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Modulational polarization instability of light
in a nonlinear birefringent dispersive medium
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The interplay between linear birefringence, nonlinear polarization changes, and chromatic disper-

sion may lead to phase-matched parametric four-photon mixing. As a result, new modulational po-

larization instabilities are predicted in single-mode fibers: Instability of an intense light beam may

occur even when the wave is coupled to a spatially stable eigenmode, and propagates in the normal-

dispersion regime.

A uniform wave train propagating in a nonlinear
dispersive medium may be unstable with respect to weak
modulations. Such a modulational instability (MI) is
found in the nonlinear Schrodinger (NLS) equation,
describing, for example, a Bose-gas condensate, ' self-

focusing and self-phase modulation of light, or deep-
water gravity waves.

The development of MI-generated or-induced side-
bands from an initially quasimonochromatic light field
has been recently observed in optical fibers. Propagation
in a fiber obeys the one-dimensional scalar NLS equation
when one neglects both diffraction and changes in the
state of polarization. As a consequence of this descrip-
tion, MI is predicted only in the regime of anomalous
dispersion. It has been known, however, since the early
studies by Bespalov and Talanov and Berkhoer and Za-
kharov, that an incoherent (i.e., purely intensity-
dependent) coupling between two NLS equations leads to
extension of the instability domain. Incoherent interac-
tion and extended MI occur in a variety of different phys-
ical contexts: for example, in the propagation of two
transverse electromagnetic waves in a nonlinear dielec-
tric ' ' or a plasma, or of Langmuir and transverse or
sonic waves. ' In particular, MI is possible also in the
normal dispersion regime, when two light fields with
different polarization or frequency interact in an isotro-
pic medium.

So far a different situation that is of considerable in-
terest in nonlinear optics has not been discussed, namely
the coherent coupling between two polarizations in a
weakly anisotropic and weakly nonlinear dispersive
dielectric; take, for example, an optical fiber. In a fiber, a
coherent (i.e., sensitive to the input relative phase be-
tween the waves) coupling occurs between the two circu-
larly polarized components of the field, as induced by the
anisotropy of the linear dielectric tensor. Recent studies
have revealed the intriguing dynamical behavior (involv-

ing bifurcations, instabilities, and chaos) of the steady-
state spatial evolution of the polarization in nonlinear an-
isotropic dielectrics. " The aim of this paper is to show
how chromatic dispersion affects the spatiotemporal sta-
bility of both spatially stable and unstable solutions, thus

establishing an interesting link between modulational and
spatial polarization instabilities. The present results are
of applicative relevance when propagating short optical
pulses in fibers, ' and are indicative of a basic limit set
by dispersion (and not inertia of the nonlinearity) to the
ultimate speed of operation of all-optical fiber switches
and couplers. ' A light pulse propagating in a glass fiber
obeys the coherently coupled NLS equations
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where A+ are the complex amplitudes of two counterro-
tating circularly polarized modes, obtainable from the
linearly polarized nearly degenerate eigenmode ampli-
tudes as A~=(1/v'2)(A„+iA ). In Eq. (1) we posed
P=(P„+P )/2 and a:(P„—P )/—2, where P„and P» are
the linear modes propagation constants (p„)p~). The
group-velocity vg and its dispersion a=dvg '/dcv can be
taken identical for both modes, ' which ensures mode
overlap at least over the distances of interest. The non-
linearity (assuming isotropic electronic distortion mecha-
nism) coefficient R (W 'm ')=nzko/A, a, where n2
specifies the intensity-dependent index (n =no+ n2I), ko
is the vacuum wave number, and A,& is the common
effective mode area.

For a generic input polarization state, the steady-state
solution of Eqs. (1) is expressible in terms of Jacobian el-
liptic functions. " Investigation of the modulational sta-
bility of spatially periodic steady solutions would require
a relatively involved numerical computation of Floquet
exponents. However, we show below that a physically
transparent insight in the MI's of Eqs. (1) can be obtained
in a simple manner from the stability analysis of the spa-
tia1 eigenmodes by means of standard techniques. We
consider first a linearly polarized input field, aligned with
the fast axis of the fiber. The continuous wave solution of
Eqs. (1) is
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where P is the input power. We write a weak modulation
in terms of circular modes as

mode, 0:)0

A+ =+[i (P/2) ' +a+ ]exp[i (RP +P )z],
where the sidebands take the form

a+ c——,+exp(i g)+cz+exp( i—rt)

(3)
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with real ci+ (j =1,2} and g—=Kz Qt—By. inserting the
expression (3) in Eqs. (1) and retaining only linear terms,
one easily obtains for the perturbation a+
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The linearized equation for a is obtainable from Eq. (4)
upon interchanging + with —.Note that the presence of
~ introduces a coupling proportional to both the in-phase
and out-of-phase quadratures of the sideband modes a+.
The corresponding set of real equations for the quantities
u+ ——c,++c2+ and u+ ——c&+ —c2+ leads to the dispersion
relation

[(K —Q/vg ) —s
1 ][(K—Q/vg ) —sz] =0,

where

s& ——aQ /2(aQ /2+2RP)

and

s2 (aQ /2+2——tr 2RP)(aQ —/2—+2tt) .

Modulational instability occurs at those modulation
frequencies Q such that K(Q) takes on complex values,
indicating that a perturbation would grow exponentially
with the fiber length. From Eq. (5} we obtain that in the
normal dispersion regime (a&0) instability occurs when

s2 (0, i.e., for

Q & Q„=—[y(p —1)]' with p & 1,
where y

—=4a. /
~

a ~, and p =P/P, is the ratio of the input
power to the critical bifurcation power" P, =3m/R. The
exponential growth rate of the modulating field power is
given by the gain

FIG. 1. Gain of the modulational polarization instability for
a wave at A, =0.53 pm, linearly polarized along the fast axis of a
birefringent fiber with L& ——2 m and a=60 psec'/km, for in-

creasing values of normalized power p.

The associated peak gain is g, =4'(p —1 )
' for

1 &p & 2, while g, =—', RP for p & 2. Equation (8) turns
out to be the phase-matching condition between pump
and orthogonally polarized (i.e., in the slow mode) side-
bands, " corrected for the presence of pump power-
dependent contributions to the wave vectors (optical
Kerr effect). Unlike MI occurring with incoherently cou-
pled NLS equations, nonzero and even peak gain is pos-
sible for vanishing modulation frequency. In fact, for
slow modulations the present modulational polarization
instability (MPI) reduces to the continuous-wave polar-
ization instability. " For sufficiently long pulses, the spa-
tial instability effect has potential for power or phase-
controlled switching of light beams in glass-fiber
couplers. ' With this in mind, the results reported in Fig.
1 indicate that when rapidly varying waveforms are in-
volved, the decay of parametric gain imposes a finite
bandwidth to such all-optical switches. In the anomalous
dispersion regime (a &0},both s, and sz can be negative.
Therefore, two distinct complex roots are possible for K.
The condition s& (0 implies the following constraints for
the modulation frequency:
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if p &1, otherwise Q,2&Q&0. (9)

This gain is shown in Fig. 1 for increasing values of p,
considering a carrier wavelength of A, =0.53 pm, and a
nonpolarization-preserving fiber characterized by a linear
beat length Lb ——~/~ =2 m and a dispersion a =60
psec /km. In this case, taking the fused silica value
n2 ——3.2X10 ' cm /W and A,I ——1)&10 cm, thecon-
dition p =1 would correspond to an input power P =124
W. Maximum gain is attained for vanishing modulation
frequency Q =Q, =0 whenever 1 (p (2, otherwise 0
satisfies the condition

aQ i ——-'RP —4]c .
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As can be seen from Fig. 2, now the condition of max-
imum growth is obtained for Q=Q

&
——0 when p )2; for

0 &p & 2, Q z again satisfies Eq. (8}. The gain values re-

ported in Fig. 2 refer to the case A, =1.55 pm, Lb ——2 m,
and a= —17.8 psec jkm. Furthermore, imposing s& (0
yields

Q &,Q=4(3 py)'~ =(4RP/
~
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This is the conventional (scalar) MI condition, ' whose
gain is
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FIG. 2. Same as in Fig. 1, with A, =1.55 pm, and a= —17.8
psec /km.

FIG. 3. Same as in Fig. 1, but when the input polarization is
along the slow axis.

gp(Q)=
~

a
~
Q(Q,'4 —Q')'~' . (12)

Maximum growth rate g 3
——2RP is attained at Q=Q

=Q,~/v'2. This frequency shift yields peak four-photon
parametric gain for the sidebands, with identical linear
polarization along the fast pump mode.

Proceeding along similar lines, we study the MI of the
solution of Eqs. (1) (slow mode)

A„=P ' exp[i (RP +13, )z], A~ =0, (13)

known to be spatially stable in the steady state. " From
linearized equations similar to Eq. (4), one obtains a
dispersion relation of the form of Eq. (5), where s, is un-
changed and ~ is replaced by —x in the expression for sz.

For carrier wavelengths longer than the zero-
dispersion value of A, = l. 3 pm, condition sz & 0 is always
satisfied; conversely one has s, &0 when Q & Q,~ [see Eq.
(11)]. Furthermore, the gain is the same as in Eq. (12).
Therefore only scalar MI occurs, i.e., the growing modu-
lation has the same linear polarization of the pump.

A novel behavior is found for a ~ 0. In this case, s, g 0
always, whereas sz & 0 holds if

(y)'~ =Q, &Q&Q, =[y(l+p)]'
The associated gain (see also Fig. 3) is

g4(Q)=
~

a
~
[(Q,2

—Q )(Q —Q,~)]'

(14)

(15)

whose peak value occurs for Q satisfying Eq. (g), with ~
replaced by —~.

We have shown that MI may occur, once that the po-
larization changes along the fiber are accounted for, even
in the case of an input field linearly polarized and orient-
ed along the slow fiber axis and in the regime of normal
dispersion. This is an unexpected result, since this situa-
tion is stable with respect to polarization perturbations
when chromatic dispersion is neglected, and is also stable
with respect to the growth of modulations when the state
of polarization is not included in the description. More-
over, it is remarkable that, unlike the fast mode (requir-
ing p & 1), when a & 0 MPI occurs for the slow mode as

soon as p & 0. A comparison between Figs. 1 and 3 clear-
ly shows that the interplay among birefringence, non-
linearity, and dispersion substantially affects the instabili-
ties that one would predict when considering these in-
gredients separately. In fact, dispersion has a stabilizing
effect over rapid modulations of the spatially unstable
fast mode, and conversely destabilizes the slow mode as
the sideband offset falls within a certain frequency range.
On the other hand, a basic difference with respect to in-
coherent MI (Refs. 7 —10) is that the linear anisotropy is
dramatically enhanced at high powers (thus forcing a
nonlinear nonreciprocity into the inedium), so that the
present MPI is strongly sensitive to the initial relative
phase between the waves (or input polarization state).
Note that the cross-intensity coupling terms appearing in
Eq. (1) are not essential for the existence of coherent MI:
for example, in a directional coupler' the same instabili-
ty is present while the cross-intensity coupling is zero.

Finally, we consider a limiting situation of physical
relevance. When a fiber is so highly birefringent (ir»1
m '), or the input power P is so low, that the condition
p «1 is fulfilled, ' then from Eqs. (6) and (14) one finds
that with normal dispersion both eigenmodes are modula-
tionally stable. Conversely, if a &0, just scalar MI occurs
when Eq. (11) is satisfied. As can be easily shown, no
modulational instability may occur for a &0, even for an
arbitrary input polarization state.

The relatively large gain values (see Fig. 3) should al-
low for the experimental observation of MPI using a few
meters long fiber, before the onset of Raman scattering.
For example, using 100-ps pulses (in order to suppress
Brillouin scattering) from a Q-switched mode-locked
pump source emitting at A. =0.53 pm, coupled into the
slow mode of a fiber with Lb ——2 m, polarization noise-
generated sidebands with a frequency shift of 2 THz are
expected in the orthogonal polarization as the peak
power P is increased to about 200 W.

In conclusion, when one correctly includes the changes
in the state of polarization in the description of wave
propagation in a nonlinear dispersive and anisotropic
medium, entirely new modulational instabilities may
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occur. As a possible important practical application of
these effects, consider that although MI does not neces-
sarily imply the existence of stable solitary waves, the in-

stability suggests that, with the proper choice of fiber pa-
rameters and initial modulation frequency, linear
birefringence could induce the generation of trains of
compressed solitonlike pulses also in the visible. ' Furth-
ermore, it has been recently shown that scalar MI has po-

tential for generating squeezed light. ' Therefore, a
quantized version of Eqs. (I} would offer interesting new
possibilities of sideband squeezing.
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