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Thermally induced escape: The principle of minimum available noise energy
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The average time required for thermally induced escape from a basin of attraction increases ex-
ponentially with inverse temperature in proportion to exp(E~ /kT) in the limit of low temperature.
A minimum principle states that the activation energy E„is the minimum available noise energy re-
quired to execute a state-space trajectory which takes the system from the attractor of the noise-free
system to the boundary of its basin of attraction and that the minimizing trajectory is the most
probable low-temperature escape path. This principle is applied to the problem of thermally in-
duced escape from two attractors of the dc-biased Josephson junction, the zero-voltage state and the
voltage state, to determine activation energies and most probable escape paths. These two escape
problems exemplify the classical case of escape from a potential well and the more general case of
escape from an attractor of a nonequilibrium system. Monte Carlo simulations are used to verify
the accuracy of the activation energies and most probable escape paths derived from the minimum
principle.

I. INTRODUCTION

Deterministic nonlinear dynamical systems often pos-
sess more than one steady-state solution for a given set of
parameters. The relative stability of such solutions is a
question of practical importance in a variety of systems
including electronic circuits, lasers, and particle accelera-
tors where a particular steady state is desired. ' In some
cases it is sufficient to know the local stability of a solu-
tion as determined by the system's response to
infinitesimal perturb ations. However, information re-
garding global stability is usually more relevant to real-
world systems where disturbances are necessarily finite.
Measures of local stability such as Lyapunov exponents
are relatively easy to calculate because they depend only
on the equation of motion linearized about the steady-
state solution. Although measures of global stability,
which depend on the full nonlinear response of the sys-
tem, are usually more difficult to evaluate, the informa-
tion obtained often provides a qualitatively different pic-
ture than local stability measures. An extreme example
of this difference results for chaotic steady-state solutions
which are globally stable but locally unstable.

For dissipative systems a natural measure of global sta-
bility can often be derived from the response of the sys-
tem to thermal noise. The presence of dissipation in a
system has two important consequences. First, dissipa-
tion implies the existence of noise at nonzero tempera-
tures as described by the fluctuation-dissipation theorem.
Second, dissipation implies that each steady-state solu-
tion of the noise-free system is represented by an attrac-
tor and a surrounding basin of attraction in state space.
If initial conditions are chosen within a given basin of at-
traction then the eventual steady-state behavior of the
noise-free system is motion on the associated attractor.
At small but nonzero temperatures, thermal noise pro-
duces motion in which the system occasionally jumps

from one basin of attraction to another but is almost al-
ways found close to an attractor. Under these conditions,
the mean time w required for escape from a basin of at-
traction is a useful measure of the attractor's global sta-
bility.

The classical problem of thermally induced escape
from a potential well is a special case of escape from a
basin of attraction. For the potential-well problem, the
temperature dependence of the mean escape time is dom-
inated in the limit of low temperature by the Arrhenius
factor exp(E„/kTj, where E„,the activation energy, is
the barrier height of the potential well. Because the es-
cape time depends exponentially on the activation energy,E„is usually the most important parameter defining the
stability of a potential minimum. A problem of current
interest is the extension of escape calculations to none-
quilibrium systems in which the dynamics cannot be re-
duced to the motion of a particle in a potential well
and/or the attractor is a trajectory rather than a fixed
point. A general solution to the problem of thermally
induced escape from a basin of attraction has been formu-
lated in terms of a quasipotentia1 defined over state
space. In this formulation the mean escape time exhibits
an Arrhenius factor with an activation energy which is
the minimum difference in quasipotential between the
boundary of the basin of attraction and the attractor.
Thus, the use of E„asa measure of global stability can
be extended to a range of complex systems that cannot be
modeled by a particle in a potential well.

The quasipotential, which characterizes the response of
a system to weak thermal noise, satisfies a Hamilton-
Jacobi equation defined over state space. An analogy can
be drawn between this Hamilton-Jacobi equation and
that of classical mechanics, which establishes a minimum
principle for thermal noise problems equivalent to the
principle of least action. ' ' According to this prin-
ciple, the difference in quasipotential between a given
point in a basin of attraction and the associated attractor
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is related to the most probable trajectory by which the
system can move from the attractor to the given point
under the inAuence of weak thermal noise. The most
probable path is that which minimizes an actionlike
quantity and the difference in quasipotential is the
minimum of this action. In thermal-noise problems, the
actionlike quantity associated with a trajectory is the
available noise energy required to execute the trajecto-
ry. " Stated in physical terms, the difference in quasipo-
tential between a given point and the attractor is thus the
minimum available noise energy required to move from
the attractor to the given point. Application of this
minimum principle allows differences in quasipotential to
be evaluated by solving an ordinary differential equation
rather than a Hamilton-Jacobi partial differential equa-
tion.

Because the activation energy for thermally induced es-
cape is the minimum difference in quasipotential between
the basin boundary and the attractor, it is also the
minimum available noise energy required to execute
movement from the attractor to the basin boundary. In
previous work, " a calculational method based on the
principle of minimum available noise energy was used to
evaluate the activation energy for escape from both a
periodic attractor and a chaotic attractor. The method
was demonstrated to be simple, efficient, and applicable
to comp1ex problems. The principle of minimum avail-
able noise energy thus provides a practical way of
evaluating the global stability of steady-state solutions for
a wide range of nonlinear nonequilibrium systems.

Here we develop this calculational technique in greater
detail by applying it to a simple system, the dc-biased
Josephson junction. The dynamical behavior of the dc-
biased junction is equivalent to that of a particle in a tilt-
ed sinusoidal potential in the presence of linear damping.
The system is a useful test case because it includes coex-
isting fixed-point and periodic attractors. Escape from
the fixed-point attractor corresponds to escape from a po-
tential well and provides a good test of the minimum
principle because the activation energy is known exactly.
The potential-well case is also of interest because the
most probable low-temperature escape trajectory is
known to be the time reversal of the path by which the
system relaxes from the basin boundary to the attrac-
tor. " Here we verify this identity by comparing the re-
verse relaxation trajectory both with the escape trajectory
that minimizes the required available noise energy and
with low-temperature escape paths computed by Monte
Carlo methods. Escape from the periodic attractor
represents a more general case for which exact analytic
solutions for the low-temperature limit are not known.
The accuracy of calculations based on the minimum prin-
ciple is demonstrated for this case by comparison with
Monte Carlo simulations and available analytic approxi-
mations. The Monte Carlo simulations also confirm that
the most probable escape path is that requiring the
minimum available noise energy. However, the reverse
relaxation trajectory is distinctly different from the most
probable escape path in this case, revealing that results
for potential wells do not always apply to the general
problem of escape from an attractor.

II. NOISE-FREE SYSTEM

(l ( )tl (t ))=2rs(t —t ) (2)

where I =2ekT/RI, is the temperature normalized to the
Josephson coupling energy. In this notation, P is the
junction voltage measured in units of I,R.

In the absence of noise (I =0), Eq. (I) is a determinis-
tic dissipative system having steady-state solutions which
correspond to attractors in state space. Before taking up
the subject of noise-induced transitions between attrac-
tors, we focus on the state-space structure of the attrac-
tors and basin boundaries in the noise-free system.

Physical insight into the nature of the attractors can be
gained by recognizing that the dynamical behavior of the
noise-free system is equivalent to the autonomous motion
of a particle in a potential subject to linear damping.
That is, the equation of motion takes the form

PP+P+ U'(P) =0,
where U' is the derivative with respect to P of the poten-
tial

U(P) = iog c—osP .— (4)

This potential, often called the washboard potential, con-
sists of a sinusoidal component plus a linear ramp with a
slope determined by the dc bias io For

~
io.

~
& l, the po-

tential has local minima at the points

P;„=sin 'io+ 2n n. ,

FIG. 1. Circuit diagram for the dc-biased Josephson junc-
tion.

The system to be considered consists of an ideal
Josephson element with critical current I, shunted by a
capacitance C and resistance R and driven by a dc bias Io
as shown in Fig. 1. The Johnson noise of the resistance is
represented by the noise current I&. In normalized units,
the equation of motion for the difference in supercon-
ducting phase P across the junction is' '

pp+ p+ sing = io+itv ( t ),
where P=2eI, R C/A' is a dimensionless parameter which
varies inversely with damping, io Io/I, ——is the normal-
ized dc bias, iz ——I&/I, is the normalized noise current, t
is the time measured in units of R/2eI, R, and dots indi-
cate derivatives with respect to t. The noise current asso-
ciated with the Johnson noise of the resistance is
represented by a white Gaussian process with an impul-
sive autocorrelation function, '
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and local maxima at the points

((),„=—sin 'in+(2n + 1)m,

where n is an integer. For tin t
&1 the potential is a

monotonic function of P and there are no local minima.
The washboard potential is plotted in Fig. 2(a) for

i0=0.2. Inspection of this figure suggests that two types
of steady-state solution are possible for tip t

& l. One
consists simply of the particle at rest at a potential
minimum and corresponds to a fixed-point attractor in
state space. The other, permitted when the slope is
suSciently steep for a given damping, consists of steady
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FIG. 2. Potential energy (a) and state-space portrait (b) of the noise-free system for io =0.2 and P =25. The basin of attraction for
the fixed point nearest / =0 is indicated by crosshatching. Potential energy is in units of fiI, /2e and voltage is in units of I,R
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motion down the potential ramp with a velocity modulat-
ed by the undulations of the potential. This running solu-
tion can be described as a periodic attractor if we assume
that P is taken modulo 2m as appropriate to a Josephson
junction. The stationary and running solutions of a junc-
tion are called the zero-voltage state and the voltage state
but here are called simply the 0 state and the 1 state.
These two states and noise-induced transitions between
them are the primary focus of the present work.

The dc-bias ranges of the 0 state and 1 state are shown
in the current-voltage characteristic plotted in Fig. 3 for
a case, p=25, corresponding to relatively light damping.
The 0 state exists for ~io

~
&1 where the potential

possesses local minima. The 1 state exists for
~
io

~
) i

where the slope of the potential is suScient to offset
damping losses and steady-state motion can be main-
tained. The parameter i;„is 0.2521 in the present case
but can vary between 0 and 1 depending on p. ' '

For
~

io
~

& 1 there are an infinite number of coexisting
attractors for the washboard potential, namely the fixed
points associated with the potential minima at P;„.For

~
io

~
&i;„these fixed points are the only attractors of

the system. Figure 2(b) is a state-space portrait illustrat-
ing this situation for i 0 =0.2 and p=25. In this diagram,
the attractors are located at the points (P,P) (P;„,0).
The basin of attraction for the attractor at (sin i0, 0) is
indicated by crosshatching. For any set of initial condi-
tions (P(0),$(0)) chosen within this area, the final state
of the system will be the 0 state at /=sin 'io. The boun-
daries of the basins of attraction are determined by the
set of unstable fixed points associated with the maxima of
the potential. These fixed points, located at ($,„,0), are
called saddle points because they are stable with respect

dC BIAS i0

FIG. 3. Time average of the voltage (units of I,R) as a func-
tion of normalized dc bias for steady-state solutions of Eq. (3).
The hysteresis parameter is P=25.

P(r) =P, (t)+5(t),
where 5(t) is assumed to be infinitesimal. Using the fact
that both P and P, are solutions of Eq. (3), we obtain an
equation for 5,

P5+ 5+ (cosP, )5=0, (8)

which has been linearized as appropriate for an
infinitesimal 5. For all three types of steady state, the
general solution of Eq. (8) has the form

53+(t)exp(S t)+A+(t)exp(S t) .

Here A+ and A are periodic functions with the same

to perturbations in some state-space directions and unsta-
ble with respect to perturbations in other directions.
Each saddle point has associated with it a stable and an
unstable manifold or inset and outset. By definition,
motion beginning at a point on the inset asymptotically
approaches the saddle point. Each inset defines a bound-
ary between two basins of attraction. The outset is the
collection of trajectories along which the system relaxes
from the saddle point to an attractor. There are two
outset trajectories in the present case, connecting the sad-
dle point with the two adjacent attractors. The outset
trajectories are of interest because they define the possi-
bilities for the most probable escape trajectory in
potential-well problems.

For i,„&
~
io

~
& 1 the system has a periodic attractor

in addition to the fixed-point attractors and the state-
space topology takes the form shown in Fig. 4(b). In this
figure P is plotted inodulo 2n and all of the fixed-point at-
tractors are considered to be equivalent to the 0 state at
((i=sin io The p. eriodic attractor is the wavy trajectory
extending from —m. to m. that is repeatedly traversed
when the system is in the 1 state. The boundary separat-
ing the basins of the 0 state and 1 state is again the inset
of the saddle point at P=n sin 'i—

o The b.asin of the 0
state is indicated by crosshatching and its complement is
that of the 1 state.

The state-space portraits shown in Figs. 2(b) and 4(b)
define the escape problems to be considered in the follow-
ing sections. In the presence of thermal noise a system
initialized on a given attractor is forced by the random
fluctuations of iz to leave the attractor and wander about
in the neighboring state space. Escape occurs when this
random motion takes the system across the boundary of
the basin of attraction. In later sections we search for the
most probable trajectory by which noise can move the
system between the attractor and the basin boundary to
produce an escape event.

Before leaving the noise-free system, we examine the
character of autonomous motion in the neighborhood of
the system's three steady states: the stable and unstable
fixed points and the periodic attractor. This analysis is
necessary to a description of the numerical methods used
to calculate inset and outset trajectories and also provides
insight into the nature of the most probable escape trajec-
tories discussed in later sections. Given that P, (t) is a
steady-state solution, we wish to examine a nearby trajec-
tory of the form
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+max period as P, in the case of the periodic attractor' and
constants in the case of the fixed points. The exponents
S+ and S are the parameters of greatest interest in Eq.
(9) since they determine whether the trajectories near a
given steady-state solution converge to the steady state
(Re[S+]&0}or diverge from it (Re[S+]&0}.

For the given system, the exponents S+ and S satisfy
the sum rule' '

lS +S (10}

S~~ = — (1+1),

In addition, for the periodic solution one of the exponents
is identically zero because the system responds neutrally
to state-space displacements along the periodic trajecto-
ry. ' These two facts allow us to conclude that for the
periodic attractor

$.0

0.5

(b)

1 STATE

such that all trajectories near the periodic attractor con-
verge to it exponentially in a characteristic time p. This
behavior is illustrated in Fig. 4(b} by the way in which
one of the outset trajectories of the saddle point ap-
proaches the 1 state.

For the fixed points there is no requirement that one of
the exponents S+ or S be zero because there is no
motion associated with the solution. However, since P, is
a constant equal to either ((};„orgati,„,Eq. (8) is a linear
equation with constant coeScients and the exponents are
determined by the associated characteristic equation.
The results for the stable and unstable fixed points are
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FIG. 4. Potential energy {a) and state-space potrait {b) of the
noise-free system for to=0.5 and P=25. Here P is plotted
modulo 2m and all fixed-point attractors are considered
equivalent. The basin of attraction of the 0 state is indicated by
crosshatching.

and

S,~ ——— [1+[1—4P(1 i ti
}'~ ]'—

2P
(12)

S„+=— [1+[1+4P(1—io)'~ ]'
2P

(13)

respectively, assuming
~

io
~

& l. Inspection of Eq. (12)
reveals that the real parts of S,+ are necessarily negative
and the the imaginary parts are non zero if
4P(1 —io )' & 1. Thus, all solutions in the neighborhood
of the stable fixed point approach (P;„,0) exponentially
and if P is suSciently large the approach exhibits damped
oscillations. Such a damped oscillatory approach to the 0
state is again illustrated in Fig. 4(b) by one of the outset
trajectories of the saddle point.

For the unstable fixed point, inspection of Eq. (13) re-
veals that S„+and S„areboth real with S„+~0 and
S„&0.Thus, trajectories beginning near the saddle
point may either converge toward or diverge from
($,„,0) depending the direction of their initial displace-
ment from this point. The displacement directions yield-
ing the most rapid convergence and divergence coincide
with the directions of the inset and outset trajectories, re-
spectively, at the saddle point. A knowledge of these
directions forms a starting point for numerical evaluation
of the inset and outset. If we define the displacement vec-
tor h(t) =[5(t},5(t)] then its time evolution is given by
6(t)=J(t)b(0) where the Jacobian matrix J(t) can be
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written as 10

(14)

where 5& and 5z are solutions of Eq. (8) satisfying the ini-
tial conditions 10

5t(0) =1, 5,(0)=0, (15)

and

52(0) =0, 52(0) =1 . (16)

The eigenvalues of J are exp(S„+t)and the corresponding
eigenvectors are

b, ~
——[1,S„~]. (17)

The displacement vector b, + defines the direction of most
rapid divergence from the saddle point and is tangent to
the outset. To compute the outset trajectories, we select
a starting point displaced a small distance from ($,„,0)
in the +5+ direction and then integrate Eq. (3}to deter-
mine how the system relaxes from the saddle point to one
of the attractors. Similarly, 5 defines the direction of
most rapid convergence to the saddle point and is tangent
to the inset. To compute the inset trajectories, we select
a starting point displaced a small distance from ($,„,0}
in the +b, direction and then integrate Eq. (3) backward
in time to determine the origin of trajectories which ap-
proach the saddle point. Because the attractors are the
asymptotic limits of the outset trajectories and the boun-
daries between basins of attraction coincide with the inset
trajectories, the inset and outset taken together largely
define the escape problem to be considered in the follow-
ing sections.
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FIG. 5. Mean escape time (units of A/2eI, R) for the 0 state
and 1 state as a function of inverse temperature for io ——0.5 and
P=25. Each circle is the average of t, over 100 Monte Carlo es-

cape events. Solid lines represent least-squares fits to the Monte
Carlo points and the dashed line is the analytic result for escape
from the 0 state given by Eq. (25).

III. MINIMUM PRINCIPLE (18)

Although there exists rigorous justification for the cal-
culation of activation energies using the principle of
minimum available noise energy, ' ' we examine here
an informal proof which establishes the principle by a
direct argument that provides insight into its physical ori-
gins. " As a first step, we consider the computation of es-
cape times and activation energies by Monte Carlo simu-
lations.

An escape event can be simulated by numerical in-
tegration of the noise-affected equation of motion, Eq. (1)
in the present case, with the noise term represented by a
random number generator. The mean escape time ~ is
computed as the average over a series of trials of the time
t, required for the system to move from the attractor of
interest to its basin boundary under the inhuence of
noise. For each trial, integration is begun at t =0 with
the system initialized on the attractor and proceeds by
solving for the state of the system at a succession of later
times spaced at intervals At. The noise source is approxi-
mated by assuming that its value is constant over the mth
time interval at a value iN(m) that is the average of iz(t)
over the interval

Because i~(t) is a white Gaussian noise source with an
autocorrelation function given by Eq. (2), the random
variables iN(m) are uncorrelated and have identical
Gaussian distributions with zero mean and variance
2I /b, t. A Gaussian random number generator can thus
be used to represent the noise source in numerical in-
tegration of Eq. (1}. For each trial, integration is contin-
ued until the time t, when the system first happens to
cross the boundary of the basin of attraction. The fact
that the random motion of the system is due to white
Gaussian noise ensures that escape will occur with proba-
bility 1 within a finite time. The mean escape time v is
estimated by the average of t, over a series of trials with
uncorrelated noise waveforms.

Monte Carlo results for the mean escape time of the 0
state and 1 state are plotted in Fig. 5 as a function of in-
verse temperature for a case in which both states are
stable in the absence of noise. The relevant attractors
and basins of attraction are those shown in Fig. 4(b}. r is
calculated for the 0 state as an average over escape events
in which integration is initialized at (P;„,0) and contin-
ued until the system is found to leave the crosshatched
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1/w= g Fz g exp[ i z(m)ht/—4I ],
paths m =1

(19)

area of Fig. 4(b). Similarly, r for the 1 state is obtained
from Monte Carlo trails in which integration is initialized
at a point on the periodic attractor and continued until
the system enters the crosshatched area. Each of the cir-
cles in Fig. 5 represents the average escape time for 100
such trials.

As Fig. 5 shows, the mean escape times obtained from
Monte Carlo simulations for both the 0 state and 1 state
increase exponentially with inverse temperature. That is,
the temperature dependence of ~ approximates that of
the Arrhenius factor exp(E& /kT) as is expected in the
limit of low temperatures. If we introduce a dimension-
&ess activation energy c„which is E„measured in units
of the Josephson coupling energy fiI, /2e, then the Ar-
rhenius factor takes the form exp(e„/I ). By fitting a
straight line to the data points in Fig. 5 and measuring its
slope, we obtain an estimate of c.„directly from the
Monte Carlo simulations. Activation energies obtained
in this way provide an important check on results ob-
tained from the principle of minimum available noise en-

ergy. Because the activation energy is defined by the
low-temperature asymptote, the accuracy of Monte Carlo
estimates can be affected if high-temperature points are
included in the fitting procedure. For this reason, data
points for which the resulting Arrhenius factor was less
than 4 were excluded from consideration. To obtain an
accurate evaluation of the slope, the included points were
also required to span at least 2 orders of magnitude in ~.
Using a least-squares fit to the data points shown in Fig.
5, we obtain activation energies of c„=0.65+0.04 and

cz ——0.85+0.05 for the 0 state and 1 state, respectively.
The error bounds associated with these numbers
represent the values of the slope of the fitting line at
which the rms error exceeds its minimum value by a fac-
tor of 2.

The inner workings of the Monte Carlo simulation for
noise-induced escape can be used to develop the principle
of minimum available noise energy as follows. Suppose
that the escape rate I/r is to be written as the sum of the
contributions from all possible escape paths. By an es-
cape path we mean a trajectory that takes the system
from the attractor to its basin boundary in some time t, .
The contribution to 1/r from a particular path is as-
sumed to be proportional to the probability that the path
occurs. However, the equation of motion establishes a
one-to-one correspondence between escape paths and
noise waveforms so the probability of a given escape path
is the probability of the noise waveform required to pro-
duce it. The numerical technique used in the Monte Car-
lo simulation suggests a way of computing this probabili-
ty. If a path is broken into M discrete time intervals of
length ht =t, /M as in numerical simulations, then its
probability is the product of the probabilities of the
i~(m) values needed to produce it. A product form fol-
lows from the fact that the i~(m) are independent ran-
dom variables. Because all iN(m) have identical Gauss-
ian distributions with variance 2I /ht, the escape time
can be expressed as

where I' is a path-dependent normalization factor. Con-
P

verting the product of exponential factors to a sum on ex-
ponents and taking the limit as ht ~0 yields

I/r= g F&exp( —e~/I ),
paths

where

(20)

(21)

If the temperature dependence of Fp is weaker than ex-

ponential, then in the limit of low temperatures the term
in Eq. (20) which dominates the sum will be that associat-
ed with the paths for which ez is minimum. The minim-

izing path is the most probable low-temperature escape
path. Because other terms can be neglected, the activa-
tion energy c„must equal the minimum c,z. This
equivalence of c„and the minimum c,z is the relation
that allows activation energies to be computed efficiently.

The physical interpretation of c.& becomes apparent if
we consider its dimensioned equivalent,

EN ,' I ——IN—R dt . (22)

The maximum power that can be drawn from a current
source I shunted by a resistance R is —,'I R, a quantity
sometimes called the available power. Thus, Ez is the
maximum energy available to the remainder of the circuit
from the Johnson noise of the resistance. Using this ter-
minology, we can state the minimum principle as follows.
In the limit of low temperatures the most probable escape
trajectory is that which requires the minimum available
thermal-noise energy and this minimum energy is the ac-
tivation energy of escape.

Although developed here with reference to a specific
system, the principle of minimum available noise energy
applies generally to problems in which noise-induced es-
cape is due to white Gaussian noise derived from a linear
dissipative element. The principle is applicable to sys-
tems having a wide range of dynamical properties be-
cause the only requirement on the equation of motion is
that it establish a one-to-one correspondence between es-
cape paths and noise waveforms. However, applicability
depends strongly on the characteristics of the noise
source. To ensure that the noise amplitudes at successive
times are effectively uncorrelated, the noise spectrum
must be white for frequencies up to and somewhat
greater than the highest natural frequency of the noise-
free system. To ensure that the average noise amplitudes
follow a Gaussian distribution, it suffices that the noise
process be a Gaussian process. Finally, to ensure the re-
quired relationship between noise and temperature, the
noise must derive from a linear dissipative element to
which the fluctuation-dissipation theorem applies. Be-
cause the noise associated with resistors in electrical sys-
tems and viscous damping in mechanical systems usually
meet these requirements, ' the principle of minimum
available noise energy is expected to be widely useful.

Application of the minimum principle to the computa-
tion of activation energies proceeds through a search for
the escape path that requires the minimum available
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noise energy. This search is simplified by the fact that
the minimum c necessarily occurs for a path ending at a
saddle point on the basin boundary. Because the basin
boundary is formed by the insets of saddle points, a tra-
jectory that meets the boundary at an arbitrary point can
be extended to a saddle point along a path for which
iz ——0. Thus, c.N for an arbitrary end point can never be
less than that for a path ending at a saddle point. The
search for the path with minimum c,z can thus be re-
stricted to those ending at saddle points. The starting
point of the minimizing trajectory can also be chosen in
advance even when the attractor is not a fixed point. All
points of the attractor are equally suitable as starting
points because noise energy is not required for the system
to move between them. Thus, in searching for the escape
path requiring the minimum available noise energy, the
possible end points of the path are predetermined and a
starting point on the attractor can be selected arbitrarily
without loss of generality.

The search for a trajectory that minimizes c.z is carried
out by application of the calculus of variations. An ex-
pression for c.z specific to the dc-biased Josephson junc-
tion is obtained by combining Eqs. (1) and (21),

t

ez ,' f———(PP+P+sinP—io) dt . (23)

Because [$(0),P(0)] and [P(t, ),P(t, )] are fixed, the cal-
culus of variations can be applied to derive an equation
for the trajectories that lead to stationary values of cz,

P P+(2Pcosg —1)P PP sing—+(sing —io)cosg=0 .

(24)
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K
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This equation is to be solved subject to the boundary con-
ditions that [P(0),$(0)] is a point on the attractor and
[P(t, ), P(t, )] is a saddle point. Once a solution is found,
the noise current can be derived from Eq. (1) and used to
compute the corresponding c~. For a given t, and fixed
boundary conditions, there are generally several solu-
tions to Eq. (24), corresponding to various local and glo-
bal minima and maxima in c.z. Assuming for the mo-
ment that the global minimum can be found for any givent„the minimum of c,z over all escape paths is obtained
by taking the limit as t, goes to infinity. The necessity of
taking this limit derives from the fact that the duration of
an escape path can always be extended without increasing
cN simply by adding an initial interval during which
iN =0 and the system remains on the attractor. Thus, the
minimum cz for long escape times can never be greater
than that for short times and the increased flexibility per-
mitted by a longer escape time can be expected to de-
crease the minimum c.z. The principle of minimum
available noise energy ensures that the minimum cz
found in this way is the activation energy for escape.

The greatest practical diSculty encountered in applica-
tion of the minimum principle to calculating c,

„

is that of
determining whether a given solution of Eq. (24) corre-
sponds to the global minimum of cN for the assumed t, .
Because cz can be directly evaluated for any escape path,
it is easy to determine which of several solutions is a can-
didate for the global minimum, but the possibility that a

dc BiAS io

FIG. 6. Activation energy (units of fiI, /2e) for thermally in-
duced escape from the 0 state and 1 state as a function of dc bias
for P=25. Circles indicate values obtained through Monte Car-
lo simulations and solid lines indicate the results obtained
through application of the principle of minimum available noise
energy. The dashed curve is the analytic approximation given
by Eq. (42) with i,„=0.2521.

solution with lower c,z remains undiscovered cannot be
easily ruled out. Fortunately, the simple strategies de-
scribed in the following sections for finding solutions of
minimum cN are usually effective in locating the global
minimum for a given t, . Taking the limit of this
minimum c,N as t, ~~ is also practical because conver-
gence to an asymptotic value is usually rapid. Thus, al-
though there are uncertainties associated with calculation
of c,

„

through the minimum principle, an accurate value
is often obtained directly and efficiently by variational
methods.

The basic validity of calculating activation energies
through the minimum principle is demonstrated by Figs.
6 and 7 which summarize the results of this paper. Here
activation energies for escape from the 0 state and 1 state
are plotted as a function of dc bias for P values of 25 and
4. The results of Monte Carlo simulations are shown by
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0.6 variety of limiting cases. ' The result obtained by ap-
plying the theory of Kramers for the low-temperature
limit (I «b, Uand I &2vrb, U/[P(1 —io)' ]' ) is

0.5
T= 4m

exp(b, U/I ),
[1+4@(1—io )' ]' —1

(25)
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FIG. 7. Activation energy for thermally induced escape from
the 0 state and 1 state as a function of dc bias for P=4. Circles
indicate values obtained through Monte Carlo simulations and
solid lines indicate the results obtained through application of
the principle of minimum available noise energy. The dashed
curve is the analytic approximation given by Eq. (42) withi,„=0.5974.

solid circles with error bars selected, as previously dis-
cussed, to indicate the accuracy of fit to the Arrhenius
form. Solid lines plot the values obtained by application
of the minimum principle. Because the two methods of
calculation are theoretically equivalent, the observed
agreement is not surprising. The agreement does, howev-
er, establish that the variational methods used are
effective in locating the trajectory corresponding to the
global minimum of the available noise energy required for
escape. The data presented in Figs. 6 and 7 will be dis-
cussed further as we describe these methods in detail in
the following sections.

IV. POTENTIAL WELL

Escape from the 0 state corresponds to the case of es-
cape from a potential well. For this case the activation
energy is known to be the difference in potential energy
between the saddle point and the attractor and the most
probable escape path is known to be the time reversal of
the trajectory by which the system relaxes from the sad-
dle point to the attractor. Knowledge of these exact re-
sults makes escape from the 0 state an ideal test case for
calculations based on the minimum principle.

Expressions for the mean escape time for thermally in-
duced escape from the 0 state have been derived for a

where hU is the depth of the potential well

b, U= U(Q,„)—U(Q;„)
=2(1 io—)' +2icsin 'iz —ir ~io

~

(26)

pp~ +JR + U'(pR ) =0 . (27)

If the time T is taken to be sufficiently large for a given 5
the endpoint of the trajectory will approach the attractor
arbitrarily closely. In the limit 5~0 and T~ Do, Pz(t)
becomes the relaxation trajectory. Similarly, the reverse
relaxation trajectory is obtained from the function

F (t) =JR ( T t), —

in the limit 5~0 and T~ao. This path begins at the
fixed point and ends at the saddle point and thus
represents a possible escape trajectory. The noise current
needed to drive the system along Pz is defined by

ppE+pE+ U'(pE ) =i~ (29)

and the required available noise energy is

1 ~ 2
Cz ——— &~dt4

=4 g+ g+U E dt .

Using Eq. (28), we can express s~ in terms of PR as

(30)

Because the activation energy is defined by the asymptot-
ic low-temperature form of ~, Eq. (25) confirms that
s„=b,Uand Eq. (26) gives an explicit formula for s„.

Equation (25) also provides a check on our Monte Car-
lo results for ~. A comparison between Monte Carlo data
and Eq. (25) is made in Fig. 5 where the analytic result is
plotted as a dashed line. Although agreement is good at
low temperatures, small but significant differences are
found for the high-temperature data points. This
discrepancy may result because I is not sufficiently less
than hU for Eq. (25) to be accurate at the higher temper-
atures. Whatever their origin, the observed differences
are small enough that the accuracy of our Monte Carlo
simulations is largely confirmed by comparison with the
analytic result.

The fact that the most probable escape trajectory for a
potential well is the time reversal of the trajectory by
which the system relaxes from the saddle point to the at-
tractor can be shown by direct application of the
minimum principle. The relaxation trajectory is a limit-
ing case of a function P„(t)defined on the interval (0, T).
P~(t) is the path followed by the noise-free system for the
initial conditions [Pz (0),Pz (0)]=[P,„,5] where 5 is a
small velocity which starts the system moving from the
saddle point toward the attractor of interest. Because Pz
is a trajectory of the noise-free system, it satisfies the
equation
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d=4 2 R T —t +—
R T —t

(31)

ex = U(P,„)—U(P;„). (33)

This equation is the anticipated result: the available
noise energy required to execute the relaxation trajectory
in reverse equals the depth AU of the potential well.
There can be no escape trajectory with a smaller c.N be-
cause energy conservation requires that at least this
amount of energy be drawn from the resistivity shunted
noise source in order to move the system from the attrac-
tor to the saddle point. Thus, the reverse relaxation tra-
jectory minimizes c.N and by the minimum principle is
the most probable low-temperature escape trajectory.
Because this conclusion does not depend on the form of
the potential, the most probable escape path is the re-
verse relaxation trajectory in all potential systems.

A further understanding of the available noise energy
cN can be gained by comparing it with the energy cI
drawn from the bare noise source and the energy c.R dissi-

pated in the resistance. By its definition, Eq. (21), sz is

the maximum energy available to the remainder of the
circuit from the terminals of the resistively shunted noise
source. Thus, cN is an upper limit on the energy
transferred to the capacitance, Josephson element, and
dc-bias source (or, in the language of a particle in a well,
to kinetic and potential energy) during the escape pro-
cess. c.I and c.R, defined by

t

dt (34}
0

and

(35)

are the energy drawn from the bare noise source and the
energy dissipated in the resistance, respectively. The en-

ergy drawn from the shunted noise source is thus c.I —cR
and in the general case this quantity is bounded by c,N so
that

where we have made the substitution t'= T —t. Finally,
substituting for the quantity PPz+ U'(Pz ) using Eq. (27}
and removing the prime from the integration variable
yields

EN= R (32)
0

Because P is the power dissipated in the resistance, the
above time integral is the total energy dissipated over the
trajectory pz. This energy, the energy dissipated in the
process of relaxation in a noise-free system, must equal
the difference in stored energy (kinetic plus potential) be-
tween the initial and final states. Because the initial and
final states approach ($,„,0) and (P;„,0), respectively,
in the limit that pz approaches the relaxation trajectory,
we conclude that for the limiting path,

EI ~R +~N (36)

=AU . (37)

For escape from a potential well along the most probable
path, we conclude that cN ——cR ——EU and cI ——26U. That
is, of the energy provided by the bare noise source in the
process of moving the system from the attractor to the
saddle point, half is dissipated in the shunt resistance and
half is stored as potential energy. The case of escape
from a potential well is thus special in that the activation
energy cz can equivalently be considered as the depth of
the well hU or any of the three quantities ez, c,z, or et /2
associated with the most probable escape path. As will
be shown in the following section, the activation energy
for nonequilibrium escape problems is generally given by
only one of these four quantities: the available noise en-

ergy cN associated with the most probable escape path.
In the remainder of this section we consider the prob-

lem of computing the escape path requiring minimum
available noise energy by application of variational
methods. For a given escape time t„the task is to solve
Eq. (24) for a trajectory p(t) which satisfies the boundary
conditions that [P(0),P(0)]=[/;„,0] and [P(t, ),P(t, )]
=[/,„,0]. That is, we seek a solution to Eq. (24) which
begins at the attractor and ends at the saddle point. Be-
cause Eq. (24) is fourth order, integration can be started
from t =0 only if P(0), P(0), $(0), and (j}(0)are specified.
While P(0) and P(0) are fixed by the boundary condi-
tions, P(0) and P(0) must be determined through a pro-
cess of trial and error such that the values of P(t, ) and

P(t, ) obtained by integrating Eq. (24) from 0 to t, meet
the boundary conditions at t, . Finding such values for
p(0) and p(0} determines an escape trajectory for which

cN is stationary and possibly minimal.
The numerical technique used to solve for $(0) and

P(0) is Newton's method for finding the zeros of a func-
tion. Because P(0) and P(0) are fixed, the process of in-
tegrating Eq. (24) from 0 to t, may be thought of as
defining two functions, F and G, such that

P(t, ) —P,„=F[P(0),$(0)],

y(t, )=G[y(0),y(0)] .

(38}

(39)

In terms of F and G, the problem to be solved reduces to
finding values of P(0) and $(0) for which F =G =0, that

In the case of escape from a potential well along the re-
verse relaxation trajectory, we have shown that cN =AU
and hU is the actual energy supplied to the remainder of
the circuit from the shunted noise source. Thus, for this
case cI —cR is not just bounded by c.N but equal to it.
Furthermore, cR can be evaluated explicitly for the re-
verse relaxation trajectory by again considering this path
as a limit of PE,

E, = f y'E«
0

r
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is, to finding the simultaneous zeros of F and 6. If we
denote $(0) by x and P(0) by y then Newton's method
proceeds by evaluating F, 6, and the partial derivatives
F Fy 6 and 6 at some initial guess, x

&
and y „

for
the simultaneous zeros. Linear extrapolation based on
this information can be used to predict more accurate
values, x2 and y2, for the simultaneous zeros,

X2 =X(+
GFy FGy

Fz Gy GzFy (x,y)=(x&,y& j

(40)

FGz —GF
y2=»+

Fz Gy —GzFy (x,y) =(x~,yl )

(41)

+max
to ~ 10 20 30 40 SO eo

These equations can be applied repeatedly by using the
last values of x& and y2 as the next values for x& and y &

to obtain even more accurate simultaneous zeros. If the
initial guess is reasonably good, a few iterations are usual-

ly sufficient to yield values for $(0) and $(0) that define a
trajectory satisfying the specific boundary conditions to a
high degree of accuracy. Each iteration requires the nu-
merical evaluation of F and 6 and their first derivatives
at (xi,yi). These quantities can be computed by in-

tegrating Eq. (24) three times with initial values for tI) and

P set first to x i and y i, then to x i +bx and y „andfinally

to x, and y, +by, where b,x and by are small increments.
A less certain step in the variational procedure is the

search for the particular solution to Eq. (24) correspond-
ing to the global minimum of cN. A strategy that often
proves successful begins by considering an escape time t,
that is somewhat less than the natural response times of
the system. In this limit Newton's method usually con-
verges to an accurate solution even when the first guess
for $(0) and P(0) is very approximate. The type of es-
cape trajectory to be sought initially is one that connects
the attractor and saddle point as directly as possible. An
interactive program that plots solutions of Eq. (24) can
usually be used to locate an approximate escape trajecto-
ry of this type by applying trial and error to the selection

7r

+ma.
(a)

+min
0
+max

(b)

+ in
0e +max

(c)
LLI

40

Z
0
+ma x

(cI)

of $(0) and P(0). Newton's method is then applied to
find a solution which satisfies the boundary conditions ac-
curately. Presuming that this solution minimizes cN for a
given t„wewish to extend it to escape times that exceed
the natural response times of the system. Because
Newton's method generally requires a more accurate ini-
tial guess when t, is large, the process of extending t, is
best accomplished in small increments, using the accurate
values of P(0) and P(0) obtained for the last t, as an ini-

tial guess for the next larger t, . As t, is increased, the es-

cape path is expected to relax toward a trajectory that
mlnlmizes E'N '

As an example of this procedure, we consider escape
from the 0 state for the situation pictured in Fig. 4. By
solving Eq. (24) for a series of escape times, we obtain the
trajectories shown in Fig. 8. The result for t, =10 is a
necessarily rapid transition from P;„to P,„.As t, is in-

creased, the transition becomes more gradual at first but
for t, greater than about 40 the transition is virtually
fixed in shape and further increases in t, merely extend
the dwell time near Pm;„and P,„.The values of ez for
this series of trajectories are 8.905, 1.843, 1.275, 1.211,
1.206, and 1.206 for t, values spanning the range from 10
to 60 in increments of 10. Convergence to a definite

0
+max

(e)

-20 -10 10 20

TIME

30 40 50 0
-150 -100 -50

TIME

50

FIG. 8. Phase as a function of time for a series of escape tra-
jectories obtained by solving Eq. {24) for different escape times
t, Trajectories . are for escape from the 0 state in the case p=25
and io ——0.5. For ease of comparison, the time origin of each
trajectory has been shifted to the point at which P=n. /2. Dots
indicate the initial and final points of each trajectory.

FIG. 9. Phase as a function of time for a sequence of four os-
ci1latory escape trajectories solving Eq. (24) [(a)—(d)] and for the
reverse relaxation trajectory (e). All trajectories are for escape
from the 0 state in the case p=25 and io 0 5 The time——ori. gi.n

for each trajectory has been shifted to the point at which

P =rt/2.
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value for c~ thus occurs rapidly with increasing t, and

we may hope to have discovered the global minimum for
c,z through this procedure.

However, for the case at hand there are escape trajec-
tories having even smaller c.~ than the nearly direct path
pictured in Fig. 8. Because the system is underdamped,
less available noise energy is required for escape if it is
applied with a periodicity that matches the natural oscil-
lation frequency of the system to gradually build the am-
plitude of oscillation until escape occurs. By seeking a
nearly direct escape path, we have overlooked the class of
oscillatory escape paths that includes the actual minimiz-

ing trajectory. Beginning again with trial and error
choices for P(0) and P(0), we find that such oscillatory
solutions are easily obtained and can be arranged in se-
quence according to the number of oscillations that occur
before the saddle point is reached. Four solutions from
this sequence are shown in frames (a)—(d) of Fig. 9. Each
of these trajectories is plotted in the limit that t, ~ 00 and
the values of e~ corresponding to frames 9(a)—9(d) are
1.206, 0.773, 0.705, and 0.690. These solutions of Eq. (24)
are to be compared with the reverse relaxation trajectory

shown in frame 9(e) for which ez is 0.685. The close
similarity between frame 9(d) and the exact result of
frame 9(e) confirms that the most probable escape trajec-
tory can be obtained through variational methods. The
value of ez for the trajectory shown in frame 9(d} also
agrees with the exact result within 1%, confirming that
the variational method is a viable technique for the calcu-
lation of activation energies. Indeed, the variational re-
sults for cz plotted in Figs. 6 and 7 for the 0 state agree
everywhere with the exact result given by Eq. (26) within
the accuracy of the figure.

Although the variational method is primarily of in-
terest for evaluation of activation energies, it yields as a
by-product the most probable low-temperature escape
path. The significance of this path is illustrated in Fig. 10
which compares Monte Carlo escape routes computed at
three temperatures with the reverse relaxation trajectory.
We have argued that the probability of a given escape
route is proportional to the product of a prefactor and an
exponential factor exp( —e~/I'} where e~ is the available
noise energy required to execute the route. If the prefac-
tors are weakly temperature dependent, the most prob-
able escape route in the limit of low temperature is that
with the smallest cz, namely cz ——cz. At any finite tem-
perature I, however, all of the escape paths having cz
within I of cz will occur with comparable probability,
assuming their prefactors are not too different. Thus, as
the temperature is increased, the range of escape paths
likely to be observed also increases. As the temperature
is decreased, the observed escape paths will be restricted
to those close to the path with smallest cz. This effect is
illustrated in Fig. 10. Here we plot the Monte Carlo es-
cape trajectories over a brief interval of time including
the time at which escape occurs. Each frame shows a
sample of five Monte Carlo trajectories computed for a
given I (dashed lines) together with the reverse relaxa-
tion trajectory (solid line). In frame 10(a), for which
I /e„=0.29, the oscillations that precede escape in the
Monte Carlo simulations bear little resemblance to those
of the reverse relaxation trajectory except for the single
dip occurring just before the escape event. In frames
10(b) and 10(c), for which I /e„=0.15 and 0.088, respec-
tively, the correlation between the Monte Carlo trajec-
tories and the reverse relaxation trajectory is distinctly
stronger, with rough agreement over a period of several
oscillations at the lowest temperature. This agreement
confirms that the escape path requiring the least available
noise energy, the reverse relaxation trajectory in this
case, has physical significance as the limiting path for es-
cape at low temperatures.

-7T/ 2
-&50 -100 -50 50 V. BASIN OF ATTRACTION

TIME

FIG. 10. Phase as a function of time for Monte Carlo escape
routes from the 0 state calculated for (a) I =0.2, (b) I =0.1,
and (c) I =0.06. The system parameters are P=25 and io =0.5.
Each frame shows five Monte Carlo escape routes (dashed lines)
and the reverse relaxation trajectory (solid line). The time ori-
gin for each trajectory has been shifted to the point at which/2.

The general case of thermally induced escape from a
basin of attraction is represented here by the problem of
escape from the 1 state. The 1 state of the noise-free
Josephson junction is a stable nonequilibrium state in
which energy is constantly supplied to the system by the
dc bias and dissipated in the resistance. Because the 1

state is not an equilibrium state, the classical analysis of
Kramers for thermally induced escape is not applicable.
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In recent years, however, escape from the 1 state has
been studied by several authors using a variety of
methods appropriate to nonequilibrium systems.
In this section we apply the principle of minimum avail-
able noise energy to determine the activation energy for
escape from the 1 state. Our results are compared with
both Monte Carlo simulations and previous calculations.

The variational approach to finding the most probable
escape trajectory proceeds for the 1 state as for the 0
state by seeking solutions of Eq. (24). In this case the ini-
tial condition is that the trajectory begins at a point on
the periodic attractor rather than the fixed point. As for
escape from the 0 state, the trajectory must end at the
saddle point. Because the natural response of the system
in the neighborhood of the periodic attractor is not oscil-
latory, as was shown in Sec. II, we anticipate that the
minimizing trajectory will connect the attractor and the
saddle point nearly directly. This expectation proves to
be justified and eliminates the need to explore a class of
oscillatory solutions as in the case of the 0 state. Howev-
er, one additional search strategy does appear to be re-
quired for the 1 state. The problem is related to the re-
laxation of the trajectory toward a minimizing solution as
the escape time t, is extended. This relaxation proves to
be incomplete if solutions are always obtained by search-
ing for values of (ti(0) and $(0) which yield the correct
values of P(t, ) and P(t, ). An alternative is to integrate
Eq. (24) backward in time from t, to 0, beginning the in-

tegration with values of P(t, ) and P(t, ) specified by the
boundary condition and values of P(t, i

and P(t, ) chosen
by trial and error. In this case, a solution is obtained
when the selected values of P(t, ) and P(t, ) yield an initial
state [$(0),P(0)] falling on the periodic attractor. Ex-
tending t, by forward integration allows greater flexibility
in the form of the trajectory near the saddle point while
backward integration allows greater flexibility near the
attractor. Using a combination of both procedures yields
apparently complete relaxation to the minimizing trajec-
tory.

An example of an escape trajectory for the 1 state that
was obtained by solving Eq. (24) is shown in Fig. 11 for
the case p=25 and in=0 5. F.or this trajectory the es-

cape time is t, =100 and the required available noise en-

ergy, cN ——0.81, is thought to be nearly minimal. Thus,
the trajectory shown in Fig. 11 is expected to be close to
the most probable escape path. If the problem were that
of escape from a potential well, the most probable escape
path would coincide with the time reversal of the outset
trajectory connecting the saddle point with the attractor.
This outset trajectory is shown for the case at hand in
Fig. 4(b). Comparison of the two figures reveals that the
most probable escape trajectory is entirely different from
the reverse outset trajectory. Although the two trajec-
tories are similar in shape near the attractor, the reverse
outset Rows in a direction opposite to the most probable
escape path. In fact, the reverse outset trajectory re-
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FIG. 11. State-space diagram of an escape trajectory for the
1 state obtained by solving Eq. (24) for @=25, i0=0.5, and
t, =100. The escape trajectory is shown by a solid line and the
periodic trajectory corresponding to the 1 state is shown by a
dashed line. The crosshatched region is the basin of attraction
of the 0 state.

FIG. 12. State-space diagram of Monte Carlo escape trajec-
tories for the 1 state. Five trajectories are shown for the case
P=25, io ——0.5, and I =0.08. Each trajectory is plotted over an
interval of 190 time units spanning the time at which escape oc-
curred. The crosshatched region is the basin of attraction of the
0 state.
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quires infinite available noise energy for its execution be-
cause it follows the attractor in reverse for an infinite
time. Thus, when the attractor is a limit cycle rather
than a fixed point, escape paths which approximate the
reverse relaxation trajectory are extremely unlikely.

Monte Carlo simulations confirm that the escape path
shown in Fig. 11 is close to the most probable path. Five
Monte Carlo escape paths are plotted in Fig. 12 for a
temperature at which I /c„=0.1. As in the case of es-

cape from the 0 state, agreement between the Monte Car-
lo paths and the path of minimum c.z is most apparent
near the saddle point. All five of the Monte Carlo trajec-
tories approach the basin boundary at the same shallow
angle as the path shown in Fig. 11 and cross the bound-
ary near the saddle point. Thus, the variational pro-
cedure yields an approximation to the most probable es-
cape trajectory which is consistent with Monte Carlo
simulations.

The relationship between cz, cl, and cz for the most
probable escape path is also different for nonequilibrium
escape problems. In Sec. IV we showed that in the gen-
eral case cl —c.z &c.z but for the most probable escape
path in potential problems cl —c~ =cz and, more
specifically, sN ——ea ——El/2. For escape from the 1 state
in the case P=25 and io=0. 5, the energies associated
with the most probable path are c&=0.8, cl = —4, and
c.z ——~. In this case, the relation cl —c,z & c.z is satisfied
not by equality but by extreme inequality. Although a
small amount of energy, c.&=0.8, could be drawn from
the shunted noise source during the escape process, ener-

gy is actually absorbed by both the bare noise source,
cl = —4, and by the resistance, c.z ——(x). The absorption
of energy makes sense, given that the 1 state corresponds
to a particle moving down an incline at its terminal veloc-
ity, because the particle must be brought to a stop during
the escape process. The fact that c.l= —4 is thus a
reAection of the fact that the noise source acts as brake.
The fact that c,z ——~ is related to the fact that the
minimizing trajectory is one for which in the limit t, ~ ~
infinite time is spent initially in the neighborhood of the
periodic attractor. Because energy is constantly dissipat-
ed in the resistance during this initial dwell time, c„~~
as t, ~~. The important point here is that c.l and c~
have no simple relationship to c& for nonequilibrium
problems. Thus, in the general case, the activation ener-

gy is equal to the minimum value of c~ but unrelated to
the values of c.l and Ez for the minimizing trajectory.

The relevance of the available noise energy to thermal-
ly induced escape is in a sense surprising. On an intuitive
basis, we might anticipate that the most probable escape
path would be one that minimizes an actual energy
transfer, either the energy drawn from the bare noise
source c.l or that drawn from the shunted noise source
cl —c.z, rather than an energy that is merely potentially
available. In the case of escape from a potential well, the
most probable escape path does in fact minimize the en-
ergy drawn from the bare noise source as well as the
available noise energy. However, as the example above
illustrates, escape from an attractor of a nonequilibrium
system may require the removal of energy from the

noise-free system rather than the addition of energy. The
significance of the available noise energy to thermally in-
duced escape results because it is a measure of noise
strength that is independent of whether the noise adds to
or subtracts from the energy of the system.

The accuracy with which variational calculations
determine the activation energy for escape from the 1

state is confirmed by the data shown in Figs. 6 and 7.
These figures compare activation energies computed in
three ways: by variational methods which determine the
trajectory requiring the minimum eN (solid lines), by
direct Monte Carlo simulations (circles), and by an ap-
proximate analytic formula (dashed lines). The analytic
formula, due to Ben-Jacob et al. ,

(42)

is expected to be accurate in the limit of large P and small
io. This formula for e„yields values that are about 90%
of the variational result for P =25 (Fig. 6) and about 60%%uo

for P=4. These differences are consistent with the fact
that Eq. (42) is accurate only in the limit of large P.
However, because correction terms to the formula are of
unknown order, Eq. (42) provides no specific bound on
the accuracy of the variational results. Such a bound is
provided by the Monte Carlo simulations which agree
with the variational results within the assigned error lim-
its in almost every case. This agreement confirms the ac-
curacy of the variational method within about 10%.

A value for the activation energy for escape from the 1

state has been obtained numerically by Graham and Tel
using another method. These authors find an c„of14.7
for the case P=(0. 13) =59.2 and io=0. 83. Applying
the analytic formula (i;„=0.1648), Monte Carlo simula-
tions, and the variational method to this case, we obtain
values for c.~ of 13.1, 14.5+1.0, and 14.4, respectively.
For this high-P case, all four calculations are in basic
agreement, with a difference of only 2% between our
variational result and the value of Graham and Tel.

Application of the principle of minimum available
noise energy to the problem of thermally induced escape
from the 0 state and 1 state of the dc-biased Josephson
junction demonstrates that the principle can be used as a
basis for the practical computation of activation energies
and most probable escape trajectories. Although the
problem of escape from the 0 state is one that can be
solved analytically in the low-temperature limit, accurate
activation energies for the 1 state in the presence of
moderate damping were obtained here for the first time
by a method other than Monte Carlo simulation. Previ-
ous work" has demonstrated that the variational method
can be extended to more complex situations, including es-
cape from a chaotic attractor in a three-dimensional state
space. The simplicity and generality of calculations
based on the principle of minimum available noise energy
suggest that the method will prove valuable in estimating
the stability of steady-state solutions for a wide range of
nonequilibrium systems.
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