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Bifurcations in a three-mode model of the Navier-Stokes equation
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We analytically follow the nonlinear evolution of three coupled modes of the two-dimensional
Navier-Stokes equation in an externally driven and dissipative case. As the external force amplitude
(control parameter) is increased, a node-to-node bifurcation appears, giving rise to new stable equili-
bria. We find that the most relevant set of three modes contributes to the energy and enstrophy cas-
cades in the same directions as in fully developed turbulence. We model the coupling with the
remaining modes as a white-noise contribution, deriving the equilibrium distribution function for
the corresponding Fokker-Planck equation.

I. INTRODUCTION

and the enstrophy

0=-,' J d'x
i VXui' (1.2)

which, respectively, cascade to lower and higher wave
numbers. In this work we will follow the three-mode ap-
proach, modeling the effects of the remaining couplings
as white noise.

The organization of the paper is as follows. In Sec. II
we derive the basic general equations which have a trivial
equilibrium solution. In Sec. III we analyze the linear
stability of this equilibrium for the truncated three-mode
problem. In Sec. IV we follow the nonlinear evolution of
these modes when the old equilibrium turns linearly un-
stable, finding new exact equilibria. In Sec. V we study
the effect of noise on these equilibria. In Sec. VI we dis-

The evolution of a viscous incompressible fluid is
governed by the Navier-Stokes equation for its diver-
genceless velocity field. ' This nonlinear equation, when
linearized, gives purely damped modes, due to the effect
of viscosity. The nonlinear term turns out to be impor-
tant when the viscosity is sinall (Reynolds number
R =uL /v yy 1 ) and represents the coupling among the
modes. In such a case, energy may be transferred from
one mode to another, but in the long run the total energy
will decrease. In order to achieve a nontrivial stationary
state it is necessary to force the system externally.

The relative importance of nonlinearity, dissipation,
and external forcing may be analyzed in a very simple
model of three modes. This approach has often been
used in connection with different turbulences, mainly
as a way for determining the net flux of the correspond-
ing ideal invariants in k space (cascades). For the two-
dimensional Navier-Stokes turbulence, these invariants
are the energy

W= ,'Jd x —oui

cuss the conditions under which the evolution of a single
set of three modes (triad) contains the relevant features of
the whole system. We also analyze the contribution of
this triad to the general energy and enstrophy cascade.
Finally in Sec. VII the conclusions are surnrnarized.

II. BASIC EQUATIONS

The hydrodynamic equations for a viscous and in-
compressible fluid are

B,u= —(u V)u —Vp+vV u+F,
V u=O,

(2.1a)

(2.1b)

where u(x, t) is the velocity field, p is the pressure per unit
mass density, v is the kinematic viscosity, and F is an
external driver acting on the fluid.

In a two-dimensional fluid

u=u(x, y, t),
u z=O.

(2.2a)

(2.2b)

As a consequence of the incompressibility condition
(2.1b) and the hypothesis (2.2), the velocity field can be
expressed in terins of a scalar stream function g(x,y, t)

u=VX(zg) . (2.3)

Taking the curl of (2.1a) we get

B,V P=(VQXz) V(V'g) vV /+V f, —

where we have written the vector field F(x,y, t) as

(2.4)

F=VX(zf)+Vg . (2.5)

(2.6b)

Expressing the fields g and f in terms of their corre-
sponding Fourier amplitudes

(2.6a)
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Eq. (2.4) reduces to

B,gq+ k i(tq ——fq+

where

k', k"
(k'+k" =k)

z-k)& k' k" —k'
~k' k"

2 k

k (2.7)

(2.8)

where the matrix A is

—k if ~=g
k,.r„'„gifk, =k, +k,

A;='
I q' qJ" if k;=k —k

0 otherwise .

(3.2)

We suppose a square L &L box with periodic boundary
conditions, so that

k= (n„,n~)
2%

(2.9)

with n„and n integer numbers.
It is well known that in a two-dimensional incompressi-

ble fiuid, the energy [Eq. (1.1)] and enstrophy [Eq. (1.2)]
are conserved when forcing and dissipation are absent.
In terms of the amplitudes 1/z, these global invariants
take the form

W=-,' yk'~ 1(„[',
k

f1=
~ 2 k'

I A I

'
k

(2.10a)

(2.10b)

Moreover these quantities are the invariants of any trun-
cation of the Fourier space. If viscosity is present, how-
ever small, these quantities decay in time unless an exter-
nal force is applied to the system. In Sec. VI we study
the behavior of these ideal invariants in the forced and
dissipative case, for the reduced problem of three Fourier
modes.

We look for the equilibria of Eq. (2.7) when a harmonic
external force drives the system

(2.11)

A, + = —/3+ +/3 —y,
where

(3.3)

Let us consider now two modes k and k' such that k, k',
and k0 close a triangle as it is shown in Fig. 1

(k=ko+k'). If the evolution of k, ko, and k' is most
affected by the couplings among themselves, we can
neglect the interaction with modes outside this triangle
and the problem will be reduced to that of the interaction
among three modes. This is a standard simplifying pro-
cedure and we will follow it in this case. However, we
will take the influence of the other couplings into account
through a noise term added to the evolution equations for
the three modes of interest. We will not give particular
values for k and k' until Sec. VI. It is necessary to stress
that, due to the symmetries of the problem, there are al-

ways four similar triangles, the ones shown in Fig. 1.
This is so because the coefficients I involved have the
same absolute value. It is therefore necessary to analyze
the evolution of ten modes simultaneously. However, the
problem is not complicated since the matrix A, which
gives their linear evolution, is formed of two identical
1&&1 blocks (the ones that determine the evolution of ko
and —ko) and four 2)&2 blocks (each one corresponding
to one of the triangles of Fig. 1). The last ones have the
same pair of eigenvalues

with f = f ' (any othe—r particular choice for the phase
off may be absorbed by a redefinition of the coordinates
origin to lead f = f ). There is—a trivial equilibrium

4~=0 & k&ko
vk 0

(2.12)

whose stability we study below. For this purpose we turn
to a set of dirnensionless variables using x0 ——2'/k0 and
to = 1/vko as characteristic length and time, respectively.
This is equivalent to take v=1 and k0 =1.

III. LINEAR STABILITY AND THREE-MODE
TRUNCATION

5$= A 5f, (3.1)

Once an equilibrium solution is found, the question
about its stability immediately arises. For the moment
we will only concentrate on the linear stability of solution
(2.12). In order to do so, we perform an expansion of the
form P=f+5$ (where we denote by g a vector whose
components are the Fourier amplitudes gz), insert it in

the set (2.7) and retain terms up to first order in 5f. This
procedure leads us to the following set of equations: FIG. 1. The triads whose vertex lie in the shaded regions are

those which can become unstable. The triads II, III, and IV
have the same evolution than triad I.
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p — + ~ —kk' 1 ~f2

with eigenvectors of the form

= I "f1(k —(A, —~ k )1(q .

(3.4)

(3.5)

1(z, ——gz, , as f = f—*, g& will always satisfy 1(z ———gq .
Therefore, if at t =0, the following relations hold:

(4.3a')

(4.3b')

with eigenvectors 5/k, 5$ z which correspond to the
0

viscous damping of the modes +ko.
It is clear from (3.3) and (3.4) that if p —y &0, A has

two complex eigenvalues k+ and A, (A, = I,+ ) each of
degeneracy four and a real eigenvalue ko ———1 of degen-
eracy two, all of them with negative real parts, meaning
that the equilibrium (2.12) is stable. However, if
p —y &0, all the eigenvalues are real, but only A, + can
become positive if and only if y &0. From expression
(3.4) we may see that y can be negative only if I "I "' is
positive, since this a necessary condition for the existence
of a positive real eigenvalue A, +. We display in Fig. 1 the
regions of the (k„,k ) plane for which the product I "I "'

is positive. An "unstable triangle, " one corresponding to
a block with positive A, +, must necessarily have its vertex
inside this region. Given one of these triangles, its insta-
bility will be decided by the value of

~ f ~. We will there-
fore define p=

~ f as the control parameter of the prob-
lem. Given a p value, those triangles having

kk'
(rkrk )1/2p, (k, k')= (3.7)

less than p will be unstable. Thus, if we only consider a
set of three modes k, ko, and k', the equilibrium will turn
unstable if and only if p exceeds the critical value

p, (k, k').

The eigenvalues of the matrix A are those in (3.3) and

(3.6)

(4.3c)

they will still hold for every time t &0. The problem
reduces then, as in the linear case, to the study of the evo-
lution of three coupled modes ko, k, and k' governed by
the equations

(4.4a)

(4.4b)

(4.4c)

where we have used relations (4.3) to obtain Eq. (4.4c).
As we have already mentioned, we will take the coupling
between P& and P& (k=k+ko) into account through a
noisy term of the form 1 z"

k P& g& added to Eq. (4.4a)
0

and the coupling between g& and P&, (k'=k' —ko)
through a term I z'z gz fz, added to Eq. (4.4b). We will

consider in both cases white noise of correlation

(4.5)

Couplings others than the ones mentioned above will be
neglected. These terms of noise will not be added until
Sec. V.

The set of nonlinear equations (4.4) has the equilibrium
solution (2.12). There exist new equilibria for values of p
greater than the critical one (p, ). This occurs simultane-
ously to the destabilization of (2.12) (see Fig. 2). We are
therefore facing at a bifurcation from one node to anoth-
er node. The new equilibria are defined by

IV. NONLINEAR SATURATION

Let us consider now the nonlinear evolution equations
for the modes we chose in the preceding section (the ones
shown in Fig. 1). Remembering that relation (2.6a) is al-
ways satisfied, it is necessary to take into account only
five of them. The corresponding set of equations is

(4.1)

(4.2a)

(4.2b)

(4.3a)

(4.3b)

where k=ko+k' and k= —ko+k'. We may see that all
five equations are coupled through the non1inear term in
(4.1). Nevertheless, it is possible to make further
simplifications. It is clear that Eqs. (4.2) are similar to
equations (4.3) if pk ———1(k. Moreover, if gz ——gz and

0 0

FIG. 2. Energy of the three modes as a function of the con-
trol parameter p. p, indicates the bifurcation point.



A. COSTA et al. 38

( rkrk')1/2

( rk'I 0)

(
rkrk'

)
1/2

( rkr 0)

k k

k'

2k

k
, (p, —)M, ),

(4.6a)

(4.6b)

(4.6c)

f'f =+
2

fk 'Pk' Vf g
k

(4.7a)

(4.7b)

where the y's are the corresponding phases of the modes

and ( —I "I '), ( —I " 1 ') are both positive for triangles
I

lying on the shaded region of Fig. 1.
The fact that Eq. (4.7b) defines only the phase

difference between the complex amplitudes gk and gk, ,
implies that relations (4.6) and (4.7) represent a continu-
um of equilibria, each one labeled by a different value of
))()k (or (pk.). Although the set of equations (4.4) and the
trivial equilibrium solution (2.12) are invariant against
changes of the form gk eke', gk pk e', this does not
remain true for the new equilibria (4.6) and (4.7), showing
that the bifurcation gives rise to a breaking of symmetry.

We are interested now in the temporal evolution of the
system for values of)M ~ p, . Writing Eqs. (4.4) in terms of
5/k and of the normal modes f+ and g [defined in

0

(3.5}]we obtain

B,P =A, P — [(A, +k2)(k +A, +2k2)f —(I, +k2)(A, +A, +2k2)1( ],
+

r"'
a 5/k ———5/k — [2(A, +k )

I
1()

I
+2(A, +k )

I 1( I
+(k' k)(iJ/ —1/I' y'lP )—] .

(4.8a)

(4.8b)

Defining the small parameter

e'= ()(t —)u~ ) (4 9) where

(4.14b)

we make the perturbative expansion

y y(i)&r (4.10a)
( —4r"'r"')k'

b=
(k'+ k')' (4.15)

5/k ——g 5/k'e' .
i=1

We will stretch the time coordinate as

(4.10b) Equation (4.14a) is well known and may be trivially in-
tegrated leading to

~=et .= 2 (4.11)

As the characteristic growth time of the instability is
A, +', taking the scaling (4.11) means that we are following
the evolution at the slow characteristic time A, +'.

From (4.8a) at order e, we obtain

A,
(2)

b
1 — 1—

1

g(2)

b
I @+(0) I

(4.16)

5y(2)
3) [(g(0) +k 2)( g(0) +g(0) +2k 2 )q(1)]fg(0)(g(0) g(0) )

+ + +

(4.12}

Its asymptotic value (t ~ ao ) is

g(2)
(4.17)

and from (4.8c) at order e we obtain

ko

(4.13}

These are the lower-order nonvanishing contributions in
the expansions of g and 51)'jk. Equations (4.12) and

0

(4.13) could have been obtained by application of the so-
called "slaving principle" in Ref. 6 with g and 5/k the

0
"slaves" and (((+ the order parameter.

The evolution equation for g+ ——
I 1(+ I

e px(ip+ ) at or-
der e is

(4.14a)

V. NOISE EFFECTS AND A LYAPUNOV
FUNCTION

As it has been said above, we are going to take into ac-
count the effect of the remaining modes over the triad by
the addition of noise terms. If these noise terms are re-
tained from (4.4) throughout all the subsequent calcula-
tions, the evolution equation for g+ [see (4.14)] trans-
forms into the following Langevin equation:

dA =~ 0 b lf I'0 +Pt»— (5.1)

where g(t) is a stochastic variable which is a linear com-
bination of the amplitudes gk and pk, and as a conse-

quence also behaves as white noise
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(5.2a)

(5.2b}

[(~+4+ b
I 4+—

I
'@+}P]

1 a'
+2, [QPI. (5.3}

The asymptotic solution (for t ~ oo ) of this equation is

P(g+, 00 )=N exp (5.4)

where N is a normalization factor and

(5.5)

In the absence of noise it is evident that

S=
2 (f+g+ f+p+)—

For this result to be true we have made the hypothesis
that the noisy amplitudes fz and fz, do not have first-

order terms in their expansion in e. This is a very reason-
able assumption since we are interested in fluctuations
whose amplitudes are much smaller than the order pa-
rameter

~ g+ ~

. We want to remark that under this ap-
proximation, the "enslaving" of 1(t and 5$~ (4.12) and

(4.13) still remains valid.
In this case, we can associate a Fokker-Planck equa-

tion for the probability distribution P(g+, r) defined on
the phase space of f+.

come a linear combination of
~ f+ ~

and
~ tP+ ~

as well

as the entropy [see (5.5)]. So we can always calculate a
couple of constants T~ and T& such that

Q W 0S=—— +
2 Tgl TQ

(5.9)

Thus even for our forced and dissipative case

P(& „]——N exp+' Tw
(5.10)

VI. DISCUSSION

where T~ and Tz are fictitious temperatures associated
to the equilibrium distribution. We have computed these
temperatures as a function of p for the most unstable
triad (see Sec. VI} and obtained that both are positive be-

ing T~p&Tz. We want to remark that the equilibrium
distribution function we obtained, which resembles a dis-
tribution for a canonical ensemble (with two invariants}
has been derived in our simple three-mode model without
any assumption about thermodynamic equilibrium.
Moreover, external forces and dissipation are simultane-
ously allowed.

As a consequence of noise, the phase of g+ (which was
a constant in the deterministic case) can fluctuate. In the
deterministic case, once p exceeds p, we cannot find the
system at the trivial equilibrium (2.12). However, when
noise is introduced, there is a nonvanishing probability
P(0, ~ ) for the system to be in this state. Moreover,
sufficiently close to the bifurcation point, P(0, 00 ) is near-
ly as high as the probabilities associated to the new
equilibria (4.6) and (4.7). Thus, the concept of bifurcation
point becomes meaningless and must be replaced by the
notion of bifurcation region.

(5.6}

g~(S) for r~m,
(S)= J dP dg*S(

~ g+ ~
)P(P+, ) .

(5.8a)

(5.8b)

It is interesting to notice that for sufficiently low

~ f+ ~, S can be expressed as a linear combination of the
ideal invariants (the energy W and the enstrophy 0).
This can readily be seen through the following argument.
The invariants defined in (2.10) can be put in terms of g+
by the application of (3.5), obtaining terms

~
1(t+

~

and
1t+g a:

~ g+ ~
by using the slaving condition (4.12) and

(4.13). On the other hand,
~ Pz ~

develops into constant
0

terms (
~ f ~

) plus terms f'5$ cc
~ f+ ~

due to (4.13)
and finally

~
5fz

~

~
~ g+ ~

. Thus both invariants be-

Therefore, S is a Lyapunov function in the noiseless lim-
it, whose maxima correspond to the stable equilibrium
configurations. The function S has a clear thermodynam-
ic interpretation. According to the information theory,
the entropy associate to P (g+, t ) is

4= —fdg+dP+(P lnP), (5.7)

where it can easily be seen that

As is well known, when forcing and dissipation are al-
lowed, the ideal invariants (energy and enstrophy) cas-
cade in the Fourier space. In the stationary regime of the
Navier-Stokes turbulence, the energy is transferred to
shorter wave numbers (inverse cascade) while the enstro-
phy is transported to greater wave numbers (direct cas-
cade).

We are interested in computing the contribution of the
three-mode interaction to these cascades. In Fig. 3 we
show the cascade direction of energy and enstrophy for
each triad. Once p surpasses p, we let the system evolve
towards its new equilibrium and then compare the energy
(enstrophy) in the k mode (k & 1) with the energy (enstro-
phy) in k' (k'& 1) to decide the direction of the energy
(enstrophy) cascade.

At this point we decide which is the most unstable
triad (MUT}. For a given p, we look for the triad whose
k+ is maximum. According to this criteriurn, we numeri-
cally computed the MUT for different values of p as is
shown in Fig. 3. It can be seen that the position of this
triad in the k plane is a weak function of p, . We have also
checked that A, +, ~ P+( ~ )

~

and e=Qp —p, monotoni-
cally increase with p. Thus increasing the amplitude of
the external force, the new modes k and k' will grow fas-
ter and saturate higher. However, at the same time the
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Q.G
0.5 2.0

be neglected. Suppose that the box that contains the Auid
is infinitely large (L ~ oo ). Then the spectrum of eigen-
modes will densely fill the k plane. Thus it is inevitable
that for any value of p, a continuum of triads in the sur-
roundings of the MUT also become unstable. In Fig. 4
we show the set of unstable modes for different values of
p and we also give an idea of their instability rates. We
also show the saturation values of these neighboring
triads. If on the contrary the length of the box is finite,
the Fourier eigenmodes are a discrete set [see (2.9)] being
2m. /I. their rninirnum separation in the k plane. It can
readily be seen that if the box size is sufficiently small, the
MUT may be the only excited one or at least it will grow
with a far greater rate.

perturbative expansion in e [see Eqs. (4.10)] will be less
accurate. For p=2. 28 (where the curve of Fig. 3 cuts oS
will be @=1and the perturbative expansion will definitely
be wrong.

We want to remark at this point the importance of cal-
culating the MUT in the way we did (maximum A. + for
each p). Hasegawa and Kodama, considering that

k'+k' (k' —k') (I-krk )
2

2 4

1/2

(6.1)

define the MUT as the one whose I "I" is maxirnurn.
This occurs for k=(1, (&2—1)' )=(1,0, 64) (Ref. 2) and
is very far from our MUT's (see Fig. 3). The difference
between these results comes from the fact that r"r"
maximum does not imply that A, + (which is function of k
and k' not only through I "I "

) is also maximum.
Once the MUT is chosen, it is important to know the

conditions under which the effect of the other triads can

s s 1
l

& r & e I

' p=1.6

02t
I

1.0 1.1

FIG. 4. For different values of p, the x indicates the position
of the MUT. In the shaded region lie the unstable triads whose
growth rates (A, +) range from 50% to 0% of the MUT. In the
hatched region lie the unstable triads whose saturation levels

[ ~ g+( ~ )
~ ] range from 50% to 0% of the MUT.

M

FIG. 3. The arrows indicate the corresponding cascade direc-
tion. Triads in the dark region contribute with direct cascade of
both energy and enstrophy. The central region corresponds to
the inverse cascade of energy and the direct cascade of enstro-

phy. In the grey region both cascades are inverse. The continu-
ous curve indicate the position of the most unstable triad
(MUT) as the control parameter p is varied from 0 to 2.28
(where @=1).

VII. CONCLUSIONS

We have derived the evolution of a system of three
coupled modes of the two-dimensional Navier-Stokes
equation in the externally driven and dissipative case.
We have shown that the external force amplitude JM acts
as a control parameter of the problem. When p is in-
creased, the trivial equilibriutn solution (2.12) turns un-

stable giving rise to the existence of new stable equilibria
(node-to-node bifurcation with symmetry breaking). By a
standard perturbative expansion of the quantities of in-

terest, we have obtained the nonlinear evolution equa-
tions for a time scale of the order of the growth time of
the instability (A, +'). This procedure turned to be
equivalent to the application of the slaving principle.
We have then added white-noise terms to the evolution
equations in order to model the couplings among the
modes of interest and the remaining ones. We have
therefore been led to a Langevin equation and, in this ap-
proximation, we have derived the equilibrium distribu-
tion function P(P+, ee) of the corresponding Fokker-
Planck equation. We have found that P=N exp(2SIQ),
where S is the Lyapunov function of the noiseless evolu-
tion equation, and may be set as

Q W 0S=—— +
~IV ~A

with 8' the energy and 0 the enstrophy of the system.
This equilibrium distribution resembles that of a canoni-
cal ensemble (with two invariants) and has been derived
without the hypothesis of thermodynarnical equilibrium.
We have then discussed the conditions under which the
evolution of a single set of three modes (triad) contains
the relevant features of the whole system. We define the
most unstable triad (MUT) as the one which maximizes
k+. We have obtained that the most relevant set of three
modes contributes to the energy and enstrophy cascades
in the same directions as the fully developed turbulence
ones.

ACKNOWLEDGMENTS

This work has been supported by the Consejo Nacional
de Investigaciones Cientificas y Tecnicas (CONICET) un-
der Grant No. 9069/03. A. Costa, D. Gomez, and S.
Ponce received additional support from the CONICET.



38 BIFURCATIONS IN A THREE-MODE MODEL OF THE. . . 2043

L. Landau and E. Lifshitz, Fluid Mechanics (Pergamon, Lon-
don, 1959).

2A. Hasegawa, Adv. Phys. 34, 1 (1985).
3A. Hasegawa and Y. Kodama, Phys. Rev. Lett. 41, 1470 (1978).
4D. Majumdar, J. Plasma Phys. 37, 247 (1987).
~R. Kraichnan, Phys. Fluids 10, 1417 (1967).
H. Haken, Advanced Synergetics (Springer-Verlag, Berlin,

1983).
7B. Lavenda, Nonequilibrium Statistical Thermodynamics (Wi-

ley, New York, 1985).
8S. Lefshetz, Differential Equations: Geometric Theory (Dover,

New York, 1967).
C. Meunier and A. Verga, J. Stat. Phys. 50, 345 (1988).








