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Diffusion-limited aggregation in which cluster sites have a distribution of reaction times
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Studies of the growth of aggregates have been limited so far to those cases where the aggregate
particles can react with incoming Brownian particles for infinite time. Recently, Miyazima et al.
have investigated the effect of a fixed reaction time  and have found that the long-time aggregates
in two dimensions have a fractal dimension d,~1.0410.03 for all finite 7 values. Here we study
square lattices, in which, in the more general case, each aggregate site is randomly assigned an
infinite reaction time (with probability g) or a finite reaction time (with probability 1 —g). We find a
dynamical phase transition at ¢ =¢.=0.5 and three different values for d,: d,~1.04 (¢ <gq,),
d;~1.5(q =q.),and d;~1.7 (g > q.), irrespective of the magnitude of 7.

In recent years considerable attention has been ad-
dressed to models for aggregation processes (for reviews
see Refs. 1-4). In nature there exists a large variety of
aggregates, including snow flakes, polymer aggregates,
and colloids. One of the major scientific goals is to devel-
op an understanding of the relationship between the pat-
tern of an aggregate and the aggregation mechanism.

A classical model for diffusion-limited aggregation is
the Witten-Sander (WS) model, where Brownian particles
are added, one at a time, to a growing cluster or aggre-
gate. The particles perform random walks originating far
away from the aggregate, and stick when they come in
contact with the aggregate.” The WS model has been
successfully used to describe electrical deposition,® dielec-
tric breakdown,” viscous fingering,® and, with slight
modifications, some types of snow flakes.’

Very recently, Miyazima et al.'® have studied the
effect of a finite reaction time 7 on diffusion-limited ag-
gregation. In their model, time ¢ is identical to the num-
ber of sites in the aggregate and it is assumed that a site
generated at time ¢, can be active and can react with in-
coming Brownian particles only up to time ¢, +7. This
means that a particle can stick at that site only up to time
t,+; for larger times the site is inactive. Clearly, WS
aggregation corresponds to the limit of 7=, the
diffusion-limited self-avoiding walk (DLSAW) introduced
by Bradley and Kung!! corresponds to 7=1.

Similar types of time correlations have been studied in
the Eden model and in models for epidemics.'>~!* In all
cases it was found that finite lifetimes (as is the finite re-
action time here) have a strong effect on the structure and
the kinetics of aggregates.

In WS aggregation, finite reaction times change the
pattern drastically. When all sites in the aggregate have
the same reaction time 7, the growth process can be
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characterized by a crossover time ¢, ; for times well below
t.,» WS aggregates (d,~1.7) are formed, while for times
well above t,, chainlike patterns are generated, with a
fractal dimension d,~1.04. The crossover time in-
creases with increasing 7 value.

Motivated by the desire to describe more general types
of aggregation, where not all aggregate particles are iden-
tical, we introduce here a model for diffusion-limited ag-
gregation, in which a fraction g of the particles have an
infinite reaction time (as in the WS model), with the
remaining fraction 1 —gq having a finite reaction time 7,
ie.,

o0 with probability ¢

To Wwith probability 1—gq . ()
This new model reduces to the WS model for ¢ =1 and to
the model discussed by Miyazima et al.'® for ¢ =0. We
find that at a critical value of the parameter g, g., the
fractal dimension changes from d,~1.04 (¢ <gq.) to
d;~1.5(¢g=q.)and tod;~1.7 (g >g.). On the square
lattice we find g.=4 which is identical to the critical
bond concentration. The change in the pattern of the ag-
gregate, for 7o=10, can be seen in Fig. 1. Below g,, the
aggregates look more like chains, with side branches get-
ting larger when g, is approached. At g, the structure
changes; the pictures for ¢ =0.5, 0.6, and 0.8 look more
like WS aggregates (¢ =1), but with larger holes inside.
The size of the holes increases when ¢, is approached.

To obtain the phase diagram, we carried out an exten-
sive series of Monte Carlo simulations for ¢ =0.2, 0.4,
0.5, 0.6, and 0.8 and several 7, values. We used square
lattices of size 800X 800 and ¢ up to 5000 time steps. To
determine d;, we calculated (r?), the mean-square dis-
tance of the last added site from the seed of the aggre-
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FIG. 1. Typical clusters for 7o=10 and (a) g =0.2, (b) g =0.4, (c) ¢ =0.5, and (d) ¢ =0.6, and (e) ¢ =0.8 compared with the
Witten-Sander aggregate, (f) ¢ = 1. The number of cluster sites is (a) s =600, (b) s = 1000, and (c)-(f) s =2500.
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gate. Since a new site is added at each unit of time, the
cluster mass is given by ¢ and, asymptotically,

(r2y it )

For ¢ =0.2 and 0.4 we obtained d,=1.04, for ¢ =0.5 we
found d,=1.5, and for ¢=0.6 and 0.8 we obtained
d;=1.7, independent of 7.

Figure 2 shows (r2) as a function of time for 7y=10
and four representative g values. For g =0.2 and 0.4, the
asymptotic slope is 2/d,;~1.92, which gives d;~1.04.
As in Ref. 10, we cannot exclude the case d;=1. For
q =0.5, we find df=1.510. 1, while for ¢ =0.8, we find
d;=1.7£0.1, which agrees with the fractal dimension
for WS aggregates (¢ =1).

To reveal the asymptotic behavior of {r?) we have
plotted, in Fig. 3, (r2)/t”’¥ for ¢=0.2, 0.5, and 0.8
with d r=1.04, 1.5, and 1.7, respectively. The results for
g =0.2 and 0.5 are for two reaction times, 7o=35 and 10,
and the result for ¢ =0.8 is for 7,=10. For large times,
all curves reach a plateau, which supports the anticipated
values of the fractal dimensions.

Clearly, the asymptotic slopes are not affected by the
magnitude of 7, but for ¢ <g, the crossover time above,
for which asymptotic behavior is observed, increases
strongly with an increasing value of 7 (Fig. 4). Below the
crossover time (which is about 200 for 7,=20 in Fig. 4),
small diffusion-limited aggregation (DLA) clusters are
formed and (r?)~s2/'7, accordingly. The asymptotic
result for d, agrees with the ¢ =0 result of Miyazima
et al.,'® but it differs from the result of Bradley and
Kung'! (d ~1.29) for the DLSAW which corresponds to
g =0, 1o=1. The discrepancy may be due to the fact that
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FIG. 2. Plot of the mean square of the end-to-end distance
(r¥t)) vs t=s for aggregates with 7,=10. O, ¢ =0.2; @,
q=0.4; A, ¢=0.5; O, ¢ =0.8. For ¢ =0.2, 0.4, and 0.5, the
data are based on averages over 200 configurations each; for
g =0.8 averages over 225 configurations have been made. The
reaction time 7, is 7= 10.
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FIG. 3. Double logarithmic plot of (r(0)) /6% vs t =s for
aggregates with (a) ¢ =0.2, 70=S5 (@) and 10 (0O); (b) ¢ =0.5,
70=10; (c) ¢ =0.5, 79=5; (d) ¢ =0.8, 7,=10. The anticipated
values for the fractal dimensions are d,=1.04 (¢ =0.2),
d;=1.5 (¢ =0.5), and d;=1.7 (¢ =0.8). The data in (a) and
(b) are based on averages over 200 configurations each. For ob-
taining (c) and (d) we averaged over 100 and 225 configurations,
respectively.

Bradley and Kung considered only small chains (32 sites)
where transient behavior may be dominant. Such a situa-
tion occurs, e.g., in kinetic growth walks (KGW), where
d, is considerably overestimated (3 instead of }) when
small systems ( ~ 10? sites) are studied.!> As can be seen

from Figs. 2-4, the crossover times increase with increas-

104 '
20
103 .
[
102 : N
102 103

t

FIG. 4. Plot of the mean square of the end-to-end distance
(r(t)) vs t =s for aggregates with ¢ =0.2 and several values of
reaction times 7,. The lines denote the asymptotic slopes of the
curves. 7o=5 and 10, averages over 200 configurations have
been made. The results for 7,=20 are based on averages over
100 configurations. The reaction time 7, is 7o=10.
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ing 7y and when approaching g..

For the square lattice, the critical concentration is 1,
which is identical to the critical bond concentration. To
see why the parameter g plays the same role as the con-
centration of bonds in percolation, consider first the case
7o=0. A fraction g of the aggregate sites has an infinite
reaction time and a remaining fraction 1—g has zero re-
action time, becoming inactive immediately. That is, of
the z bonds where incoming Brownian particles can stick
to the aggregate, a fraction g are open and a fraction 1 —g¢q
are blocked. Below the critical bond concentration g,
only finite aggregates can be formed, while for g close to
1 we expect Witten-Sander-type clusters. Since g, is the
only critical concentration here, we anticipate finding WS
exponents for all g above g,.

Next consider 7,>0. Below g., the short reaction
times dominate the process and we find chainlike struc-
tures, as for ¢ =0. At the critical concentration, an
infinite cluster consisting only of particles with infinite re-
action time (which is fractal on all length scales) can be
generated and d is intermediate. But note that our value
for d, differs from the value for WS aggregation on the
infinite percolation cluster, where either d =~ 1.40 (f also
the mobile particles are confined to the infinite cluster) or
d;~1.89 (Ref. 16) (if the mobile particles are unrestrict-
ed). Above g, the particles with infinite reaction time
dominate the aggregation process and d;~1.7, as in the
WS model.

So far we have considered aggregation processes where
the elapsed time was identical to the number of sites s in
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the aggregate: If an aggregate site was assigned to a finite
reaction time 7, then the next 7, incoming Brownian
particles could stick to this site. A more natural way of
counting time would involve the diffusion constant of the
embedding medium: Time is enhanced by 1 when the
Brownian particle moves to a nearest-neighbor site.
However, we can argue that such a more complicated
system can be mapped onto the system considered here,
but with 7, distributed around some mean value 7, (Ref.
17). Since our basic results for the critical concentration
and the fractal dimensions do not depend on the magni-
tude of 7, they should also apply in this case.

In summary, then, we have introduced a new model for
diffusion-limited aggregation where a fraction 1—gq of ag-
gregate particles can react with incoming Brownian par-
ticles only for a certain time range after getting stuck in
the aggregate. We have found a dynamical phase transi-
tion at a critical concentration g, which is identical to the
critical bond concentration of the lattice. Below g. the
aggregate is described by the fractal dimension d;~1.04,
at g, we have d,~ 1.5, and above g. we found d;~1.7.
We believe that the type of heterogeneous time correla-
tions discussed here for the Witten-Sander aggregate will
also have drastic effects on other aggregation processes,
e.g., on cluster-cluster aggregation.
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FIG. 1. Typical clusters for 7,=10 and (a) g =0.2, (b) g =0.4, (c) ¢ =0.5, and (d) g =0.6, and (e) g =0.8 compared with the
Witten-Sander aggregate, () g =1. The number of cluster sites is (a) s =600, (b) s = 1000, and (c)-(f) s =2500.



