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The quantum analysis of the inhuence of a beam splitter on photodetection statistics is discussed.

The link between second-order correlation functions and various experimental quantities obtained

in photon counting and spectrum analysis is clarified. The introduction of a "vacuum field" is inter-

preted as a mathematical transformation between two sets of creation-annihilation operators, which

can be used as a mathematical device for simplifying the calculations. However, its physical inter-

pretation as a real field is shown to be potentially confusing. The present theoretical approach is

used in the interpretation and the analysis of heterodyning experiments of a squeezed signal with a

much stronger local oscillator in a coherent state.

I. INTRODUCTION

Quantum states of light (i.e., states whose properties
are not explainable in classical terms') had already been
produced experimentally in the 1970s. ' However,
strong ones (i.e., states with a large number of photons)
have been produced only recently. The experimental
creation and detection of such light implies that beams of
nonclassical light are now available. This in turn calls for
a careful quantum analysis of the basic components of the
optical systems producing, transmitting, and detecting
these states. Here we address the issue of the quantum
analysis of the infiuence of a beam splitter (BS) on photon
statistics.

This issue was first addressed by Aharonov et al. To
correspond to the splitting of the beam, they introduced
the splitting of the operators into two parts in a way that
conserves the commutation relations (CR's). This ap-
proach gives a clear physical picture of the process as the
splitting of one state into two parts, between which exist
quantum correlations (except for a coherent state for
which the two parts are completely uncorrelated ). As
the calculations of the correlations between the two parts
are quite cumbersome, one can follow a different ap-
proach which has been given recently by Yuen and his
colleagues. The new approach introduces the concept of
an additional "vacuum field" at the beam splitter. This
method is useful as a mathematical device for simplifying
the calculations, but its physical interpretation is more
delicate. A proper use of this vacuum field by following
the correct quantum description of the beam splitter, as
presented very recently by Prasad, Scully, and Mar-
tienssen, gives the same results as those obtained by the
method of Aharonov et al. However, by taking this
vacuum field as a real field, many investigators consider it
as the source of the noise and thus misinterpret the phe-
nomena of homodyne and heterodyne detection.

The quantum characteristics of the BS appear explicit-
ly only when one considers quantum light, as it not only
splits the light beam into two, but also changes the pho-

ton statistics in each beam with respect to the initial ones.
The simplest way to investigate these changes is by means
of the second-order correlation function of the field. '

This function also has the advantage of being directly
linked to experimental quantities. A quantum analysis of
a BS was given very recently by Ou et al. ' and also by
Fearn and Loudon. " Our approach, linking all quanti-
ties to the second-order correlation function, has the ad-
vantage of being applicable to any kind of state. We also
emphasize the physical meaning of the splitting and its
relationship to the "vacuum noise. "

In Sec. II we review the theory of photon counting and
the photocurrent spectrum and find that all experimental
quantities related to the observations of quantum light
are directly expressed in terms of the various second-
order correlation functions at different space-time points.

In Sec. III we deal with the quantum analysis of a
beam splitter. We follow here the approach presented re-
cently by Prasad et al. They have analyzed the mixing
of two modes of the electromagnetic (e.m. ) field entering
the beam splitter from its two sides for the special case of
two modes with the same frequency, the same polariza-
tion, and exactly at the same angle of incidence. Howev-
er, their approach is quite general and can be used also
for other cases. By considering the case where one of the
modes is in the vacuum state (before entering the beam
splitter) we see that the analysis is related to the ap-
proaches of Aharonov et al. and Yuen and co-workers.
When we mix two beams, which are not at the same in-
cidence angle, we can still follow their approach by using
four modes [Fig. 1(c)]. The special case of exactly the
same incidence angle can then be obtained by going to
the limit of a pair of beams of equal k, as is usually done
in interference experiments. In any case, as soon as we
use two beams of different frequencies (heterodyning), we
have no other choice but to use four modes.

In Sec. IV, we present some applications and, in partic-
ular, we analyze heterodyne detection. We use this
analysis for the interpretation of recent experiments on
squeezed states.
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II. PHOTODETECTION OF QUANTUM LIGHT

A. Photon counting

The theory of photon counting is well known. We as-

sume a photoinultiplier (PM) orthogonal to a monodirec-
tional, stationary beam. The global multicoincidence rate
is defined in a standard way,

w'"'(t, , . . . , t„)=(PA)"Tr[pE( '(x(), t, ) . E' '(x(), t„)E'+'(x(),t„) . E'+'(x(), ti )],

E(r, t)=i g 1

2e0V

1/2

[ttk(r)e ak —c c ] . (2)

This electric field differs from the usual one by the drop
of the factor (A'tok )'~ in the summation. V is the adopted
volume of quantization. Since the detector responds to
photon flux, the counting rate w'"(ti ) should be propor-
tional to the photon flux across surface A. We denote by
( n ) the average number of photons in our quantization
volume Vand get

where I)} is the efficiency of the detector and includes nor-
malization and geometrical factors, A is the effective
cross section of the beam, and x0 is the position of the
center of the beam.

Following Shapiro and Wagner, ' we assume that the
photodetector responds to photon flux, and we therefore
use a modified "electric field, "' also called a detection
operator, '

(2)( )
w (t&t+r)

w (t)w (t +r)
(7)

The first term is the standard quantum limit (SQL), i.e.,
the noise of measurement of a coherent state, for which
g' '(r) is equal to unity for all r. The second one is al-
ways positive for classical light, so that the noise is larger
than SQL (bunched light). It can become negative for
quantum light, for which photons can be antibunched.

This formula (6) follows directly from the principles of
photon counting and can be easily derived from any of
the more well-known formulas. ' ' The main advantage
of (6) is that it directly shows the relation between experi-
mental quantities (b,m )r and (rn )T and the second-
order correlation function of the field. For short count-
ing times (T && T, ) we can consider g' '(r) as constant
and get

(bm ) r ——(m ) r+ (m ) T[g' )(0)—1] .

w (ti}=aA(i) (n )c
V

(3}
B. Photocurrent spectrum

where a is the dimensionless quantum efficiency of the
detector, i.e., the ratio between the flux of photons and
the counting rate. Comparing (1) and (3) we find that
13=2eoca We now tu. rn to photon-counting experiments.
The factorial moments of the counts are then'

(m(m —1) (m n+1—))r
= f f dt, dt„w'"'(t„. . . , t„) . (4)

It is straightforward to derive the expressions for the
number of counts

where T, —= V/Ac is a characteristic time of the light un-

der investigation that we recently interpreted as the
coherence time. ' The variance is then

(hm') T =(m ) T

(6)

where g' '(r} is the second-order normalized correlation
function,

C(r)—=—f S(t)S(t+r)dt .
T

T 0
(10)

By using a procedure similar to that of Ou et al. ,
' we get

the average value of C(r),

G 7(C(r)) = f w'"(t)dt 5(r)
T . 0

e2G2 .
T+ f w' '(t, t+r)dt

0

We now suppose stationary light and use (3) and (7) to get

We follow here the approach given in the article of
Kelley and Kleiner, ' and define the random function
representing the output of the photomultiplier by

S(t)= g eG5(t t, )y, , — (9)
i=0

where the measurement time T is divided into N intervals
t&, . . . , t~ and N is chosen large enough to prevent two
photoelectrons to be emitted at the same time; y; is a ran-
dom variable in the interval [t, , t, +1];y; =1 if there is
count, y; =0, if not; and eG5(t t; ) represents the int—en-

sity of the infinitely sharp pulse occurring when a detec-
tion takes place. (G is the gain of the PM. ) To get the
spectrum, we introduce the random variable correlation
function,
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&C(r)& =«&i &&(r)+&~'&'g'"(r), (12) the experimental quantities are directly linked to the
second-order correlation function.

where (i ) —=eGa(n )T, ' is the average intensity. To get
the intensity-fluctuation spectrum, we subtract (i ) and
Fourier transform Eq. (12),

N (co)= (i )+ (i ) f [g' '(r) —l]e ' 'dr,
2'jT 2'

(13)

where co is an arbitrary frequency fixed by the spectrum
analyzer. The first term corresponds once again to the
SQL and is a "white noise. " The second term, which can
be frequency dependent, is again positive for classical
light, and can be negative only for quantum light. We
have recently calculated this frequency dependence for a
homodyne experiment on a squeezed state. Once again One easily gets

X[ii(r +r) i2(t+—r)) )dt . (14)

C. Spatial correlations

One of the main advantages of the photocurrent spec-
trum is that it enables us, in a very simple way, to find the
spatial correlations. One simply has to put two detectors
at different places in the field and subtract the obtained
currents before sending it to the frequency analyzer. For
this case the correlation function becomes

(C(r) & = f—([i,(r) —i, (r)]

N'(co)=N, (co)+N2(r0) 2 — f [g' '(x„t;x,, t+r) l]e —' 'dr .2' (15)

The important point here is that we have shown that the
second-order correlation function is all we need for
analyzing all kinds of intensity correlation experiments.

III. QUANTUM ANALYSIS
OF THE INFLUENCE OF A BEAM SPLITTER

ON PHOTON STATISTICS

ages (i.e., measurable quantities) and we can therefore
make U to act on the measured operators (e.g., aka„).
Since the expression of these operators in terms of a's and
a 's is generally much simpler than the expression of the

We follow here the analysis given recently by Prasad
et al. They consider the beam splitter as a device for
mixing two different modes incident on a BS with the
same incidence angle. The effect of the beam splitter is
demonstrated in Fig. 1. While in Fig. 1(a) there is no
mixing between the modes k and K, the BS mixes these
two beams as demonstrated in Fig. 1(b). The action of
the BS is characterized by a unitary operator U acting on
the states. The exact expression for U depends on the
properties of the BS, and we shall treat a simple case (in
accordance with our previous article ) where all
transmission and reflection coefficients are real [case (a)
of Ref. 9]. The transmission and reflection coefficients S
and R are then defined by S=S(k)=S(E),
R =—R (k)= —R (K), and we do not include here the
dependence on polarization.

We now write the two basic equations of transforma-
tion,

(a}

k

BS '

K k

B ~S

/

j
K /

(b)

Uak U =ak S—aKR

Ua&U =azS+akR .
(16)

K

As mentioned by Prasad et al. , there are two possible
ways of considering the splitting. In the first one, we
consider that the operator U acts on the states, and mix
the two modes k and K. This approach gives the best
physical understanding of the process„especially if we
consider that only one mode (e.g., k) is initially excited.
However, the calculations are generally complicated. In
the second approach, we deal only with quantum aver-

(c)

FIG. 1. (a) Modes k and K with no mixing. (b) Mixing be-

tween modes k and K by a beam splitter (BS). The mode K (k)
incident on the BS produces a reflected mode, which coincides
with the transmitted mode k (K). (c) Modes k and k' with

difl'erent frequencies incident on the BS from its two sides pro-
duce four modes: the transmitted k and k' modes and the
reflected K and K' modes.



38 INFLUENCE OF A BEAM SPLI I IER ON PHOTON STATISTICS 207

states, the calculations are simplified accordingly. Let us
point out that the same analysis can be used for any de-
vice that separates a light beam into two. An example
would be a calcite crystal that splits the beam according
to the polarization of the photons. It is also correct for a
device that attenuates the beam in a random way. In this
case, we only have to consider that the photons in the
second inode (e.g., k) are later absorbed. In such cases,
there is no room for the introduction of a real vacuum
field entering through the unused side of the BS.

We now start with the first approach and suppose that
the field is in a coherent state

I
a &, with respect to mode

k, and that the mode K is not excited [Fig. 1(b)].
We write

and for the noise,

(b,Nk&=S R n,
where, for a pure number state, we should have

(5N'& =0 .

We get also for the second-order correlation function

1 Sg(2/(0)
n

whereas for a number state with S2n photons,

g(2/(0)
S n

(25)

(26)

(27)

(28)

I ~k & =D(ak ~}
I ok &—:exp(«k & ak }

I pk &

(19)

where D( aka) is the displacement operator creating a
coherent state when acting on the vacuum. By acting
with the BS, the state

I ak, px & transforms into

U lak, px&=[U D(ak, a)U]U l0k, pz& . (18)

But U lpk, px&= l0k, px&, i.e., the vacuum is not
changed and it is straightforward to show that

U D(ak, a}U=D(ak, Sa)D(ax, Ra),
I ak tr, r, (p&:D(ak t—2)S(ak r, (p)

I o/, &, (29)

so that the antibunched character of this light is de-
creased by the beam splitter. We therefore have the
straightforward physical interpretation of the process.
The number state is split into two correlated states. They
are not number states anymore but only a mixture of
various number states. Of course, the same approach can
be used for any kind of state, but the calculations are
then much more complicated. We introduce, for exam-
ple, squeezed states (SS) defined by

so that

U'I t2k, p, &= Isak &
I
Ra+& . (20)

where D ( aka } is the displacement operator defined in
(17) and

The coherent state is transformed into two independent
(direct product} coherent states, one in each mode. It has
been shown by Aharonov et al. that this is a unique
property of the coherent state, i.e., any other state would
be mixed into two correlated states. We can, for example,
analyze the number state case. So we write the initial
state as

I nk, px &. It is transformed into

t t (ak)"
„,U

I ok px & .
(n ()(/2

We get, by using the basic formula (16),
T

(21)

U
I
nk, px & = Q S/(R)"

p=0
I pk &

I
(n —p)x &

(22)

p = X S"(R)"" " lp &(p (23)

This state is not a direct product of a state in mode k and
a state in mode K, so that the two beams are now corre-
lated.

If we perform only experiments on one side (e.g., k) of
the BS, we need to describe the state by a density matrix
and perform a partial trace on the part related to K (cf.
Cohen-Tannoudji et al. '}. We get

S(ak, r, (p):exp[r(—ake '+ —ak e '+)] (30)

is the squeeze operator. To find explicitly the
transformed state, we need to calculate

00

US(ak, r, (p)U = g U(ake '~ —at e '")"U", (31)
0 n!

and this is quite complicated. We therefore turn to the
second method.

This method relies on the fact that we do not really
need to calculate how a state transforms. The only possi-
ble result of a measurement is always a quantum average,
so that the kind of terms we need to calculate are, for a
state

I Q &,

(Q I
UF(a/, a/, att, att )U

I Q & . (32)

Now, in general, the function F is expressed in terms of
a, a 's in a much simpler way than the state, so that we
may prefer to calculate the effect of U and U on the
operator F rather than on the state

I Q &. (This is de-
scribed by Prasad et al. as the Heisenberg approach. )

An interesting point appears here when one considers
only the splitting of one mode of the e.m. field incident on
the BS, e.g., k. In this case the state

I Q & is expressed
only in terms of creation operators ak. Therefore, as long
as the operator F(ak, ak, at(, att) is normal ordered, all the
contributions from the az, a~ are canceled.

If we write
This operator fully describes the field, after splitting, for
the kth mode. For example, we get

n, m, p, q
,p, qak aK at', alt (33}

(Nk &
—=Tr(pkakak)=S n, (24) then
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UFU = g C„~q(Sak R—ax )"(Sax+Rak )

n, m, p, q

X (Sak R—az ) (Sax +Rak ) (34)

that the number of photons in the transmitted beam is
& n, ) =S & n ). So we now compare this field (A ) with a
field (B) in a number state

l
S n ). We use Eqs. (5) and

(8) to get, for field A,

Now

(Q(UFU (Q)=(Q Z C„„,,(S,a )(R „a)"
n, m, p, q

x(Sa„F(Ra„)a Q)

a

&bmz &T
——&mz &T 1 —S a

Tc

and for field B,

T
&am~&T=&m~)r I —a

Tc

(37a)

(37b)

'& Q l
F(Sak Sak Rak Rak )

l g & (35)

(all terms with ax, al~ are zero); so that we see that, in
this case, we only need to replace the operators as fol-
lows:

Qp ~SQk

~K —+Rak .
(36)

When the operator F is not normal ordered (no), then the
terms az, az can give a contribution via the commutation
relations. This contribution is generally understood (cf.
Yuen and co-workers ) as a vacuum noise. We now un-
derstand that it comes from the CR of the vacuum field.
However, we have seen that a much more direct interpre-
tation of the splitting is given by the splitting of a state.
A coherent state is split into two uncorrelated coherent
states, and no noise is added in the process. A number
state, on the other hand, is split into two correlated
states, none of them being in a number state anymore.
Therefore, in this case, the splitting process adds noise.
However, this does not depend in any way on the intro-
duction of a real vacuum field at the "unused port" of the
BS. This is even clearer for another kind of splitting of
an absorbing device for which there is no unused port.
Moreover, we have shown in the previous discussion that
we can always use normally ordered expressions and,
more specifically, the second-order correlation function
to get the measurable quantities. In this case there is no
vacuum noise introduced by the beam splitter.

So we now see that for S ~0 (strong attenuation) the
noise tends to the SQL. Indeed, whenever we split a
quantum state, we lose part of the possible noise reduc-
tion.

B. Determination of the SQL
for the intensity-fluctuation spectrum

A standard way of determining the SQL for the
intensity-Auctuation spectrum is by means of "a balanced
scheme" [Fig. 2(a)]. We subtract the two currents to get

BS

(R)

PM 2

(a)

[]PM 2

El+)
2

IV. APPLICATIONS E'+) =a e '(n+')'+a eso + l+) u = 1= I

E)

A. Attenuation of a state

Let us take a Geld and attenuate it by means of a BS.
The BS not only reduces the intensity as it would do clas-
sically, but also changes the photon distribution. We
shall characterize this by means of the second-order
correlation function. Since we work with normal-ordered
expressions, we simply replace the creation operator a
by Sa, and immediately see that the normalized function
is unchanged. However, noting that the average number
of photons in the field has been reduced, we have to com-
pare the counting statistics of the attenuated field with
the ones obtained with a field of equal intensity [cf. Eqs.
(27) and (28)]. We shall analyze, as a typical example of
quantum light, the case of the number state. We start
with a number state

l
n ). After splitting, we have seen

E'+'= ae-t«
CO

(b)

FIG. 2. (a) Light beam incident on the BS is partially
transmitted (with transmittivity coefficient S) and partially
reflected (with reflectivity coefficient R). The currents i I and i2
are measured by PM 1 and PM 2 and are subtracted by the fre-
quency analyzer giving the SQL noise. (b) Coherent field with

E,'+' =ae ' ' and squeezed field with E~+' =a+ e '"+'"
+ae '" '" incident on the BS from its two sides produce the
two fields with E',+' and E2+', which are measured by PM's 1

and 2 to produce the currents i, and i2, respectively.
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(i) ) —(iz) =(i ) and perform a frequency analysis. As
explained in Sec. II, we need to calculate two kinds of
correlation functions,

g (x), t;x), t +7 ), g (x), t le, t +T),
where x, and xz refer to the locations of PM's 1 and 2.
Using the results of Sec. III to express these functions in
terms of creation and annihilation operators, it is easy to
see that these two functions are equal, and also equal to
the correlation function of the beam before splitting,
which we shall denote by g' )(r). Then, by the results of
Sec. II, we immediately get

These expressions and their complex conjugates (CC's)
are valid only when we use them in n.o. expressions. For
our purpose we need to calculate g

' '( r ) —1 (same space
point) and g' )(x), t;x&, t+r) —1. We assume a strong
coherent LO and calculate only terms that are of second
order in a and a . (Terms which are of orders three or
four in the LO operators give vanishing contributions
while terms which are of first or zeroth order in a and a
lead to very small contributions, which are neglected
within our approximations. ) The calculations for
g' )(r) —1 are very similar to those performed in our pre-
vious work ' [using Eqs. (4.16) of Ref. 20]. For the
field E, we get

N (co)= ((i, )+(i, ))2' (2)( ) 1
2S' cos(er}
R & ) (41)

where

(38) S:—2sinh r —2 coshr sinhr cos[2(P, —P)] . (42}

So we see that when we subtract the photocurrents, the
SQL noise in the two branches has still to be added
[which is fully consistent with the fact that the splitting
of a coherent state (CS), which has the SQL noise, gives
two independent CS's]. However, the "excess noise, "
which can be negative for quantum light, is subtracted.
For a 50-50 BS, for example, we find that

(39)

Remembering that by a direct measurement of the field
we would get a photocurrent ( i ) = ( i) ) + ( iz ), we there-
fore see that this noise is the SQL of the field under inves-
tigation (i.e., the noise that we should get by a direct
detection of a coherent state of identical intensity}. Let
us, however, emphasize that in the first case (50-50 BS
and subtraction) the average current (i ) is zero, so that
we have only noise and no signal, whereas by direct mea-
surement we have a signal (i ) and a noise, whose corre-
sponding SQL is the previously obtained one.

(n ) is the number of photons in the strong coherent
state, ((l, —p is the difference between the LO phase ((),
and the squeezed field phase P, and r is the squeeze fac-
tor. It is easy to see that S can take any value between
—(1—e ") and (e '—1) when we change the relative
phase (P, —P) so that there exists a purely quantum
domain of variation g I '(0)—1 & 0.

Equation (41) is correct only under the approximation
that the reflected coherent field is much stronger than the
transmitted squeezed field. For the field Ez we get a sirni-
lar result for g(z )(r)—1, with S /R replaced by R /S .
This result will be correct under the condition that the
transmitted coherent field is much stronger than the
reflected squeezed field.

For a 50-50 BS we get, for both E, and Ez, the same
result,

g")(r)—1=g',"( ) —1—:g',"( ) —I

C. Heterodyning
cos(E1 )

&n)
(43)

~(+)(t) g(a e
—(n+e)it+a e ( lan)t)—

1

+g~ —i Qtg

+(+ ) (t) R (
—I( E)0t++—l (0—E)l }2

(40)

We are interested in heterodyning a squeezed signal
and a much stronger LO in a coherent state. The
squeezed signal is assumed to be a two-frequency signal
(Q+s, Q —a), where the squeezing introduces correla-
tions between the two frequencies. The LO is in fre-
quency Q. We are going to use only n.o. expressions, so
that there is no need to introduce any vacuum field
operator. Writing only the relevant part of the operators
on each side of the BS as described schematically in Fig.
2(b), we get

This result is similar to that derived in our previous
work, with the following two differences.

(a} We do not obtain here factors like (Q+c/Q)'
(e « Q) in the field, since we use the field of Eq. (3), drop-
ping the factor (ficok )'

(b) The result given in Eq. (50) is smaller by a factor of
2, since we did not include there the effect of the BS on
photon statistics. Indeed, the noise obtained in our previ-
ous work corresponds to the calculation of the direct in-
terference between the SS and the LO without the BS.

The possibility of reducing the quantum noise up to
zero for a unity quantum efficiency detector follows from
the subtraction scheme, where one measures the quantum
noise of i

&

—
i& and where the noise should be calculated

according to Eq. (15). N)(co) [or N~(to)] is calculated ac-
cording to Eq. (13), replacing ( i ) by ( i, ) (or (i& )) and
substituting the expression for g' )(r) —1 from (41) or
(43). To calculate the full noise N (co), we now need
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g (Xi, t;X2, t) & 1 (45)

This has been emphasized recently by Ou, Hong, and
Mandel, who have shown that these positive correla-
tions at two different points exist only for nonclassical
states.

In Eqs. (41) and (44} the time r enters only through the
term cos(sr). This, of course, is not completely satisfac-
tory, since we know that g' )(r)—1 has to go to 0 for
large times (r & T, }.' We may introduce this dependence
in our expression in the following two ways.

(i) We may artificially introduce a cutoff in the Fourier
transform (FT) for an interval T„

T /2
cos(sr)e '"'d~~ cos(sr)e ' 'dr—T /2

Tc' [Jo[(~+a)T ]
2

+jo[(co—s)T, ]j . (46)

(ii) In a better way we may multiply the integrand by
—2) ~] /T

an exponentially decreasing factor e

f 00 —2)~f/T
cos( sr )e '"'e 'dr

T,
2

1 1

1+[(co+a)T,]2 1+[(co—s)T, ]2
(47)

These two expressions give the same kind of dependence,

[g(2)(r)1]e—IcvTdr

T, [f((t0—s)T, )+f((~+a)T, )],
n

(4g)

where

1f (x)=j 0(x)x or
1+x

(49)

or more generally, a function that is 1 for x =0 and is
rapidly decreasing to 0 for

~

x
~

& 1.
We can now easily calculate the noise. Using Eqs. (13),

(15), (41), and (44) we get

T, [f((co s)T, )+f((to+ad)T, )]—
2)r n

(s'&i, &+a'&), &)'
X

R S
(50)

For a 50-50 BS,

g' '(x), t;X2, t+r) .

We get, by straightforward calculations,

g (x„t;x2,t+i}—1=—2(2) cos(sr)
n

We find here that the previous quantum domain [4&0
corresponding to g' '(0) & 1] is now replaced by

(51)

and by the relation (i ) =eGa(n ) /T, we obtain

N (co)= (i )[1+at(f((co—c, )T, )+f((co+c)T, ))] .

(52)

g (r) —1= 2S
(53)

[since this relation is only correct for r«T„we take
cos(cow)=1]. Now Eq. (52) shows that T, ' is a cutoff fre-
quency: For ~&& T, ', noise can be reduced under the
SQL. It goes back to it for co » T, '. We also see that s
does not play any role anymore. Therefore we now have
a quantitative definition of degenerate and nondegenerate
squeezed states, and it shows that the important parame-
ter is not only the frequency difference between the two
parts, but also the coherence time T, . Indeed, for
cT, « 1, the squeezed state can be considered as degen-
erate, whereas for c.T, »1, it is nondegenerate. These
conclusions seem to be consistent with recent experimen-
tal observations.

The observations by Slusher et al. correspond to a
nondegenerate case: c.=421.5 MHz, noise reduction
close to c, in a bandwidth of 3 MHz. The observations by
Wu et al. correspond to the degenerate case: observa-
tion of noise reduction at co= 1.8 MHz with no indication
of frequency dependence (for co & T, ').

In our previous article we have explained the spectral
width in the noise reduction by assuming a band of fre-
quencies, which are squeezed. Here we obtain the band-
width by the coherence time T, . For sufficiently mono-
chromatic light the concept of coherence time T, is use-
ful. When the squeezing really introduces many frequen-
cies in a band Q+c., then the approach of our previous ar-
ticle is more suitable.

We now analyze further the nondegenerate case, where
the only nonzero component is f((co—e) T, }. For a 50-50
BS the use of Eq. (52) gives

We immediately see that if (ei+e)T, »1, the corre-
sponding term f((co+a)T, ) is negligible and the second
one is important only for (to a)T—, «1. We obtain once
again the result of our previous article, that for a non-
degenerate squeezed state there is a noise reduction only
close to the modulation frequency c.. However, we can
now get a more quantitative result: close to means that
(co s)T, «— 1. One should notice, however, that to get
the cutoff at T„we need to assume that T & T„ i.e., the
opening time of the detector has to be long enough, oth-
erwise the FT has to be taken in the limits of f
since it cannot correlate the intensity for times larger
than T.

It is interesting to examine what is happening for
(to+a)T, «1. This condition is not only a condition on
the frequency of analysis, but it also implies that
cT, « 1. In this case the frequency difference in the two
parts of the signal is so small that we can indeed consider
it to be a one-frequency signal, and take
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N ( )= (')[I+ f(( —)T, )]
2m'

(54)

This result is interesting as, by the use of two-port homo-
dyning, the quantum noise can tend to zero for large
squeezing (4= —1), for a unity quantum efficiency and
co=e. The noise obtained by (54) is the quantum noise we
would have gotten by direct interference between the SS
and the LO without BS. However, the advantage of the
two-port homodyning is that, due to the subtraction
scheme, we eliminate classical noise that we would get by
the direct interference experiment.

We compare (54) with the result for one-port measure-
ment obtained by the use of Eqs. (13), (41), (48) and by
the use of the relation (i

&
) =eGa(n ) T, 'R,

N~(to)= (i, )[1+S2aSf((to e)T, )—] .
2m

(55)

In the 50-50 BS one-port measurement, the noise can be
reduced for to=a only to —,

' of the SQL.
The subtraction scheme is not useful for applications in

the transmission of information, since the signal
(i

&
) —(i2 ) is zero for the 50-50 BS, and we obtain only

noise.
For one-port homodyning with S ~1, but with

R ( n ) still quite large (relative to the SS), we get the best
quantum noise reduction with a beam, which is directly
utilizable. However, one needs to have perfect intensity
stability to avoid classical noise. Since the LO is much
stronger than the SS, even a small excess noise would be
enough to cancel the possible noise reduction. For this
reason this scheme has not been used experimentally.

V. CONCLUSIONS

We have analyzed the infiuence of a BS on the photon
statistics for different cases and have shown that the BS
may affect the states of radiation in one approach and
how it may affect the operators in an alternative ap-
proach. By using n.o. expressions it is found that there is
no need to insert the concept of vacuum noise, which
seems to be quite confusing. The present analysis is in
agreement with the basic formulas presented previously
in Refs. 7 and 9.

We have shown in the present article how the measure-
ment of quantum noise in different experiments is related
to second-order correlation functions. In particular, we
have analyzed heterodyne detection experiments explain-
ing the result of recent experiments. Since in our pre-
vious work we have not considered the effects of the BS
on the photon statistics, this work is complementary to
the previous one, following the same approach that the
measurements are related to second-order correlation
functions and not to the measurement of quadratures.

Our work can be also considered as complementary to
the work of Ou et al. ,

' who adopted a very similar pre-
sentation, but restricted themselves to different cases. It
can be also related to the paper of Fearn and Loudon, "
who adopted a different point of view by quantizing the
field in terms of the spatial modes of the complete system.
However, their approach is also restricted to two modes
at the same frequency, so that they do not analyze the
nondegenerate squeezed state.
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