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Atomic structure and line broadening of He-like ions in hot and dense plasmas
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In this paper we present a self-consistent-field calculation for energy levels of He-like ions im-

mersed in dense and hot plasmas. Exchange and correlation energies between bound electrons are

shown to be much less perturbed than the single-particle energy. Concurrently, a fully quantum-

mechanical impact calculation has been made to obtain the matrix elements of the complex electron

line-broadening operator I,. In the special case of the principal series, it is shown that the line

shifts given by the two approaches are in good agreement for typical electron temperatures and den-

sities of laser plasmas.

I. INTRODUCTION

The plasmas created by focusing high-power laser
beams on planar or spherical targets are nonideal in the
sense that the Coulomb interactions between particles
exceed their thermal energy. ' Therefore, the treatment of
most of the physical problems in dense plasmas, such as
electron transport, stopping power, equation of state, and
line broadening, etc., is subordinated by the knowledge of
elementary atomic processes. The high-density and
high-temperature conditions achieved in such plasmas
(N, ) 10 cm, T, ) 100 eV) involve, for example, a spe-
cial study of electron bound states for charged radiators
and their collisions with the surrounding particles. The
bound energy levels are shifted into the continuum by
pressure ionization and the emission lines present a small
red shift due to the local polarization of the plasma by
the emitter (the so-called plasma polarization shift ). Re-
cently such line shifts have been observed experimentally
by using either a very low-Z planar target or a neon-
filled rnicroballoon. For a clear understanding of this
optical effect and of several thermodynamic properties in
plasmas with coupling parameter I ) 1, it is necessary to
improve the theory describing the atomic systems im-
mersed in finite-temperature and finite-density environ-

ments. "'
Emission spectroscopy is a useful technique for the

study of laser plasmas. It is especially used to diagnose
electron density and temperature. To this end, many au-
thors "have pointed out the necessity of simultaneous-

ly studying several line profiles. Among many possible
choices, the K shell' is proved particularly interesting
because its intense spectrum is relatively simple and easy
to model. In fact, most of theoretical papers ' ' con-
cern H-like ions for which unperturbed atomic parame-
ters are exactly known and attention can be focused on
actual plasma effects. Comparatively very few works'
have dealt in detail with He-like ions, the principal series
of which is frequently more intense than the Lyman
series in the same spectral interval. The present paper is

intended to fill this gap. Specifically we will be interested
in density and temperature effects caused by the free elec-
trons surrounding a He-like emitter in plasmas created by
lasers. In Sec. II we define the so-ca11ed confined atom
using a self-consistent ion sphere model. Then we investi-
gate the electron density and temperature effects on vari-
ous atomic parameters, especially that on exchange and
correlation energy which are specific to many bound elec-
tron systems. In order to take into account the line-
broadening process, we shall consider in Sec. III the
quantum-mechanical expression of the relaxation opera-
tor. ' By using the Coulomb-Born-Oppenheimer approx-
imation we show that the linewidth can be simply written
as the difference between a "total width" free from plas-
rna effects and a "correlation width" which contains
effects due to long-range screening and the finite duration
of the collision. ' Finally, in Sec. IV, we show that the
line shifts given by the imaginary part of the relaxation
operator are in agreement with those obtained within the
framework of the atomic model, provided that the elec-
tron density at the boundary surface p, (RO) is used in-

stead of N, .

II. SELF-CONSISTENT-FIELD MODEL

In a previous paper we noted that the typical times for
the ion and electron component differ by about two or-
ders of magnitude. Therefore it is possible to distinguish
the different ways by which the electron bound states can
be perturbed. The ion effects can be treated separately by
means of either the quasistatic Stark effect' ' or the adi-
abatic approximation including ion dynamics. ' On the
other hand, the free electrons accomplish many oscilla-
tions during the effective lifetime of atomic states. Hence
a self-consistent-field method provides a good framework
for calculating their effects. In this paper, we shall use
the so-called ion sphere model ' ' which is based on the
following principles: the atom is represented by a point-
charge nucleus Z embedded in a spherical cavity contain-
ing enough electrons to ensure global neutrality. The ion
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p(r')=p, (r')+pb(r') . (2)

Generally, Boltzrnann statistics can be used because the
temperatures T, in the emission zone are much higher
than the Fermi temperature TF 7.9 eV——[10 N,
(cm }] ~ . Therefore the number density of free elec-
trons p, (r) is given by

p. (r)=p. (Ro)
4 p2

3 2dp
&o (2mkT, )

i

)&exp — + V(r)p
2

kT, 2m

+.Q(r) (3)

where

po ——po(r) = [ —
2m [V(r)+Q(r)]] '~

sphere radius R0 is determined by the total ion density N,
[Ro (——3/4nN; )'~ ]. Beyond this radius, the plasma is as-
sumed to produce an electrically neutral background.
Here we shall consider a fixed number of bound electrons
N in order to treat in detail the spectrum of a given
species. The problem now consists of solving self-
consistently the wave equation and the Poisson equation
relative to the bound electrons and free charged particles,
respectively.

The solution of Poisson equation can be written in its
integral form as

Z f p(r')dr'
r '&~o ~r —r'~

On the right-hand side of Eq. (1), the first term denotes
the contribution of the nucleus while the second arises
from the total number density of electrons

where po (JM) denotes the chemical potential for the uni-
form (nonuniform) electron gas, respectively. The electri-
cal neutrality condition

Ro
Z N—=4mf . r p, (r)dr (7)

0

associated with the inequality B(x)) 1 for r (Ro, shows
that the boundary density p, (R o) is always lower than
the mean electron density N, .

Then, in order to define our model completely, we have
to consider the wave equation for the bound electrons.
Owing to the spherical symmetry of the average potential
due to the surrounding particles, the Hartree-Fock
method is very suitable for a detailed description of the
atomic system. So the bound electron eigenvalues and
wave functions are obtained by solving the following sys-
tem of coupled radial equations for each subshell i:

l, (1, +1)—U;(r) — —s; P, (r) = W, (r) .
r r

Here U, (r) is the potential function which takes into ac-
count the contribution of the nuclear charge, the pertur-
bation due to the free electron gas, the direct part of the
electrostatic interaction, and the exchange between
equivalent electrons. W, (r) denotes a nonlocal function
which includes the exchange terms between nonequiva-
lent electrons and the nondiagonal Lagrange multipliers
arising from the orthogonality requirement. Afterwards
we shall consider the special case of a He-like ion, the dis-
cussion being possibly extended to more complex ions
without any difficulties.

The number density for the bound electrons pb(r) can
be written in terms of the radial wave functions, solutions
of Eq. (g), and of the energies E(vLS) relative to the state
with the configuration v =nln 'l', the total angular
momentum L, and the total spin momentum S as

and the momentum condition p )p0 ensures that the ki-
netic energy of free electrons is larger than the (negative)
potential energy. In Eq. (3), V(r} is the total electrostatic
potential and Q(r) is the quantum-mechanical correc-
tion' ' which takes into account the exchange correla-
tion and density gradient effects. Integrating over p and
introducing x =(po/2mkT, )'~, we obtain from Eq. (3)

pb(r) = g b„(LS)p,i s(r) g (b)

where

vLS vLS

b„(LS)= (2L + 1)(2S+ 1)

Xexp[ [E(vLS) E(ls )]—/kT, j . —

(9)

p, (r)=p, (Ro)B(x},

where B(x) is the Boltzmann factor defined by

B(x)=2xm '~ +exp(x )erfc(x) .

(4)

p, ( R & ) = Nexp(Pp ) /exp(Ppo),

For a more accurate calculation based on Fermi-Dirac
statistics, the standard Fermi function should be used in-
stead of B(x). In fact, we have verified that this numeri-
cal improvement is of no significance for the plasma pa-
rameters we consider here ( T, ) 100 eV, N, ( 10 cm ).

The boundary conditions V(r)=0 and Q(r)=0 for
r )Ro imply that B(xz ) =1. Consequently the electron

0

density defined at the edge of the ion sphere can be writ-
ten as

Here we consider the central charge Z ( 15 and then sup-
pose that the relativistic effects can be treated as a pertur-
bation in LS coupling. The radial density function
p„is(r) is given by

M

p,ls(r)= g q p (r)(4m. r )
j=1

(10)

where q stands for the number of electrons in the sub-
shell j. According to Eq. (9), we note that the density
pb(r) integrated over the ion sphere gives the total num-
ber of bound electrons N. In Eq. (9), the summation con-
cerns the group of states the radiative lifetime of which is
larger than the collisional relaxation time. To minimize
computer time, we can also deal with the average atomic
potential ' by considering the summation over all bound
states. In fact, we have verified that the discrepancy be-
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tween the two above-mentioned summation methods is
within 3% for the Ne Ix resonance line shift.

Then, in order to obtain the atomic and plasma param-
eters, we have to solve self-consistently, for any given N,
and T„ the Poisson equation (1) with the confinement
condition (7) and the wave equation (8) for all bound
states (nln'I' +'L). The calculation of the number den-

sity p&(r), Eq. (9), necessitates solving the eigenvalue

problem, Eq. (8), for simply and doubly excited states. In
the dense region of plasmas, the latter can be, in fact, om-
itted because their populations are small in comparison
with those of the ground state and they lie above the first
ionization limit so that the statistical weight b(vLS ) be-
comes negligible.

Concerning the simply excited states (a= isnl, LS), it
is convenient to express their energy in the following
form:

In general, this term satisfies the following inequalities:

bE ( aLS ) «E,„(aL ),
b,E(aLS) «kT, .

(13)

Therefore, the number density of the bound electrons
p&(r), Eq. (9), can be calculated by using the average en-

ergy and corresponding wave function for each atomic
configuration. The distinction between singlet and triplet
states in the wave, Eq. (8), is necessary only at the final

step when self-consistency is already ensured for the
effective atomic potential

(14)

E(aLS )=E,„(aL)+bE(aLS ),
where E,„(aL) denotes the average energy of the given
configuration aL and bE(aLS) and its deviation which is
directly related to the Slater exchange integrals 6

6 Is nlbE(aLS)= ( —1)— (12)

TABLE I. Transition energies (in Ry) of the NeIx He line
calculated with T, =500 eV and various N, by using (a) detailed
multiplet states and (b) average atomic configurations.

(a) (b)

0
3 10

1024

3.10

67.6264
67.5222
67.2895
66.7222

67.6264
33.5227
67.2911
66.7268

ergy shift, counted from the unperturbed value, increases
with increasing orbital quantum number L and decreas-
ing principal quantum number n. The latter fact pro-
vides for a red line shift which will be discussed together
with the collisional results given in Sec. III.

Table III gives level energy values for a fixed density
N, =10 cm and various temperatures, thelastlinebe-
ing obtained by using the uniform electron gas model
(UEGM), i.e., by replacing p, (r) by N, in Eq. (14). As
the temperature increases we note that energy levels be-
come deeper and deeper and tend towards the limit
values given by the UEGM. ' This can be explained by
pointing out that the lower the temperature, the more
efficient the nuclear Coulomb attraction and, consequent-
ly, the larger the fractional number of free electrons
compressed in an atomic orbit. Also, as the total number
of electrons is preserved according to the electrical neu-

trality condition, Eq. (7), the boundary electron density

p, (R )0is smaller than the volume-averaged N, . Indeed,
as shown in the second line of Table II, or the second
column of Table III, the ratio p, (Ro)/N, decreases
significantly when X, increases or T, decreases, respec-
tively.

In connection with the previous plasma polarization
effects, some internal atomic properties are worth com-
menting on. The first property is the separation between
singlet and triplet energy levels,

The latter has been obtained according to the same nu-
merical procedure as described for H-like ions in Ref. 3.
Here, by using the above-mentioned average
configuration approximation (ACA), which allows
significant reduction of the number of states of interest in
Eq. (9), we note that the computer time remains accept-
able in spite of a more complicated atomic structure. We
can check the precision of this approximation by examin-
ing Table I where we note that the relative discrepancy
between the transition energies calculated with detailed
multiplet states and those obtained with average
configurations does not exceed 10

Plasma effects on the fundamental and singly excited
singlet levels of Ne IX are illustrated in Tables II and III.
For a fixed temperature ( T= 500 eV) and increasing elec-
tron density N„Table II shows that (i) the number of
bound states decreases rapidly. In fact, no bound state
with n =4 and 3 exists when N, goes beyond 10 and
10 cm respectively. (ii) All the energy levels move
more and more towards the continuum. Besides, the en-

E,„(aL)=E(a'L)—E(a L)= 2L+1 (15)

which allows us to determine the position of the inter-
combination lines, often suggested as spectroscopic
probes, with regard to the resonance lines. As an exam-
ple, curve (b) in Fig. 1 represents the density dependence
of this exchange energy, relative to the unperturbed
value, for the 1s2p level. We can clearly see that this
quantity is much smaller [curve (b) is multiplied by a fac-
tor of 10] than the plasma polarization shift of the corre-
sponding resonance line, shown in curve (a). So, instead
of systematically solving Eq. (8) with the self-consistent
potential V„, Eq. (14), we can deduce the triplet energy
levels from the singlet ones by replacing the right-hand
side of Eq. (15) with its unperturbed values. A detailed
examination of Table II shows that this assertion is true
for all other cases up to n =4.

Another internal atomic property is the correlation en-
ergy E, which is neglected in the Hartree-Fock theory.
Denoting by E and EH„ the "exact" and Hartree-Pock
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TABLE II. Variation of the Ne IX energy levels ( —E in Ry) with the electron density N, for a given temperature T, =500 eV.

N, (cm )

p, (RO) /X,
1s' 'S
1s2s 'S
1s2s S
1s2p 'P
1s2p P
1s3s 'S
1s3s S
1s3p P
1s3p P
1s3d 'D
1s3d 'D
1s4s 'S
1s4s 3S

1s4p 'P
1s4p 'P
1s4d 'D
1s4d D
ls4f 'F
1s4d F

1

187.722
121.230
121.333
120.096
120.626
109.237
109.301
108.961
109.107
108.998
109.004
105.556
105.187
105.047
105.107
105.061
105.065
105.062
105.063

0.978
179.532
113.067
113.170
111.927
112.456
101.167
101.229
100.882
101.025
100.888
100.894
97.314
97.341
97.195
97.248
97.159
97.162
97.086
97.086

1023

0.975
177.893
111.446
111.549
110.302
110.830
99.606
99.668
99.317
99.457
99.302
99.308
95.866
95.893
95.743
95,795
95.694
95.697
95.586
95.586

3 x10"
0.969

173.391
107.029
107.132
105.869
106.383
95.478
95.537
95.165
95.296
95.060
95.065

6x 10"

0.964
169.510
103.274
103.376
102.088
102.607
91.954
92.016
91.632
91.768
91.500
91.505

10'4

0.960
166.006
99.932

100.033
98.715
99.206

3x10"
0.949

155.905
90.516
90.615
89.179
89.670

6X 10"

0.944
147.226
82.199
82.300
80.876
81.389

energies, respectively, the correlation energy is defined by

E =EHF+Ec . (16)

In this paper, E has been obtained by using a
multiconfigurational method in which the complete wave
function basis is defined in terms of natural orbitals.
This method allows us to significantly reduce the number
of configurations occurring in the total wave-function ex-
pansion. Numerical results for E, ( ls 'S ) and

E,(ls2p 'P) are given in Table IV where we note that
their density dependence is actually negligible. There-
fore, to obtain the self-consistent exact energy E, we can
use the Hartree-Fock energy solution of Eqs. (1), (7), (8),
and (11) and replace E, by its unperturbed value E, . Fi-
nally, for Z & 15, we note that Eq. (16) can be improved
by adding to the right-hand side the relativistic correc-
tions calculated for isolated ions. This is justified by the
fact that plasma polarization is a volume-averaged effect
while relativistic effects are localized near the nucleus.

I, =m.N, (17)

where V' denotes a generalized transition operator acting

III. ELECTRON RELAXATION OPERATOR

The confined atom model, described in Sec. II, pro-
vides us with very useful parameters such as free-electron
density, energy, and wave functions of bound states, etc. ,
but does not allow us to obtain the linewidth which is an
essential quantity in plasma spectroscopy. The perturb-
ing electrons alter the radiator by successive collisions
which interrupt more or less often the emission. As we
have already pointed out, the effective atomic lifetime is
generally much larger than the inverse of the electron
plasma frequency m

' so electron interaction can be
treated by the impact approximation. As the close col-
lisions become more important as the density increases,
we use in this paper a quantum-mechanical method to
evaluate the electron relaxation operator defined by

TABLE III. Variation of the Ne IX levels ( —E in Ry) with the temperature T, for a given density
N, =10 cm

T, (eV)

100
200
400
600
800

1000
1200
1500

0.898
0.930
0.954
0.965
0.971
0.975
0.977
0.980
1

1s S

163.350
164.767
165.763
166.179
166.414
166.565
166.672
166.784
167.270

1s2s 'S

97.533
98.813
99.713

100.088
100.298
100.434
100.530
100.630
101.070

1s2p 'P

96.274
97.576
98.492
98.874
99.088
99.227
99.324
99.426
99.872
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The real and imaginary parts of I, give, respectively,
the linewidth and the line shift due to collisions between
free electrons and the target radiator

I,= W, —iD, .

-3

-5

I

4 0

N (10 em )

FIG. 1. Density variation of the shift calculated with a given
temperature T, =500 eV. , for the resonance He line of
Ne IX; ———,for the exchange energy (15) of the 1s2p level.
Here the data have been multiplied by a factor of 10.

(L;)—T gv, , v;)TI+(vf, vf)]
l l

(18)

where i,f refer to the upper ( 1snl, 'L; ) and lower ( ls 'S )

levels of the transition, respectively, and v indicates the
set of quantum numbers v=(nLk!L ) specifying the col-
lision channel. L stands for the total angular momen-
tum (L =L+I ).

TABLE IV. Correlation energy calculated with T, =500 eV
and various N, . The calculation includes all the configuration
states which give SO%%uo of the unperturbed value E, .

N,

0
1 &(10
3 10
6. 102'

1.10'4

E,(1s 'S)

—0.036 57
—0.036 57
—0.036 57
—0.036 57
—0.036 57

E,(1s2p 'P)

—0.005 77
—0.005 77
—0.005 72
—0.005 66
—0.005 59

in Liouville space. The thermal average is performed as-
suming a Maxwellian distribution for the electron veloci-
ty. For the He-like principal spectral series, the relaxa-
tion operator I, is diagonal and can be expressed in

terms of the transition-matrix elements in the coupled
representation

I', (if)=nX, —g [T r(v;, v;)+TI+(vf vf)
1

Q T

Fz(a, a', r) =Sz(a, )ar '"+", (20)

where Sz(a, a') represents a multipolar radial integral

Owing to the optical theorem, 8', can be expressed in
terms of cross sections connecting the level of interest (i
or f) with all the states of discrete and continuous spec-
tra. On the other hand, a direct calculation of the elastic
T matrix elements is the only way to obtain the shift D, .
In order to calculate those scattering data, we have al-
ready noted * that the electron temperature and radia-
tor charge number in laser plasmas are high enough to
ensure the validity of the Coulomb-Born-Oppenheimer
(CBO) approximation. The latter will be used here in its
unitarized version ' by writing the transition matrix in
the form T= 2iR—/(1 iR—), where R is the real and
symmetrical reactance matrix whose elements have been
specified for He-like ions in Ref. 28.

The calculation of various matrix elements has been

performed by using the following.
(1) For the ground state in which the two electrons

have the same orbital and opposite spins, the suitably
parametrized wave function given by Clernenti and Roet-
ti on the basis of a Hartree-Fock calculation.

(2) For excited states, Coulomb wave functions defined
in the framework of quantum-defect theory. This ap-
proximation allows us to save significant computer time
without losing precision if the number of charges is rela-
tively high. This is clearly seen in Table V where some
collision strengths of 0 vie are given in the basis or either
quantum-defect or Hartree-Fock theory.

The evaluation of the linewidth has been performed in
such a way to include properly strong collisions which
play a leading part in high-density plasrnas. As the He-
like atomic levels are not degenerate with respect to th~

orbital momentum L, the dipolar cross sections do no
present a logarithmic divergence at large impact parame
ters. Therefore, in a first step we can ignore electro'
correlation efFects and define a total width 8', which ha
been obtained as follows.

We calculate all the transitions (n 'L~n' 'L) wit1

n, n' (5 by using the CBO approximation and including
interactions between the free and bound electrons up to
the octopole term. The summation in the partial-wave
expansion is performed up to the perturber orbital quan-
turn number lo which is high enough to ensure the validi-

ty of the dipolar interaction for l & lo. The other bound-
bound and bound-free cross sections are deduced from an

approximate formula ' where the ionization potential
lowering and the internal electron screening are properly
included.

When the perturber angular momentum is high
enough, only the long-range part of the direct potential
Y& is important because the centrifugal barrier prevents
interaction with the short-range part. So we can write
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TABLE V. Collision strengths relative to Ovid 2'S~n 'P transitions obtained by means of the
Coulomb-Born approximation with various target wave functions. (a) Quantum-defect theory (our re-

sults) and (b) Hartree-Fock method (Ref. 30). Impact energies (X) are in threshold units.

(a)

2.72
2.85
3.08

n =2
(b)

2.78
2.90
3.13

(a)

0.062
0.120
0.209

(b)

0.062
0.122
0.204

(a)

0.0154
0.0302
0.0493

n=4
(b)

0.0154
0.0303
0.0496

S&(a,a')= I P, (r)P, (r)r dr .

In fact, as already mentioned, for l ) lo only the dipolar
term with A, = 1 is needed and we can use the Coulomb-

Bethe approximation for its calculation. Under these
conditions it is more interesting to develop the inelastic
collision strengths Q;„=cr;„E/ir in terms of a complete
summation over partial waves

Q;„(v,L ~v,'L')=g Q r(v, L ~v,'L'),
T

T
0

[Qqr(v, L ~v', L') Qr'(v—,L ~v', L')]+QT '(v, L ~v', L') .
L =0

(21)

Here Lo is the total angular momentum corresponding to the perturber momentum 10=40 and C-Be denotes
Coulomb-Bethe. The first term on the right-hand side of Eq. (21) is directly obtained in our CBO code. The second one
can be written in the following form:

QT '(v, L ~v,'L') = —",/, Si(a,a')Bo, (22)

where BI is a Gaunt factor given by

8I ——I[1+(/+1) E ]Ii(K,/+1;K', /) —[1+(/+1)K' ]Ii(K,/;K'/+1)])[(/+1)(K K' )]— (23)

Here K (or K') stands for (Z —2) 'k (or k'). Ii is the Coulomb integral which involves confiuent hypergeometric
functions iFt. It is easy to show that only the two terms Ii(K,O;K', 1) and I, (K, 1;K',0) are needed, the others being
deduced by means of simple recurrence relations.

Then by using the scaling law relative to radiator charge number, the total linewidth for He-like principal series lines
can be written as

W, (n/ L ) =— — g Q,„(v,L ~v,'L')+ Q"(i,f;L)
~I I

V

a =i,f

=ir ~N T Q (n/, , T ) (24)

in a.u. , where

N, =N, (a.u. )/Z, ~; T, = T, (Ry)/Z, rr

and Z,z
——Z —o„& is the effective charge acting on the outer atomic electron (n/;) Q„den.otes the elastic collision

strengths for upper (i) and lower (f) levels including the interference term.
For highly charged ions (Z) 10), the screening parameter o.

„& can be approximated by unity. In Eq. (24), Q is a
l

coefficient obtained by averaging over the reduced incident energy u =mv /2kT,

Z2
Q (n/, , T, )= e " g Q;„(v,L~v,'L')+Q, ~(i,f;L) du .

o (/, )
~a

a =i,f

(25)
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Calculation shows that this coefficient is nearly indepen-
dent of Z. Q is given in Table VI as a function of tem-
perature and atomic quantum numbers.

To obtain the effective linewidth, we have to exclude
from W, (nl; 'L ), Eq. (24), the contribution of large rela-
tive orbital quantum numbers 1&l,„where the cutoff
value l,„ is given by'

l,„(1,„+I)=4E /mfi (co~+hco +hcos) .

Here, the presence of the plasma frequency
co~=(4meN, /m)'i, the frequency separation from the
unperturbed line Ace, and the frequency shift due to qua-
sistatic perturbations b,mz allow for screening of electron
fields and the finite duration of collisions and level split-
tings, respectively. Then, the effective linewidth can be
written as

Here, the Gaunt factor 81 is given in a closed form,
max

Eq. (23), where the electron density and the correction to
impact approximation occur only via the cutoff orbital
quantum number I,„,Eq. (26).

A comparison between the total part Q and screened
part Q of the linewidth is given in Table VII with the as-
sumption

i
b,co ~, i

hcoz
~

(co~. As expected, we can see
that Q increases when the Debye radius

pD (4'——N, e /kT)' decreases. Furthermore, we note
that the ratio Qs/Q increases rapidly with the principal
quantum number of atomic states. This behavior of cross
sections for highly excited states is not surprising because
they imply a notable contribution of partial waves with
large orbital quantum numbers and are consequently very
sensitive to the cutoff procedure defined by Eq. (26).

If we consider the scaling law relative to the radiator
charge number, the electron line shift D„given by Eqs.
(18) and (19), can be written as

X[Q (nl, , T, ) —Q (nl, , T„N, )],
D, (nl; 'L)=2m'i N, T, 'i Z,re(nl, , T, ), (29)

0, '(v, L)= g g 0 r'(v, L~v,'L')

= —", Q I,S, (a, a')81
a'

(28)

(27)

in a.u. where the screened part Q (nl;, T„N, ) is defined

by Eq. (27) with the term in square brackets replaced by
the following partial Coulomb-Bethe collision strength:

where, similarly to the linewidth coefficient Q, the line-
shift coefficient 6 is a sensitive function of electronic tem-
perature and of atomic quantum numbers. As shown in
Table VIII, giving b(nl;, T, ) with Z, =10, we note the
following. 6(nl;, T, ) increases with electron temperature
and tends towards a finite value 6(nl, , ao ) which corre-
sponds to the uniform electron-gas model [see Eq. (9) of
Ref. 3]. As an example, Fig. 2 shows the Nelx He line
shift calculated with N, =10 cm and various temper-
atures.

TABLE VI. Temperature dependence of the collision coefficient Q r(nl, T, ) defining the total linewidth Wr(nl 'L ) [Eq. (24)].

T,
(Ry)

0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Q (2S)
X 10-'

1.857
1.983
2.087
2.178
2.259
2.336
2.406
2.470
2.529
2.583
2.697
2.799
2.887
2.966
3.043
3.113
3.173
3.228
3.278
3.324
3.367
3.405
3.440
3.473
3.503
3.530

Q (2P)
X10 '

0.790
0.830
0.872
0.916
0.961
1.006
1.047
1.088
1.127
1.164
1.232
1.297
1.357
1.413
1.473
1.528
1.569
1.606
1.639
1.668
1.695
1.718
1.740
1.760
1.778
1.795

Q (3S)
x10-'

1.292
1.421
1.517
1.592
1.649
1.704
1.751
1.791
1.825
1.854
1.916
1.974
2.022
2.061
2.098
2.132
2.164
2.192
2.217
2.238
2.257
2.274
2.290
2.304
2.318
2.330

Q (3P)
X10-'

1.147
1.289
1.386
1.461
1.518
1.574
1.619
1.656
1.686
1.711
1.762
1.814
1.857
1.894
1.927
1.957
1.985
2.011
2.034
2.054
2.073
2.089
2.104
2.117
2.129
2.140

Q (3D)
X 10-'

0.512
0.594
0.650
0.692
0.724
0.760
0.785
0.806
0.822
0.835
0.858
0.886
0.910
0.931
0.951
0.969
0.987
1.003
1.017
1.023
1.039
1.049
1.057
1.064
1.071
1.077

Q (4S)
X 10-'

4.524
5.092
5.470
5.764
5.979
6.169
6.335
6.474
6.591
6.688
6.889
7.082
7.250
7.385
7.488
7.564
7.666
7.768
7.860
7.945
8.022
8.090
8.143
8.186
8.222
8.250

Q (4P)
X10-'

4.801
5.446
5.840
6.150
6.369
6.562
6.733
6.876
6.992
7.087
7.279
7.470
7.630
7.758
7.858
7.934
8.028
8.115
8.191
8.264
8.033
8.388
8.438
8.481
8 ~ 519
8.551

Q (4D)
X10-'

4.848
5.507
5.848
6.134
6.331
6.499
6.649
6.771
6.868
6.942
7.079
7.225
7.349
7.448
7.524
7.584
7.653
7.714
7.766
7.817
7.864
7.905
7.943
7.977
8.006
8.032

Q (4F)
X10-'

2.348
2.647
2.796
2.920
3.003
3.078
3.141
3.190
3.228
3.255
3.299
3.353
3.401
3.438
3.468
3.491
3.518
3.541
3.562
3.581
3.598
3.614
3.627
3.639
3.650
3.659
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TABLE VII. Relative contribution to the electron linewidth W, (n! 'L) [Eq. (27)] of Q' (first line) and of Q (second line). The
data are given for the Ne Ix in units of Z,ff.

nl 'I.

2s 'S

2p 'P

3s 'S

3p 'P

3d 'D

4s 'S

4p 'P

4d 'D

4f 'F

110"cm '
T, =385 eV

p,„=27.58

3.56
0.13

1.67
0.04

24.96
4.84

22.93
6.69

11.24
3.03

89.51
30.98

94.21
37.85

90.74
37.85

41.99
15.27

N =1.10" cm-'
T, =220 eV

p,„=20.87

3.19
0.14

1.44
0.05

22.89
5.07

21.13
6.88

10.31
3.09

82.57
31.90

87.50
38.09

85.71
38.09

40.19
15.31

N =5.10 cm
T, =661 eV

p,„=16.16

3.98
0.49

1.98
0.17

27.06
8.91

24.83
9.83

12.38
4.11

95.90
45.42

100.18
50.20

95.24
46.37

43.72
18.11

N, =5.10 cm
T, =385 eV

p,„=12.34

3.56
0.52

1.67
0.18

24.96
9.13

22.93
9.96

11.24
4.13

89.51
45.94

94.21
50.50

90.74
46.42

41.99
18.12

TABLE VIII. Variation of the electron shift coefficient 5(nl, T, ) with temperature.

T, (Ry)

0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

6(2S)

18.4
18.8
19.2
19.5
19.9
20.2
20.5
20.8
21.1
21.4
22. 1

22.8
23.4
24.0
24.5
25.1

25.7
26.2
26.8
27.3
27.8
28.2
28.7
29.2
29.6
30.1

6(2P)

14.9
15.2
15.4
15.6
15.9
16.1
16.3
16.5
16.7
16.9
174
17.9
18.3
18.7
19.1
19.6
20.0
20.3
20.7
21.1
21.4
21.8
22.1

22.4
22.7
2,3.1

b,(3S)

65.8
69.0
71.8
74.4
76.7
79.0
81.1
83.2
85.1

87.0
91.5
95.7
99.6

103.3
106.8
110.2
113.5
116.5
119.5
122.4
125.3
128.1
130.8
133.4
136.1
138.6

6(3P)

60.9
63.7
66.2
68.5
70.6
72.5
74.5
76.3
78.0
79.7
83.6
87.4
90.9
94.2
97.3

100.3
103.3
106.0
108.8
111.4
114.0
116.5
119.0
121.4
123.8
126.2

b(3D)

47.8
49.5
51.0
52.4
53.7
55.0
56.2
57.3
58.5
59.5
62.1

64.5
66.8
69.0
71.0
73.0
75.0
76.8
78.5
80.3
82.0
83.7
85.3
86.9
88.5
90.1

5(4S)

155.2
168.2
179.1
188.9
197.8
206.0
214.0
221.5
228.5
235.3
251.1
265.9
279.5
292.0
303.5
314.4
324.9
334.6
343.7
352.5
361.0
369.0
376.8
384.3
391.4
398.2

5(4P)

148.6
161.2
171.6
181.0
189.4
197.2
204.7
211.8
218.5
224.9
239.8
253.8
266.9
278.9
290.1

300.7
311.0
320.7
330.0
339.0
347.7
356.0
364.1

371.9
379.4
386.7

6(4D)

130.7
141.1
149.5
157.2
164.1
170.5
176.7
182.5
188.0
193.3
205.5
217.1
227.8
237.7
246.9
255.6
264.2
272.2
279.8
287.3
294.6
301.6
308.3
314.9
321.3
327.5

5(4F)

106.2
112.5
117.8
122.7
127.2
131.5
135.6
139.4
143.1
146.7
155.1
162.9
170.3
177.1
183.5
189.6
195.6
201.2
206.6
211.9
217.1
222. 1

227.0
231.8
236.5
241.1
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FIG. 2. Temperature dependence of the Ne Ix He line shift
calculated with $, =10 cm '. X g )&, confined atom model;

, impact theory with the reduced density, p, (RO), Eq. (6);
———,uniform electron gas model.

FIG. 3. Density dependence of the Ne Ix He line shift calcu-
lated with T, =500 eV. X X X, confined atom model;
impact theory with the reduced density, p, (RO), Eq. (6);
———,impact theory with the mean density N, .

6(nl, , T, ) decreases smoothly with the increasing orbit-
al quantum number I,. and varies approximately as the
fourth power of the principal quantum number n. This
behavior is consistent with the r dependence of the
monopolar interaction which prevails at high tempera-
ture. Indeed, numerical calculation has shown that dipo-
lar and other long-range interactions have negligible con-
tributions to the line shift. As a consequence, we note
that, in contrast with Eq. (27), Eq. (29) has no shielded
term. However, due to the fact that collisions start at the
boundary atomic surface, it is advisable to replace in Eq.
(29) the volume averaged density N, by the depressed
one, p, (R&) [see Eq. (6)]. This is indeed equivalent to a
coupling effect between the radiator and thermal bath al-
ready suggested by Royer. Figure 3 shows that the line
shift given by the quantum-mechanical impact theory in-

cluding the boundary depression effect is in very good
agreement with the corresponding transition energy de-
duced from the confined atom model.

Comparing Table II, Fig. 2, and Fig. 3 to Table I, Fig.
6, and Fig. 4 of Ref. 3, respectively, we point out that the
ratio of the line shift in He-like ions to that in H-like ions
is [Z/(Z —71)] where r) is close to unity and expresses
essentially the shielding effect of the internal bound elec-
tron in He-like ions. On the other hand, we note that our
results are 20%%uo larger than those given by Skupsky and
Davis and Blaha who considered free electrons and ions
together in their self-consistent-field calculation. In fact,
as we have mentioned at the beginning of Sec. II, the ion
component is characterized by a very long relaxation
time and should be treated separately in line-broadening
problems.

To compare our results to those based on density-
functional theory, ' we consider a plasma with

N, = 10 cm, T, =400 eV, and enclosing H-like and
He-like ions in the respective proportions 0.77 and 0.23
(so that the average number of bound electrons is
Z —Z= 1.23). In the framework of our model, we have
obtained the transition energy AH ——74.697 Ry and

coH, ——67.271 Ry for the NeX H and NeIX He lines, re-
spectively. The average transition energy of the reso-
nance line is then B=0.77coH+ 0.23co« ——72.989 Ry. We
note that this value lies between the values 72.74 and
73.73 Ry given by Cauble, Blaha, and Davis using the
Boltzmann hypernetted-chain approximations, respec-
tively.

IV. CONCLUSION

In this paper we developed a confined atom model for
describing the atomic structure of many-electron ions im-
mersed in dense plasmas. We have shown that self-
consistent parameters, such as the total electrostatic po-
tential and electronic energy levels, can be obtained with
precision by means of an average configuration approxi-
mation. Furthermore, in connection with plasma effects,
we have investigated correlation and exchange energies
which are characteristic of many-electron atoms. For the
temperature and density range of plasma regions where
x-ray radiation is intense, we have used a
multiconfigurational calculation and found that the
correlation energy is indeed independent of the local plas-
ma conditions (Table IV). The same statement is true for
the exchange energy (Fig. 1). This behavior can be ex-
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plained by noting that the nuclear attraction potential
Z—Ir is effectively screened by surrounding free parti-

cles of plasmas only at large distance while the two
above-mentioned atomic parameters are mostly linked to
small r values.

In Sec. III we have considered the perturbation of
atomic states due to electron collisions. The so-called
electron relaxation operator I „Eq. (17), is treated by in-

cluding quantum mechanically all multipolar orders of
Coulomb interaction. As shown in Eq. (27), the linewidth
8', =ReI, has been expressed as the difference between
the total part Q, where, in particular, cross sections rel-
ative to penetrating orbits are properly included, and the
screened part Q which takes into account the electron-
electron correlation. The calculation of line shift
D, =ImI, has been performed by directly considering
the T-matrix elements. We have shown that this line
shift agrees accurately with the corresponding transition
energy of the above-mentioned confined atom model, pro-
vided that the boundary depression effect due to the cou-
pling between radiator and thermal bath is taken into ac-
count. This is a typical problem where the collisional ap-
proach and the atomic model are compatible.

Concerning the relaxation operator, we made the usual

approximations such as first order in electron density ex-
pansion and binary collisions to get a computable expres-
sion. But all the processes of the two-body interactions,
such as, e.g., the exchange, are correctly described. On
the other hand, the confined atom model can lead to
high-density effects because the action and reaction be-
tween the radiator and the environment are considered.
In the particular case of the He-like principal series lines,
the agreement between the two theories is quite prom-
inent with the variation of either the density or the tern-
perature. Of course, for a suitable comparison with ex-
periments, the complex electron collision operator given
in this paper should be introduced in a cqmplete calcula-
tion of line profiles where ion effects such as singlet-
triplet mixing, asymmetric broadening, ' and dynam-
ic level mixing are to be taken into account.
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