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Spatial evolution of the electron-energy distribution in the vicinity
of a discharge-tube constriction
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We report experimental and calculational results of the spatial evolution of the electron-energy
distribution function (EEDF) mean electron energy u, electric field E, and plasma density N„ in the
vicinity of a sharp constriction in a low-pressure mercury-rare-gas discharge. We explain many of
the features of the EEDF by noting the absence of equilibrium between the electrons and the elec-
tric field. Our one-dimensional model of the spatial evolution of the EEDF is in good agreement
with experimental results.

I. INTRODUCTION

Sudden changes in the electric field E of steady-state
electrical discharges are of intrinsic interest both from
the fundamental as well as the applied points of view. An
understanding of such phenomena may lead to the con-
trol and exploitation of such changes for technological
applications. '

A practical way to obtain sudden changes of the elec-
tric field is to use a sharp constriction of the discharge
tubes. The discharge which we describe in this paper is a
low-pressure collision-controlled discharge in the
Hg —rare-gas mixture, with a sharp constriction in the
form of an orifice [Fig. 1(a)].

Discharges with sharp changes in the diameter of the
tube [Fig. 1(b)] have been used over the years to study the
"double-layer" phenomenon. Double layers are essential-
ly the transition regions in a plasma composed of two ad-
jacent layers with opposite sign of the space charge.

Existence of a double layer in collisionless plasmas is
typically accompanied by such phenomena as trapped
particles, plasma-wave instabilities, and wave-particle in-
teraction. A great deal of work on double layers has been
done for collisionless plasmas with a single species, with
the emphasis on the aforementioned phenomena.

(b)

FIG. 1. Different kinds of discharge-tube constrictions.

Since the discharge we studied has a constriction, it has
formal similarity to constricted discharges used to gen-
erate double layers. However, significant differences ex-
ist. The discharge we studied is a collision-controlled
discharge in a mixture of mercury and a rare gas. This
discharge forms the basis of a fluorescent lamp and the
main energy-loss mechanism is radiation. Typically in
our experiments, the orifice diameter d, is on the order of
1 cm and the full length of the transition region near the
orifice is close to 3-4 cm. For the same conditions, the
Debye length is A,D -10 cm and the electron mean free
path is A,, =0. 1 cm (at PN, = 1 torr). These numbers
show that the plasma in the vicinity of the orifice has to
be quasineutral and collision controlled. Furthermore,
the electron-velocity distribution function is expected to
be close to spherically symmetric in velocity space. But
the gas pressure is not too high and so the electron-
energy relaxation length A,, is not much less than the
scale of the phenomenon. Thus the electrons are not in
equilibrium with the electric field. Since the discharge is
collision controlled, the specific plasma-wave phenomena
of double layers are suppressed. Therefore we believe the
transition region near the constriction may or may not
have the characteristics of a double layer, but this will
have no significant influence on the mechanism of the
discharge. We believe that the key to understanding the
constriction mechanism is that the constriction results in
the development of a sharp electron-accelerating poten-
tial drop. This leads to significant changes of the
electron-energy distribution function (EEDF) and the en-

ergy and ionization balances of the plasma compared to
conditions in a straight tube. These topics will be dis-
cussed further.

We have studied, both experimentally and by calcula-
tions, the EEDF, the potential distribution, and other
plasma parameters in the vicinity of the orifice. Prelimi-
nary results of this study have been reported in Refs. 7
and 8.

Probe measurements of the EEDF have also been done
by Anderson at the tube constriction [Fig. 1(b)] in the
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low-pressure mercury discharge. Existence of a strong
electric field in the vicinity of a constriction [Fig. 1(b)] in
the collisional discharge in helium has been recently stud-
ied by Ganguly and Garscadden using Stark spectrosco-
py.

While discharges with sharp changes in diameter of the
tube [Fig. 1(b)] have been studied over the years, we
are not aware of publications in which the discharge has
a sharp constriction both from the anode as well as
cathode side [Fig. 1(a)], much like a thin aperture used in

optics. In Secs. II and III we describe our probe mea-
surements of the EEDF and other parameters of the plas-
ma. In Sec. III we describe our experimental observa-
tions, their interpretation and implications, and our ini-
tial attempts to model this discharge. Mathematical de-
tails of our simplified discharge model are given in the
Appendix.

II. EXPERIMENTAL TECHNIQUE

We have measured the axial distribution of the plasma
parameters in the vicinity of the orifice of the partitioned
discharge using Langmuir probes. In our experiments
the energy spectrum of the electrons could differ consid-
erably from a Maxwellian one. This makes the concept
of electron temperature not valid and the traditional
Langmuir technique not applicable to obtain plasma pa-
rameters. We obtained plasma parameters such as plas-
ma density N, and mean electron energy u from experi-
mental data of the electron-energy distribution function
by calculating integrals of the EEDF as follows:

F(u)= 2

e S
2m V d I

eV=u .
d V

N, = f F(u)du, u = f uF(u)du .
0 N, 0

Here F ( u ) is the EEDF.
The EEDF was found from absolute measurement of

the second derivative of the probe current by the probe
voltage, d I~ /d V, using the Druyvesteyn formula,

it impossible to use lock-in amplifier techniques, since
that requires a considerable time for averaging. Another
way to obtain a second derivative of the probe current is
by differentiation of the probe current in the time
domain. In this case, for a probe voltage scanning linear-
ly in time, the second derivative of the probe current with
respect to time is proportional to the second derivative of
the probe current with respect to voltage. This method
has been used for EEDF measurements in high-density
plasmas where the frequency of the scanning voltage has
been chosen to be far greater than that of the plasma
noise spectra. ' Unfortunately, this method can be ap-
plied for quiescent plasmas only. For the measurement
of the second derivative in the noisy neon-mercury
discharge we used a plasma-noise-suppression circuit
with a second reference probe. This, in combination with
fast pulse measurement (r =0.5 ms), enabled us to ob-
tain a nondistorted EEDF with high resolution and dy-
namic range. ' The idea of noise suppression is to intro-
duce a noise signal of opposite phase into the probe mea-
surement circuit. '

In our experiment [see Fig. 2] we used a reference
probe P, which was placed in the same plane with a mea-
surement probe P2. The noise voltage, reference ground,
was picked up by the reference probe and was introduced
in an opposite phase to the cathode of the discharge by
means of a high-voltage high-frequency operational
amplifier OP2 (Apex Microtechnology Corp. PA84). The
same operational amplifier worked as the driver of the
scanning voltage. The latter was introduced into the pos-
itive input of OP2 by the 10-gain preamplifier OP,
(PA84). The OP& produced an output voltage which,
when applied to the cathode, made the plasma potential
in the vicinity of the probe equal to the input voltage of
OP& on its positive input minus a floating potential
difference of the reference probe P, . In the case when
scanning voltage was equal to zero, the OP& automatical-
ly kept the measurement probe P2 fioating (probe current
equal to zero). The appearance of any noise or dc volt-
ages between the cathode and the plasma potential near

Here S'is the probe surface area and Vis the probe sheath
voltage. The conventional way of obtaining the second
derivative is by electronic differentiation. ' This is typi-
cally done by applying a small rf voltage to the probe and
measuring some of the components of the probe current
which are proportional to its second derivative. Depend-
ing on the kind of applied rf voltage, this component of
the probe current could be measured as a second harmon-
ic, an envelope, or a beat frequency signal. ' In all these
cases, averaging with a lock-in amplifier with relatively
slow scanning of the probe voltage is used. A serious
problem with the slow probe-voltage scanning is a change
in the probe work function during the sweep time due to
probe heating by the probe current. " Fast pulse scan-
ning of the probe voltage for a time short enough to
maintain the probe temperature constant during the mea-
surement enables one to eliminate the effects of change in
the probe work function. ' However, using a fast sweep
of the probe voltage for a time less than, say, 1 ms, makes
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FIG. 2. Experimental setup for plasma probe measurements.

PS is the power supply and HS is the heater supply.
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the probes has been compensated for in the measurement
probe circuit due to deep negative feedback. The mea-
surement of the probe current-voltage characteristic (ac-
tually current-time characteristic) was performed as fol-
lows. A triangle waveform voltage from the Wavetek 193
generator was applied to the cathode of the discharge
through the OP& and OP2 amplifiers. This caused the
discharge as a whole to sweep at 20 V/MS with respect to
ground, which in turn provided a probe current Bow
through the grounded sensitive resistor R. The probe
current signal generated on the resistor R was fed into
the analogue filter-differentiator which generated the in-
stantaneous value of the second derivative. The cutoff
frequency of the filter differentiator was 20 kHz. The
second-derivative signal d Iz/dt was further applied to
the waveform analyzer (WFA) (Analogic, Data 6000)
working in compressed 12-bit analog-to-digital conver-
sion mode to perform the averaging. The averaged signal
of the second derivative was fed into the VAX 780 com-
puter which calculated the EEDF and its integrals: plas-
ma density N, and mean electron energy u. The absolute
plasma-potential values were measured by monitoring os-
cillograms of the second derivative and the scanning volt-
age. The plasma potential was found as the scanning-
voltage value corresponding to zero crossing at the
second-derivative oscillogram, taking into account the
time delay of the filter differentiator.

The plasma probe measurements were performed in a
discharge tube of 5.0 cm diameter having 1 torr Ne and
mercury vapor corresponding to 20 and 40'C. The mer-
cury pressure was controlled by the cold-spot tempera-
ture, while the entire discharge tube was maintained at a
slightly higher temperature. The two tungsten probes of
3 mm length and 0.05 mm of radius were placed in the
middle of the discharge tube close to its axis. Two mov-
able metal diaphragms with different orifice diameters
d, =1.25 and 2.5 cm were placed on both sides of the
probes. By changing the position of one diaphragm and
keeping the other far away from the probes we could
make measurements for different distances between probe
and orifice plane. Having cathodes on both ends of the
tube we could obtain results for both sides of the dia-
phragm, by changing the direction of the discharge
current.

E, =E, +E„, E„=J/o, E, = cV(u—N, )/eN, ,

where J, cr, and c are the current density, the plasma con-
ductivity, and a numerical coefficient, respectively. The
ambipolar component has the opposite sign to the resis-
tive one and prevails on the anode side.

This situation is typical for conditions when the elec-
tron diffusion current is greater than the total current.
The behavior of the plasma parameters in the transition
region on the anode side of the orifice bears a great
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The axial distributions of the plasma potential V, the
electron number density N„and the mean electron ener-

gy u are shown in Figs. 3—5 for orifice diameters 1.25 and
2.5 cm. A smaller orifice diameter results in a much
greater perturbation of the plasma parameters. As one
can see, the value of the axial electric field

~

E
~

=dV/dx, and N, and u reach their maximums
close to the orifice. The maximum value of E at the
orifice is five times higher than in the undistorted positive
column in the case of orifice diameter d, =1.25 cm. Ex-
istence of a sharp electron-accelerating voltage drop is
clearly visible on the cathode side of the orifice for this
case. This can be expected for the following reasons.
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FIG. 3. Distributions of plasma parameters as a function of
distance from the orifice y. Here PN, ——1 torr, cold-spot temper-
ature of Hg T, =40'C, discharge diameter D =5.0 cm, orifice
diameter d, = 1.25 cm, discharge current I=0.2 A.

Since the current density at the orifice has to be higher,
an increase of the electron number density and drift ve-
locity is required. To achieve this, the discharge develops
a strong electric field near the orifice. The strong electric
field increases the drift velocity and maintains a higher
plasma density by compressing the plasma and providing
an increase in the ionization. However, the increase of
plasma density is only about 3 times versus 16 times of
the current density. Apparently, this is due to a great in-
crease of the drift velocity. On the anode side, the plas-
ma gradually relaxes to the undistorted conditions of the
positive column. Note nonmonotonic behavior of the
plasma parameters in the transition region.

The electric field changes sign twice before it gets back
to the undistorted positive-column value. One can ob-
serve the region of the electron-decelerating electric field
on the anode side. This can be explained as follows. The
field in the vicinity of the orifice is the sum of two com-
ponents: the resistive component E„and the ambipolar
diffusion component E, . The total field and the com-
ponents E, and E, can be represented as follows:
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FIG. 4. Plasma density for two different orifice diameters d, . Here PN, ——1 torr, D =5.0 cm, T, =20'C, I=0.1 A.
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FIG. 5. Mean electron energy u for two different orifice diameters as a function of distance from the orifice y. Here PN, ——1 torr,
D=5.0cm, T, =20 C, I=0.1 A.
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resemblance to the negative glow region in the vicinity of
the cathode. ' This is due to the similarity in the physi-
cal phenomena in both cases.

Note, the EEDF at the orifice is greatly enriched by
fast electrons compared to the undistorted positive-
column conditions. This can be seen from our experi-
mental results of the EEDF shown in Figs. 6 and 7. Ap-
parently, this enables the discharge to maintain ioniza-
tion balance without further acceleration of electrons.
Such a situation is analogous to the negative glow where
ionization is produced by electrons accelerated by the
cathode voltage drop.

The evolution of the EEDF measured along the axis on
both sides of the orifice is shown in Figs. 6 and 7. One
can observe the gradual shift of the EEDF upwards along
the energy scale when approaching the orifice from the
cathode side. The shift is accompanied by the appearance
of the group of slow electrons. These tendencies are espe-
cially clear in the case of lower mercury pressure (Fig. 7).
Here, one can observe the EEDF with two distinct maxi-
ma. The opposite process of the EEDF relaxation takes
place on the anode side of the orifice. In the case of lower
mercury pressure one can see the second region of elec-
tron acceleration followed by relaxation.

Note the absence of the direct correlation between the
electric Geld and the mean electron energy. The mean
electron energy remains comparable to its maximum
value even at the points where E =0. This, as well as
many observed features of the EEDF, can be explained

by effects of nonequilibrium between electrons and the
electric field. Nonequilibrium can be expected at our
conditions.

The dominant mechanism of the electron energy loss at
our conditions appears to be the inelastic collisions with
mercury atoms. The energy relaxation length in that case
can be estimated as

A,,= 1 /(3NNHsq, q*)'

Here N, NH are the number densities of the rare gas and
mercury, and q„q* the momentum-transfer cross section
and inelastic cross section of mercury, respectively.

For typical conditions P =1 torr, PHz ——6 pm, the en-

ergy relaxation length is about A.,=1.5 cm. This is about
equal to the length of the potential-drop region defined as
d (see Fig. 8). Note, also, electrons with energy less than
the first excitation potential u& -5 V, can travel without
loss of energy until they are accelerated up to energy
u = u &. This effectively increases the length of the energy
relaxation. Thus there can be a significant nonequilibri-
um. At nonequilibrium conditions, in an accelerating
field, the EEDF at the point y can be qualitatively visual-
ized as composed of two electron groups. The higher-
energy group corresponds to the initial elect;rons at
y = —d, which arrive to the point y without an energy
loss. If Fo(y) is the EEDF at y = —d, then the contribu-
tion of these electrons can be described as the energy-
shifted distribution Fo(u+(y+d)E). The lower-energy
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FIG. 6. Spatial evolution of the EEDF along the discharge (the numbers inside each rectangular box indicate the distance in cen-
timeters from the orifice). Here PN, ——1 torr, T, =40 C, D =5.0 cm, d, =1.25 cm, I=0.2 A. The EEDF is expressed in units of 10'
eV ' cm'.
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FIG. 7. Spatial evolution of the EEDF along the discharge (the numbers inside each rectangular box denote the distance from the
orifice in centimeters. Here PN, ——1 torr, T, =20'C, D =5.0 cm, d, =1.25 crn, I=0. 1 A. The EEDF is expressed in units of 10'
eV ' cm'.

group appears as a result of energy losses on the way to
the point y. This picture appears to be in qualitative
agreement with the experimental data of the EEDF on
the cathode side of the orifice. To account for a fast re-
laxation of the EEDF in the region of the weak electron-
decelerating field on the anode side, one has to consider
both effects of collisions and energy-dependent electron
diffusion.

The effect of the downward energy shift is also possi-
ble. However, the total decelerating potential drop is
close to 6V= —0.5 V, whereas the mean electron energy
at the orifice is close to u =4 eV. Therefore the down-
ward shift is probably not very important.

The concept of the energy-shifted distribution has been
used by Anderson to interpret his probe data of the
EEDF at the tube constriction of the shape shown in Fig.
1(b). However, the treatment used by Anderson is applic-
able quantitatively only at collisionless conditions. Nu-
merical calculations of the EEDF without a prior as-
sumption of the electron-field equilibrium have been per-
formed in Refs. 17-23. However, these results cannot be
directly applied to our case due to differences in the gas
medium, electric field shape, etc. The situation studied
by Moratz, Pitchford, and Bardsley bears the closest
resemblance to our case. The shape of increasing electric
field considered in this work is qualitatively close to the
shape in our work on the cathode side of the orifice. The
qualitative behavior of the EEDF and mean electron en-
ergy observed in Ref. 23 appear to be close to our obser-
vations. Nevertheless, these results cannot be directly
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FIG. 8. Simplified one-dimensional profile of the electric field

in the vicinity of the orifice. This is the profile used in the cal-
culations. (See text for definition ofy .)

compared to our results, since they were obtained for ni-
trogen and much greater values of EiN. Therefore we
have developed a simplified theoretical model which per-
mits us to obtain an analytical expression of the EEDF
for our nonequilibrium conditions. Basic assumptions of
the model were as follows.
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We have used a simplified one-dimensional profile of
the electric field. The following two spatial regions have
been considered in the vicinity of the orifice. This is
shown in Fig. 8.

(1) The region of the potential drop in front of the
orifice on the cathode side. The electric field in this re-
gion has been approximated by the constant value E.
The value of E and the length of this region d have been
taken from the experimental data.

(2) The region on the anode side of the orifice, up to the
point where the electric field begins to rise again. The
length of this region has been denoted as y . In this re-

gion, we have neglected a relatively small variation of the
potential and treated this region as a quasiequipotential
one, setting E =0.

We have assumed the only mechanism of energy loss to
be inelastic collisions with mercury atoms and neglected
the influence of the generation of new electrons on the
shape of the EEDF. For simplicity's sake, we have con-
sidered only one value of the inelastic energy loss u

&

——5

eV. This value is very close to the average value of the
excitation potential for the first excited states of mercury
6 P0, q and 6'P.

The electron-velocity distribution function f (v, x) has
been represented in the usual approximate form,

Ux

f(v, x)=fo(u, x)+ f, (v, x) .

Here U is the electron velocity and x is the spatial coordi-
nate. x =0 corresponds to the beginning of the electron-
accelerating voltage drop on the cathode side of the
orifice; notice that x =y+d. The EEDF can be ex-
pressed as

F(u, x)=&u fo(u, x) .

The functions fo and f, satisfy the system of equations
which follows from the Boltzmann equation and is well
described in the literature.

Using the assumptions of our model, one can solve
these equations analytically and derive the expressions
for fo and f, applicable to nonequilibrium conditions.
The equations, their mathematical treatment, and the ex-
pressions for fo and f ~

are described in detail in the Ap-
pendix. Here we proceed to the discussion of the results
and their comparison to the experimental data.

For the case of mercury at a pressure PHs ——6 pm (the
cold-spot temperature T, =40'(C), calculations have been
performed with d =1.25 cm, Y =1.5 cm, the undistort-
ed positive-column field E0 =0.6 V/crn, and the
potential-drop field E =2.8 V/crn.

Since measurement of the potential has not been done
for mercury pressure PH ——1.2 pm E,'the cold-spot tem-
perature T, =20 '(C), the estimated values E =3 V/cm,
and d =1.25 cm have been used. The value of E0 has
been calculated with our model of the positive column to
be equal to E0=0.7 V/cm. Calculated values of the
mean electron energy for PH ——6 pm are shown in Fig. 9.

Note that the mean energy as well as other parameters
calculated with our model are discontinuous at the posi-
tion of the orifice. This discontinuity is due to the
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FIG. 9. Calculated and measured mean electron energy u as
a function of distance from the orifice y. Here d, =1.25 cm,
T, =40'C, I =0.2 A.

where J is the current density. The value of a* gives the
average number of inelastic collisions per unit length.
The value P (x),

P(x) =exp —f a"(z)dz
0

gives the probability for electrons to travel a distance x
without undergoing any inelastic collisions. Calculated
values of a* are given in Fig. 10 for the case PH ——6 pm.

The area Sd underneath the curve a'(x) between x =0
and d gives the number of inelastic collisions which an
electron undergoes when passing through the potential-
drop region. In our case, for PH ——6 pm, this is equal to
Sd ——0.33. Since the ratio u, Sd/Ed =0.49, then about
50% of the energy which an electron gains in the region
of potential drop is carried forward to the quasiequipo-
tential region. This signifies a considerable deviation
from the electron-field equilibrium. Note, this implies
that the regions of energy gain and energy loss are
separated in space. This feature is a substantial deviation
from the conventional positive-column discharge where
energy deposition and energy dissipation always go hand
in hand.

The total number of inelastic collisions per electron
from the beginning of the potential drop to the end of the
quasiequipotential region is equal to S, =0.69. Note, the

discontinuous approximation of the electric field. How-
ever, this discontinuity appears to be a reasonable ap-
proximation to reality, since experimental values decrease
sharply beyond the orifice. Calculated and experimental
mean energies agree within 10%%uo. This agreement is
beyond expectations, since our model does not take into
account effects of the radial compression and expansion
of the plasma in the vicinity of the orifice.

The nonequilibrium effects can be demonstrated by cal-
culating the inelastic collision coefficient

1/2
2ea"(x)=
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FIG. 10. Calculated inelastic collision coeScient, a, as a
function of distance from the orifice y. Here d, =1.25 cm,
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FIG. 11. Calculated and measured relative EEDF for
y = —0. 1 cm (i.e., on the cathode side of the orifice). Here
d, =1.25 cm, T, =40'C, PNe ——1 torr.

ionization cross section is included in the inelastic cross
section q*, so the value S, includes the contribution of
the direct ionization. However, since the ionization po-
tential of mercury u; =10.4 V and fp(Q x) &&fp(Q] x),
then the number of direct ionizations is S, «S, & 1.

The two-step ionization via mercury metastables is
probably more important. The number of two-step ion-
izations can be estimated as

N
S; SE

Hg

where N is the metastable number density. Since the
ratio N /NH is expected to be much less than unity,
then S;*« 1. Thus, the number of new electrons generat-
ed per one electron is expected to be much less than uni-

ty. This justifies our neglect of the appearance of new
electrons in the kinetic equation. Calculated and experi-
mental values of the EEDF normalized to the equal areas
are compared in Figs. 11—13, PH ——6 and 1.2 pm.

The calculated EEDF on the cathode side of the orifice
shows the same tendency to be shifted upward as the
electrons approach the orifice. However, this tendency
appears to be exaggerated as compared to experiment.
Also, the distinction between the higher- and lower-
energy electron groups is less prominent for the experi-
mental EEDF than for the calculational one. %e believe
these differences are due to the three-dimensional struc-
ture of the potential drop and the plasma compression
effects not taken into account in our theoretical model.
An interesting phenomenon is the rapid change of the ex-
perimental EEDF shape within the distance 0.1 —0.2 cm
on the anode side of the orifice. Note that this distance is
significantly shorter than the distance of the energy relax-
ation due to inelastic collisions, A, %'e believe that this
phenomenon is due to a rapid decrease of the electric
field combined with a much slower diffusion of lower-
energy electrons. Since electrons pumped in from the
cathode side have to be taken away by diffusion, this re-
sults in the accumulation of lower-energy electrons on
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FIG. 12. Calculated and measured relative EEDF for y =0.1

cm (i.e., on the anode side of the orifice). Here d, =1.25 cm,
T, =40 C, PN, ——1 torr.

the anode side. The effect can be further amplified by the
existence of the electron-decelerating field on the anode
side.

The rapid change of the EEDF on the anode side is
simulated qualitatively by our model. The quantitative
differences can be ascribed to the plasma expansion on
the anode side and the smoothing effect of the electron-
electron interaction. Note, although the electron-
electron interaction appears to be weak in general for our
conditions, its effect can be greatly amplified when the
EEDF varies rapidly, since the electron-electron interac-
tion depends on the magnitude of the derivatives of the
EEDF with respect to energy.
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uf, ~} Euf,
Bx 3N Bu 3N

+
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Electron Energy, u (eV)

FIG. 13. Calculated and measured EEDF for y = —0. 1 cm
(on the cathode side). Here d, =1.25 cm, T, =20'C, P&, ——-1
torr.

=[(u +u, )q*(u +u, }f0(u +u, )

—uq*(u) fo(u)]NHs,
(A2)

af, af,
Bx Bu

+E = Nq—f, .

The function f0 has been normalized as

f &u fodu =N, (x),
0

where N, (x) is the electron number density. Here q' is
the total inelastic cross section of mercury; q, is the
momentum-transfer cross section; N, NH are the total
and mercury atom number density, respectively; E is the
electric field intensity; and u =mv /2e is the electron ki-
netic energy in volts.

1. The region in front of the ori6ce

We introduce new variables

In summary, we report studies of plasma parameters in
a collisional low-pressure Hg —rare-gas discharge where
the EEDF and E are not in equilibrium. The basic
features of the EEDF observed in our experiments can be
correlated with the shape of the electric field if the
electron-field nonequilibrium effects are taken into ac-
count.

We have demonstrated that this phenomenon offers a
simple way of controlling the EEDF. Furthermore, we
demonstrate that this sharp constriction offers a con-
venient way of separating the energy input and energy
dissipation mechanisms in the discharge. We have stud-
ied discharge parameters such as plasma density, electric
field, electron mean energy, and EEDF, as well as their
spatial evolution.

Our simplified theoretical model accounts for many ob-
served features of the EEDF qualitatively. A more quan-
titative agreement can be expected if a realistic three-
dimensional geometry and the electron-electron interac-
tion are taken into account. However, this appears to
represent a formidable numerical task.
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w =u, c=u —Ex . (A3)

The variable c is the sum of kinetic and potential energies
of the electron. The variable w is equal numerically to
the kinetic energy, but any derivatives or integrals with
respect to w will mean that the operation is conducted at
the fixed value of s. With variables (A3), the system (A2)
can be rewritten as

a waf
Bw q, Bw

3NNH
[(w+u, )q*(w+u, )fo(w+u„e+u, )E2

—wq'(w}fo(w, e)],
E ~}f0

Nq, Bw

(A4)

We restrict ourselves to conditions when

The inelastic cross section of mercury is equal to zero for
u & 4.7 V, so one can approximate the function q (w) as
q*=O for w & u~ ——5 V. We consider further the follow-
ing two energy domains.

(i) w &u, .
(ii) w )u, .

APPENDIX fo(u +ui, x) « fo(u, x) . (A5)

Uxf (v, x)=f0(v, x)+ f, (v, x),
U

then equations for fo and f, obtain the form

(Al)

We use in the following all the assumptions of our
simplified one-dimensional model described in Sec. III.

If the electron-velocity distribution function f (v, x) is
represented in the usual form

Accepting condition (A5), we are restricted to not too
large values of the parameters E /3NNHg and Ed. The
requirement (A5) is well satisfied at the conditions of our
experiments. Note that the above restriction on the value
of E does not imply that electrons are close to equilibri-
um with the electric field.

Thus, neglecting the small term proportional to
fo(w+u, , s+u, ), Eq. (A4) can be reduced to
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a w ~fo
Bw q, Bw

3NNH

E2 wq*(w)fo(w)=0 . (A6) 1 2eJ= —
3

' 1/2
E ule (ul }

B2 + f C, (e)du
q, u, o

The required solution of Eq. (A6) can be represented in
the form

fo(w, s) =C,(s)P(w), (A7)

where Cz(s) is an arbitrary function of the full energy.
The function P(w) is a particular solution of Eq. (A6)
satisfying the following conditions: P(w)~0 if w~ao
and P(u1) = l.

In the domain (i), one can obtain from Eqs. (A4) and
(A7) the following expression for fo ( w, e ):

u1$'(u1)
C, (e)= @(e),

q, (u, )
(A14)

and the function 4(e) is continued periodically in the re-
gion of c &0 according to the rule

u1/p (u1)
+ f 4(e }du . (A13)

q u,

The analysis of the formula (A13) shows the flux does not
depend on the coordinate x if

~, q, (w)
fo(w, e)=Co(E) —C1(e)fw W

4(s)=4(2u, +e) . (A15)

ul q, (w)
+Cz(s+u, )f I(w+u, ) dw .

W w
(AS)

3NNH
I(w)= f wq'(w)P(w)dw .

E2 ul
(A9)

Here Co(e) and C1(e) are arbitrary functions of the full

energy, and the functions I (w) is defined as
(A16)

or

As the boundary condition at x =0 we use the condition
for the energy distribution of the electron flux density to
be equal to a given function jf(u).

This boundary condition can be written as
1/2

uf, (u, 0)=jf(u)
1 2e

Note a useful formula, as will be clearer later on, result-
ing from Eq. (A6), is

1 2e
3 m

E „Bfo(u,0) =j (u) .
Xq, Bw

(A17)

P'(w) —P'(u1)=I(w} .
q, w q, u1

(A10)

The formulas (A7}—(A9) give the general form of the
function fo(w, x), depending on the choice of the func-
tions Co(s), C1(s),Cz(s). The case C, (e)=0, Co
=C2 ——const corresponds to the spatially uniform solu-
tion when electrons are in equilibrium with the electric
field.

In our case the functions CO, C, , C2 are determined by
the boundary condition at x =0, the condition of con-
tinuity offo with respect to variables u and x, and by the
condition of the electron flux conservation. The condi-
tion of continuity requires Co(e)=Cz(s). The electron
flux density for the function fo given by Eqs. (A7) and
(AS) is equal to

' 1/2

We represent the function jf ( u ) as
' 1/2

j (u)= — ——g(u) .
1 2e Eu
3 m N q,

(A18)

Equations (A17) and (A18) result in the following expres-
sion for the function 4(s):

1f(e)@(s)=—, —Bz for ey u, ,P'(e)

q, (u, ) g(s+u, )
4(s)=—, , I(a+u, )+ P(e)

u1 u1 s+u1 qg(K)

(A19)

for 0(e&u, . (A20)

For a&0 the function 4 is defined by Eq. (A15). The
continuity of fo with respect to the variable e is obtained
by setting

1 2eJ= —
3 f C, (e)du B2 ———1f (2u, )/p'(2u, )

+2q, (u, )g(2u, )/q, (2u, )g'(u, ) . (A21)
Ql

C2(s+u1)I(u +u1)du

+ —'
u C2 c. du

Ql q
(A 1 1)

For reasons that will be clearer later, we represent the
function C2(s) as

In our particular calculations, we have used as the func-
tion jf(u) the energy distribution of the electron flux den-

sity corresponding to the function fo in the uniform posi-
tive column. This function is given by Eqs. (A7) —(A9)
with C1(s)=0, Co(e)=C2(s)=const=Bo, and E =Eo,
where Eo is the electric field far away from the orifice. In
that case

C~(s) =N(s)+B~, (A12) Eo
P(u)= — Bogo(u) for u ) u, ,

where 4(s) is a function of s and B2 is a constant. Using
Eqs. (A5), (A10), and (A12), the formula (Al 1) can be re-
duced to the formula

P(u) = Eo q, (u)
Io(u+u, }Bo for u &u, ,E u

(A22}
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where the functions E}EEO(Q ) and Io(u } have the same mean-

ing as the functions P(u) and I(u), but for E =Eo. Calcu-
lations have been performed with the momentum-transfer
cross section in neon approximated by the empirical for-
mula

qt(D)=5. 35Q' /[1+(9/40)' ] . (A23)

2. The region beyond the orifice

The equations for the functions fo and f, in this re-
gion can be obtained from Eqs. (A2) by setting E =0.

Considering again the condition (A5), one can obtain
the general expression for the function fo in the follow-

ing forms. For u &u&,

fo(u, x) = Az(u) exp[ —y/a (u)] .

For u &u&,

fo(u, x) = —A, (u)y+ Az(u +u, )F (u)

(A24)

As the total inelastic cross section of mercury q' we have
used the value derived from the literature data and our
modeling of the uniform positive-column plasma. The
function q*(u) is shown in Fig. 14. The functions P(u)
and Po(u) have been obtained by numerical solution of
Eq. (A6).

ufof, (u, x)=-
Nq, Bx

(A27)

1 2eJ=
3N m

—A 1(Q)du,
O q,

(A28)

which does not depend on x. Thus the condition of the
flux conservation is always satisfied. As the boundary
condition at the orifice (y =0), we use again the condi-
tion (A16) for the distribution of the electron fiux density
which takes the form

' ]/2
1 2e

3 m
uf, (u, O) =jf(u), (A29)

where f, (u, O) is given by Eqs. (A24) —(A27). The func-
tion jf ( u ) has to be taken now as

' 1/2
E u E)fo(u, d)

Nq, Bw

1 2e
jf(u) = —— (A30)

where E}fo/E)w has to be calculated using the expression
for fo in the region in front of the orifice. This results in
the expressions

Calculation of the electron flux density results in the ex-
pression

1/2

y [1—exp[ —a(u+u, )y]] A2(u) = E[4(e—d )+B&]P'(u)/a(u),
(A31)

+AD(u) .

Here y is the distance from the orifice, and

(A25)
u, E}EE'(u, ) q, (u)

A, (u)= E—[4 ( e)d+4( e+du)+B ]2
q, (u, ) u

a(u)=[3NN„q'(u)q, (u)]' ',
q, (u)(u +u, )

p
q, (u +u, )u

(A26}

30

Functions Ao(u), A, (u), Az(u) are arbitrary functions of
the electron kinetic energy.

The function f, ( u, x ) is equal to

where c,d ——u —Fd.
The function fo cannot be made continuous at u =u1

for any value of x. This is due to the fact that effects of
electron-electron interaction or nonzero electric field
have not been considered. In that case there is no mecha-
nisrn which can transfer electrons from the energy
domain u & u

&
to the energy domain u & u &, and the dis-

tribution function for u & u
&

changes independently of
the distribution function for u & u &.

In this situation, the function Ao(u) can be determined
by requiring fo to be positive in the quasiequipotential
region beyond the orifice. That gives

Ao(u)= A, (u}y (A32)
C0

~&
4i
4J

M 20

0-
uE
gJ

~M

ea +
10

4P
C

C4

0

10

Electron Energy, u (eV)

FIG. 14. Total inelastic cross section of Hg, q in cm

15

where y is the length of the quasiequipotential region.
The function fo which we have obtained diverges to

infinity at u ~0. This is due to the fact that the energy-
dependent electron diffusion coefficient goes to zero as

&u /q, (Q)~0 .

This results in the unrestricted accumulation of electrons
at u~0. Actually, if the diffusion term in the kinetic
equation goes to zero, then electron-electron interaction
will take over for small enough energies and restrict the
accumulation. We have made a rough estimate of energy
uo at which the electron interaction term becomes equal
to the diffusion term.

This has to give uo (in volts)
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u =(0.6)&10 ' X,py ) (A33)

where N, is the electron number density in cm and p is
the pressure in torr, and y is expressed in cm. Accord-
ingly, the singularity in the EEDF has been regularized
by assuming fp(u)=f (up) for u (up.

Note, this procedure has been applied only for plotting
the EEDF. All calculations of the electron number den-
sity, average energy, etc. have been performed before the
regularization. The regularization practically does not
change any calculational values.
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