODEL

The purpose of this section is to put forward the nota-
tion and to prepare the general result by presenting nu-
merically calculated Lyapunov spectra. First, we intro-
duce the chain of coupled oscillators for which the
above-mentioned symmetry of the Lyapunov spectrum
has first been observed. It is a ring of 15 mass points with
nearest-neighbor coupling where the interaction potential

with x, , h, d,fCE and with periodic boundary condi-
tions (i.e., xo=x„, x„+,——x, ). x, denotes the displace-
ment of the ith particle from its equilibrium position (the
masses are absorbed in the parameters d, h, and f) and x;
its velocity.

Introducing the velocities x; as new independent vari-
ables we obtain a nonautonomous system of the general
form

x=v(t, x)=v(t+T(a, coo), x), xCR ", n =15 (2)

where T=T(a, too } is the period of the van der Pol oscil-
lator.

The Poincare map for nonautonomous systems de-
pending periodically on time is given in the usual way by
looking at the equivalent autonomous system. This latter
is obtained by adding the equation 8=1 to the nonauto-
nomous equations (2), i.e., by introducing time as new ex-
plicit state variable:

z=(9,x)=v(z)=(i, v(z)),

z=(8,x)GSr XE "=M .

The circular component Sz ——E(modT) of the new phase
space M reflects the periodicity of the vector field v in
time.

The Poincare map of the system with respect to the
Poincare hyperplane (Poincare plane for short}
X, :=I(to, x) EM

i
xCE ") is then given by

P(x)=n.og (to, x), toCE, xEE" (4)

4 (realized by a spring) is given by a single-well Duffing
potential, in our case 4(x) =(x /2)+(x /4). The chain
is excited at one mass point by a periodic external force
proportional to the space coordinate y (t) of the limit cy-
cle of a van der Pol oscillator obeying

y'+a(y —1)y+tooy =0, a, coo,y GR .

Thus we consider the following system of second-order
differential equations:

x, +dx, +h[4'(x, —x, , ) —4'(x, +, —x;)]=fy5;, ,

i =1, . . . , n =15 (1)
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where m is the projection onto the second argument and
is the flow map of the autonomous system (3} with

time T.
Another useful concept to describe the evolution of the

nonautonomous system (2) are the (t„t2) advance map-

pings g,
' of the nonautonomous system which are

defined as

the Lyapunov spectrum, we will only refer to the
Lyapunov spectrum A,;, i = 1, . . . , 2n, with respect to the
Poincare plane.

Coming back to our model, we remark that
divv(x, t)= —nd holds independently of x and t. This
being the case, the theorem of Liouville implies for the
determinant of the linearization of P'[X, ]=g, '0 0

g, '(t„x}=(t2,$(tz)), f(t2)ER ", t), t2&R

where f is a solution of the nonautonomous system (2)

with tlat(t &
)=x. Thus g,

' maps a point x from X, to X, .
1 1 2

There is, of course, a strong connection between the
flow map P' of the autonomous system and the (t, , t2 }ad-

f2
vance mappings g,

' of the corresponding nonautonomous

system given by

detD, Q'[X, ]=detD, g,
'
t0+ t

= exp divv x t' t' =e
0

From this relation it follows that
2)i

nd —.
i=l

(9)

(10}

P'(z) =P'(t&, x) =g, '
(t&,x) with z =(t&,x)FM, (6)

D„P'[X, ]=D„g,':=D„(no/'o~, . '), xER" (7)

where tt, ' is given by n, '(x}:=(to,x) and
0 0

D„(m&P'on. , '} is the Jacobian matrix of a mapping from

R " to R ", i.e., we just look at the action of p'[X, ] on

the original phase space I " of the nonautonomous sys-
-tem, forgetting about the state variable corresponding to
time.

The special construction of the autonomous system
(i.e., including time as explicit state variable) prevents the
existence of a fixed point. From the definition of the
Lyapunov spectrum' it is well known then that one
characteristic exponent has to be zero corresponding to
the flow direction. To establish our symmetry property
we will discard this zero exponent in the following. The
remaining 2n characteristic exponents are determined by
the linearization D„P'[X, ] of P'[X, ] with respect to x

for t going to infinity. We will call them characteristic
exponents with respect to the Poincare plane. Using the
version of the multiplicative ergodic theorem of Qseledec
in Ref. 1, they are given by the logarithms of the eigen-
values of the limit matrix A„,

A, = lim [D„Q'[X, ] D,P'[X, ]I'

i.e., P'[X, ]=g, ':X, ~X, +„with P'[X, ] being the

restriction of P' to X, . In the following we choose the
1

appropriate notation according to the circumstances.
We define the linearization of ((}'[X, ] with respect to x

as

e;(t):=D,P'[X, ]e;, e;CR ", i =1, . . . , k . (12}

Further, let Vk(0) [Vz(t)] be the k-dimensional volume
of the parallelepiped spanned by the e; [e;(t)],
i =1, . . . , k. If the e; ER " are chosen at random then

Vk(t)
lim —ln = g A. , kEI1, . . . , 2n]

t V„(0)
(13}

with probability 1, where A, , » ' '
A,k are the k greatest

characteristic exponents determined by A„. Defining re-
cursively

If we label the characteristic exponents according to de-
creasing size A, , )A, 2& )A,z„, the symmetry we ob-
served calculating the characteristic exponents A, , of the
system (1) [see Figs. 1(a) and 1(b)] can be expressed as

A,; —s=s —Az„+&;, i =1, . . . , n

with s = —(d/2). Note that s = —(d/2) is the only sym-
metry point compatible with the relation (10) for the sum
of the characteristic exponents.

The Lyapunov spectra were calculated with an algo-
rithm described by Wolf et al. s We just sketch the
method; for more details (and the FORTRAN code} see
Ref. 6. The method is based on the fact ' that the expan-
sion rate of the k-dimensional volume of a k-dimensional
parallelepiped evolving under the action of the linearized
flow D„P'[X, ] in tangent space for t going to infinity

0

converges with probability 1 to the sum of the first k
characteristic exponents (A. , » A,k) determined by
A, . To express this with formulas we denote by e, GR2",
i =1, . . . , k, k linearly independent vectors in tangent
space and by e;(t)CR ", i =1, . . . , k, the vectors ob-
tained by the action of D„P'[Xt ] on the vectors e;,

0
7

1 s ~ ~ ~ y ky 1oeoy

i.e., letting p, ;, i =1, . . . , 2n, be the eigenvalues of the
positive matrix A„ then k; = lnp; are the characteristic
exponents of the continuous dynamical system (3) with
respect to the Poincare plane. They are related to the
Lyapunov exponents A, of the discrete dynamical system
corresponding to the first return map P =~pro n, '

0
through A, =A,;/T. ' In the following, when speaking of

V, (t)
A, )(t):=—ln

t V, 0

k —1 1 Vk(t)
gk(t):= —g A(tj)+ —ln.

t Vk(0)
'

(13) is equivalent to

(14)



38 SYMMETRY PROPERTY OF THE LYAPUNOV SPECTRA OF A. . . 2105

0.05

0.00

M.05

-0.)0
M.)5
M.20

M.25

-0.30-.~—
-0.35

W.40

-0.45 r

0
r r r

f
I r ~ r

~
r r r r

~
r r r r

i000 2000 3000 4000

(b)

0.05-

0,00

M.05- ———

W.t5—

W.20

-0r25 r r r r I r r ~ r
~

r r r r
~

r r r r
I r

t
0 10000 20000 30000 40000

FIG. l. For a chain of 15 coupled Duffing oscillators [in-
teraction potential rp(x) =x /2+x /4] driven by a van der Pol
oscillator we show for different parameter values of the equa-
tions of motion (1) the Lyapunov spectra {a) of a fixed point and
(b) of a strange attractor of the Poincare map. The Poincare
plane X, was defined at the time to when the van der Pol oscil-

0

lator went through zero with positive velocity. The A. , {t),
i=1, . . . , 30, defined in Eq. (14) are plotted vs t. For t going to
infinity they converge to the characteristic exponents
i =1, . . . , 30, with respect to the Poincare plane. In panel (a),
for the parameter values a= 1, ru0=1. 6, h= 1, f=2, and
d =0.4, the Poincare map has a fixed point. The k;(t) reach nu-
merically their limits after an integration time of about t =3000,
i.e., after about 746 periods T(a =1, mo ——1.6)=4.02 of the van
der Pol oscillator. A symmetry with respect to —0.2= —(d/2)
can be seen. The first characteristic exponent A, l being zero cor-
responds to the fact that the equations of motion (1) are transla-
tionally invariant. Therefore, a characteristic exponent equal to
zero arises in the Lyapunov spectra with respect to the Poincare
plane for all parameter values. In panel (b), for the parameter
values a = 1, coo=1.82, h =1, f=4, and d=0. 2 of Eq. (1),
chaotic behavior of the chain is found. As can be seen, two
characteristic exponents are greater than zero. The A,;(t) reach
their limits after an integration time of about 8500 periods
&1,1.82)=3.51 of the van der Pol oscillator, which corre-
sponds to an integration time of about t =30000. This is, as ex-
pected, a longer time than that for a fixed point. As can be seen,
the spectrum is again symmetric with respect to—(d/2) = —0. 1.

u(r) E)R'" (15)

have been integrated with the standard basis
{e;]; i i„as initial conditions to obtain [e;(t)
=D„P'[X, ]e;I;, z„. This is due to the fact that

u(t)=D„Q'[X, ]u is a solution of (15) with u(0)=u. This

can be seen by direct differentiation of (2) and reminding
the definition (7) of D„P'[X, ].

There are some numerical problems in determining
VI, (t) because of the divergence in magnitude of the vec-
tors e;(t), i =1, . . . , k, and their trend to fall along the
direction of most rapid growth, what causes the vectors
to become numerically indistinguishable. These numeri-
cal diSculties can be circumvented by repeated use of
Gram-Schmidt reorthonormalization. This is described
in full detail in Refs. 2, 6, and 7.

In Fig. 1 we show the results of our calculations for the
case of a fixed point [Fig. 1(a)] (d =0.4) and a strange at-
tractor [Fig. 1(b)] (d =0.2) of the Poincare map of the
chain of oscillators (1) investigated. The A,;(t),
i =1, . . . , 2n, defined in (14) are plotted versus t In both.
cases, the A, ;(t) reach numerically their limits for large r

and exhibit a symmetry with respect to s = —(d /2).

III. GENERAL EQUATIONS OF MOTION
WITH SYMMETRIC LYAPUNOV SPECTRA

To explain the symmetry of the Lyapunov spectra for
this and many other damped driven systems of oscillators
we first rewrite the equations of motion in a more general
form which makes their connection with the Hamiltonian
case clear. Set q;:=x; and p, :=x; and introduce a time-
dependent Hamiltonian

qn&P I r ? Pn )

=H(t, q, p) (16)

n p. n

+ g hN(q, —q, , )+fy(t)q, ,
i=1 i=1

with qo=q„, q„+,——q, , and 4(x)=x /2+x /4. Let
y (t) be the space coordinate of the limit cycle of the van
der Pol oscillator. With this substitution the equations of
motion (1) of the chain of oscillators can be written as

lim A, ( t ) =A,J, j= 1, . . . , 2n .t~ oo

In order to determine A,, (t), j= 1, . . . , 2n, all

k

Vk(t)= exp[tg A,J.(t)]Vk(0), k=1, . . . , 2n
j=1

have to be calculated. This is done by integrating the
equations of motion (2) with some post-transient initial
condition (to, x) to obtain the orbit x(t) with x(to)=x.
Simultaneously, 2n copies of the associated variational
equations

d—u(t) ~, ,=D„(,+, )v(r+t Ox( r+to))u(r),
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q;= H (t, q, p),

H
p, = — (t, q, p) —dp, , i =1, . . . , n

Bq,.

(17}

with qp&E", d, q;,p;EE, and with H(t, q p)=H(t
+ T,q, p) for some T= T(a, too)&0

Introducing the matrix

0 1

—1 0 (18)

AJA =J
holds. J is called the symplectic tensor.

IV. A RELATION FOR
THE LINEARIZED FLOW D, Q'[X, ]

where each entry in J is an n )& n block and 1 is the n )& n
identity matrix, the equations (17) can be written in a
more compact form as

x=JV„H(t, x)—(O, dp) =v(t, x),
O, q, pEE", xEE" . (19)

with x=(q, p) and V„H denoting the gradient of H with
respect to x.

The presence of J is the hallmark of the "syrnplectic"
property.

Definition A2n .X2n matrix A is said to be symplectic

rnations g,'+', where e is thought to be infinitesimal.
Thus, when calculating D„g,'+' only first-order terms in E'

have to be retained and all higher-order terms in e can be
neglected. In this way we obtain

g,'+'(t, x) ={t+e,x+v(t, x)e}, (21)

0 0
12 +D [JV H( t x)]E+{') d 1

e (22)

where 12„ is the 2n )&2n identity matrix and 1 and 0 are
n )& n matrices.

Using simple matrix manipulations and the fact that
D„(V,H) is a symmetric and J an antisymmetric matrix

we find that D„g,'+' satisfies for infinitesimal e

D g'+'J(D g'+') =(1—de)J . (23)

By means of the group property of g, , i.e., g, og, =g, ,
f0+1

g,
' can be expressed as

t0+ 1 t0+ k6 t0+2E' l0 + 6'

g~ +(k —1)e gf +~k- 0 0

with e= —, (24)
k

'

t0+E
and therefore (23) implies for D„g,0

and with the definition (7) of the linearization of g,
'+'

with respect to x it follows that

D„g,'+'= 12„+D„v(t,x)e

D„Q'[X, ]J(D„P'[X, ]) =Je (20)

Proof. In order to investigate P'[X, ] by the method of
0

infinitesimal transformations it is more convenient for no-
tational purposes to look at g,

' =P'[X, ]. Our aim is
0 0

t0+ f
to write g, as a composition of infinitesimal transfor-

0

Since the symmetry of the Lyapunov spectrum in the
Hamiltonian case is strongly related to the symplectic
property of the linearized Hamiltonian flow, a similar
geometrical property of the linearized flow of the dissipa-
tive system introduced above is expected. In fact, it will
turn out that this latter flow is symplectic "up to a fac-
tor" [see Eq. (20} below]. Guided by the proof for the
symplectic property of the linearization of canonical
transformations (because the Hamiltonian flow map is
just a special one), we apply the method of infinitesimal
transformations to dissipative systems of the form (19) to
prove the following proposition.

Proposition. Let a nonautonomous system be given
through [Eq. (19)]

x=JV„H(t, x) —(O, dp) =v(t, x),
O, q, pCE", x=(q, p)EE" .

Then the linearization D„P'[X, ] of the flow P' of the
0

equivalent autonomous system with respect to a time
constant plane X, satisfies the relation

0

or [cf. (7}][Eq. (20)]

D p'[g, ]J(D„p'[g, ]) =e "'J. Q. E.D.

q, (t) =q, (t),
p;(t)=p;(t)e ', i =1;.. . , n, t, q;,p;, q;,P; EE (25)

with x(t)=(q(t), p(t)) being a solution of (19). Then
x(t)={/(t),P(t)} is a solution of the canonical equations
of motion

q, = (t, g, p), g, pEE"c}H

Bp; (26}

Note that for d being zero we immediately obtain the
Hamiltonian symplectic property. The relation (20)
shows the strong connection between flows of simple
damped systems as considered here (chains of oscillators
with linear damping) and Hamiltonian flows.

Another approach to establish this connection and to
prove the relation (20) without the use of infinitesimal
transformations is based on a paper of Steeb and Kun-
ick, who showed that the equation of motion of a
damped oscillator can be derived from a time-dependent
Hamiltonian. Applying their ideas to dissipative dynarni-
cal systems of the form (19), we define the following
time-dependent transformation of coordinates which can
be viewed as a time-dependent scale transformation:
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H
(t, g, p), i =1, . . . , n

1
p2 '+] gy l:ly ~ ~ ~

PI
(35a)

with a time-dependent Hamiltonian H given by

H(t, g, P)=H(t, q, p)e '. (27) (35b)

or, equivalently, that the 2n eigenvalues can be written as
1

p » . . p„& p.
To prove (20) we go back to the symplectic notation and
rewrite the transformation of coordinates (25) as

In order to determine the Lyapunov spectrum of P'[X, ]
we are interested in the eigenvalues of

X(t)= A (t)x(t ), t EE, x, XEE'"

with

(28)
[(D K& ])'D 0'[& ] I

'"'

1 0
A(t)= 0 e'1 (29)

where 1 and 0 are n & n matrices.
Denoting by gI the (to, t) advance mapping of the

0
Hamiltonian system (26) and by g,

' the (to, t) advance
0

mapping of the original system (19), Eq. (28) can be writ-
ten [with the notation introduced in (4)-(6)] as

~g,' (t„X)= A(t)m g,
' (t„A(t, )

' X),
(30)

As a consequence of (20) the positive matrix

A„(t)":=[(D„P'[X, ])rD„P'[X, ] j

satisfies

A„(t)"J(&„(t)")=e (36)

p)(t)& ' ' &p„(t)& e
p„(t) pi(t)

In accordance with (35b), the 2n positive eigenvalues

p, (t) of A„(t) ' are

Differentiation of (30} with respect to X gives for the
linearizations of the (to, t)-advance mappings of (19) and
(26) the relation:

D g —A(t)D g,
' A(to) ', XEE ", x=A(to) X.

The eigenvalues P, (t) of

~ (t):=[(D P [X,]) D ~ [~,]j

(37)

(31)

Now we use the fact that n'og t on, ' defines a canonical

transformation of the coordinates X. Hence, the lineari-
zation of g I is symplectic, i.e., D g', satisfies

0 g

(32)

are then given by P;(t)=p;(t)' ' and the theorem of
Oseledec yields for the characteristic exponents )(,;

lim lnp, , (t)= lim —lnp;(t)=&;, t =1 2n ~

1

g~w ' t~m 2t,

Finally, the relation (37) together with (38) gives for the
characteristic exponents

With (31) and (29) the symplectic property (32) of D g',
leads immediately to

(33)

or [cf. (7)]

''' &A,„&—A,„—d» ''' —A) —d,
i.e., the symmetry condition

d
A,; —s =s —Az„;+,, i =1, . . . , n with s = ——
is proven.

VI. REMARKS

(39)

(40)

D„P'[X, ]J(D„P'[X, ] =e ' J, t'=t to—(20')

i.e., the desired equation (20) for the linearized flow map
of the original system (19).

V. SYMMETRY OF THE LYAPUNOV SPECTRUM

A JA =M, A&0 (34)

then p = ( I/p))I. is an eigenvalue of A as well. For a posi-
tive matrix A obeying (34} this implies that its 2n eigen-
values p,- ordered according to p& & p2» - - . p2„satisfy

The symmetry of the Lyapunov spectrum is now an
immediate consequence of (20} and, in fact, it follows like
in the Hamiltonian case. %e just sketch the arguments.
In the same manner as for symplectic matrices' it can be
shown that if p EC is an eigenvalue of a 2n & 2n matrix A
fulfilling

While the relation (20) for the linearization D„P'[X, ]0

of the How with respect to the time constant plane X,
0

holds for all systems (19) irrespectively of the periodicity
in time of the Hamiltonian H, the symmetry of the
Lyapunov spectrum with respect to the Poincare plane
can only be established for Hamiltonians periodic in time.
This is so because the existence of the limit matrix A„
[and thus the validity of Eq. (38)] can only be guaranteed
in the periodic case in which P [X, ] is related to a Poin-

care map P via P

=agog

on. , '. As a matter of fact, the
0

symmetry (40} of the characteristic exponents I,; of the
continuous dynamical system with respect to —(d/2) is
equivalent to a symmetry of the Lyapunov spectrum of
the Poincare map with respect to —( Td /2).

When proving the relation (20} we had in mind the ex-
planation of the symmetry of the Lyapunov spectra nu-
merically found for a periodically driven chain of damped
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DuSng oscillators. Therefore the statement was formu-
lated for the case of nonautonomous dissipative systems
related to a time-dependent Hamiltonian through (19).
So we stressed the concept of the linearization of the flow
with respect to a time constant plane X, to establish the

0

symplectic property up to a factor [see (20)]. For dissipa-
tive autonomous systeins given by (19} with a time-
independent Hamiltonian the statement (20), of course,
holds for the linearized fiow D„t()' itself.

A deficiency is that this result can only be applied at
the moment to systems with uniform damping, i.e.,
homogeneous systems (particles with equal masses). For
unequal dissipation rates d; the analytical expression for
the infinitesimal transformation D„g,'+', i.e., Eq. (23), has
to be replaced by

D g'+'J(D g'+') =(1 De)J, —

D being a 2n )& 2n diagonal matrix of the form

D 0
D — 0 D

(41)

(42)

VII. SUMMARY AND CONCLUSION

Dissipative dynamical systems were considered which
differ from Hamiltonian systems only by a uniform
viscous damping [see (19)]. This relationship is manifest-
ed by the fact that the equations of motion become Ham-
iltonian by a time-dependent transformation of coordi-
nates (25) which can be viewed as a time-dependent scale
transformation. No constraint is made for the considered
Hamiltonian, even time-dependent Hamiltonians (i.e.,
forced systems) are allowed. It is shown that the lineari-
zation of the fiow of these dissipative systems fulfills (20),
which up to a time-dependent factor is the symplectic
property. As in the Hamiltonian case, this derived struc-
ture of the linearized flow of the dissipative system im-
plies that the Lyapunov spectrum is symmetric with
respect to a constant, which for dissipative systems is
negative and determined by the damping constant.

Our result can be applied to systems of coupled oscilla-
tors. This is so because these systems are derived from

where each entry is a n X n block and D is a diagonal ma-
trix with diagonal elements d;, i =1, . . . , n. Because the
factor in front of J on the rhs of (41) is not a scalar, it is
not possible to continue in the same way as in the proof

'oof (20) to get an expression for D„g, for finite to The.
second approach given through the time-dependent scale
transformation (25) fails also because for general H there
is no connection [as (27)] to a Hamiltonian H, i.e., the
equations of motion for the new coordinates are not
Hamiltonian equations.

Hamiltonian mechanics. To model physical systems it is
common to introduce dissipation through a uniform
viscous damping term. Therefore the equations of
motion for these systems are often given through (19}in-

dependently of the chosen interaction, i.e., of the Hamil-
tonian.

If such systems are investigated the costs of the calcu-
lation of whole Lyapunov spectra can be reduced by one
half. This could be of advantage if one is interested in the
Lyapunov dimension DI of a strange attractor, since DI
requires knowledge of all the positive and some of the
negative Lyapunov exponents. Thus depending on the
distribution of the Lyapunov exponents it might be neces-

sary to know more than half of the Lyapunov exponents
to determine the Lyapunov dimension which is related by
the Kaplan-Yorke conjecture to the information dimen-

sion. '

But even if one is not interested in whole Lyapunov
spectra, the symplectic property up to a factor (20} re-
veals much of the structure of the dynamics of these sys-

tems and manifests their strong relation to Hamiltonian
systems. In this case, results for Hamiltonian systems
can be applied to dissipative systems independently of the
strength of the dissipation. For example, for these sys-

tems it might be possible to calculate rotation numbers
which for high-dimensional systems are only defined if
the linearized flow is symplectic or symplectic times a
scalar (for details see Ruelle" }. Therefore (20} could be
used to extend the results of Parlitz and Lauterborn' on
the classification of resonances and local bifurcations of
driven dissipative oscillators through torsion numbers to
systems of coupled oscillators and so to explain their res-
onance structure. '

To the knowledge of the author this is the first observa-
tion that the Hamiltonian structure can be generalized to
encompass dissipative systems. The result reported here
may not be a peculiarity and is expected to extend the ap-
plicability of Hamiltonian dynamics.
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