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Bound solitary waves in a birefringent optical fiber
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We present the first mixed-type solutions to the coupled nonlinear Schrodinger equations which

govern optical pulse propagation in a birefringent fiber. These represent polarization-modulated
pulses which, apart from the absolute phase, propagate unchanged in form. It is shown they are
bound states of two solitary waves which separately have constant and uniform orthogonal linear
polarizations. Furthermore, there exists a minimum-energy threshold for the formation of these
bound states.

I. INTRODUCTION

The nonlinear Schrodinger equation' (NLSE) and its
generalizations are applicable to a wide range of physical
phenomena. In the field of optics the U(l) NLSE de-
scribes pulses under the influence of group-velocity
dispersion and a third-order nonlinearity, but with con-
stant and uniform polarization; it was shown to be integr-
able by the inverse scattering transform. The U(2)
NLSE which also takes into account polarization but
with a relatively simple nonlinearity was also shown to be
integrable by the same method. In a circular optical
fiber or a generic isotropic third-order nonlinear medium,
the dynamics is governed by the O(2) NLSE which was
shown to fail the Painleve integrability test. In a
birefringent optical fiber within the usual approxima-
tions, or in a homogeneous birefringent medium in one
space dimension, the governing equations are'

. Be 82e
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The slowly varying electric field amplitude e is a two-
component complex vector, which describes the two in-

dependent polarizations of a transverse electromagnetic
field with carrier frequency coo and wave number
kp = Q&pcop/c, where ep is the isotropic dielectric con-
stant and c the speed of light in vacuum. The group ve-
locity and group-velocity dispersion are evaluated at the
carrier frequency as are the nonlinear coefficients a and b.
It is assumed that a and b are greater than or equal to
zero, and the intensity has been rescaled so that
a +b =1. The variables t and x are dimensionless time
and space coordinates, respectively, in a reference frame
moving at the group velocity. The derivative terms in
(1.1) along with the first nonlinear term a (e" e)e
comprise the U(2) NLSE while also including the second
nonlinear term b (e.e)e, which is of a different qualita-
tive nature, leads to the O(2) NLSE. This second term is
important in a generic optical medium and represents a
polarization-dependent nonlinearity in contrast to the
first nonlinear term which is isotropic with respect to po-
larization. The birefringence is described by the 2X2
matrix P which is real and symmetric and, the isotropic

component having been incorporated into eo, traceless as
well. This birefringence is crucial to a qualitatively new
family of solitary waves which in its absence reduce to
the single soliton family of essentially the U(1) NLSE.

Without loss of generality we can choose a linear-
polarization basis in which 7 takes the form

a 0
x= A )00 —a (1.2)

and

e&(x, t)=0,
(1.5)

ez(x, t)=v'23 exp]i[( 3 —a —V /4)t + Vx/2+&/rp]]

&(sech[ A (x —xp —Vt)],

and then the equations of motion become
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+b(e, +e2)e2 ——0,
where e& and e2 denote the amplitudes for linearly polar-
ized fields lying along the birefringent axes. These are
coupled nonlinear Schrodinger equations with no obvious
symmetry apart from a constant phase transformation. It
is not known whether these equations are integrable but
for a =0 they fail the Painleve integrability test.

If one of the two fields e
&

or e2 vanishes the remaining
equation is equivalent to the U(1) NLSE. Thus each field
in the absence of the other exhibits all the ¹oliton solu-
tions and multisoliton bound states of that equation. The
single solitons corresponding to these decoupled cases are

e&(x, t)=v'2Aexp[i [(2 +a —V2/4)t + Vx/2+pp]]

Xsech[A (x —xp —Vt)],
(1.4)

e2(x, t)=0
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where A is proportiona1 to the integrated intensity, V is
the velocity, xo is the location of the maximum, and go is

an arbitrary phase (recall that the intensity has been re-
scaled so that (t +b =1). However, apart from the

decoupled case, no analytic solutions to Eqs. (1.3) are
known. Of special interest are "mixed-type" solutions or
equivalently polarization-modulated pulses where the en-

ergy is exchanged between the two fields.
Blow, Doran, and Wood have numerically investigat-

ed these equations and found a rich dynamical behavior.
They tested the stability of decoupled solutions, including
multisoliton bound states, as one varies the relative mag-
nitude of birefringence and nonlinearity. Regions of in-
stability were found where the initially decoupled soliton
evolves, after shedding radiation, into a nondispersive
mixed-type pulse in which the energy is exchanged be-
tween the two fields.

In this paper we present the first mixed-type analytic
solutions to Eqs. (1.3). These represent polarization-
modulated solitary waves that are bound states of the two
decoupled solitons (1.4) and (1.5) and which appear to be
those numerically observed by Blow et a/. We begin in
Sec. II where we find an unexpectedly simple solution us-

ing a Stokes-vector formalism and in Sec. III, using a
generalized Hirota technique, we extend these solutions
to a four-parameter family.
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Before discussing these equations we note that like the
U(1) NLSE (Ref. 9) Eq. (1.1) is invariant under a Galilean
transformation to a moving reference frame. That is, if
e(x, t) is a solution of (1.1) then

e'(x, t ) =exp[i V (x —Vt l2 ) /2 ]e(x —Vt, t ), (2.5)

II. STOKES PARAMETERS

The interpretation of Eqs. (1.3) is facilitated by intro-
ducing a Stokes-vector formalism in which the polariza-
tion behavior of the field is clearly exhibited. The Stokes
vector components are defined by

is also a solution where the velocity Vis an arbitrary real
parameter. We are here interested in a single solitary
wave so it is sufficient to consider a stationary one since a
corresponding solution with a given velocity can always
be constructed using the Galilean transformation (2.5).
For such a stationary solution, by which here we mean
the intensity is independent of time, the first of Eqs. (2.4)
requires

S;:—ej'(o;)Jl, et„ i =1,2, 3 (2.1)

So 2 — cose =0 .a aq ay
ax ax ax

(2.6)

where o; are the Pauli spin matrices. The magnitude of
the Stokes vector is simply proportional to the intensity

If we assume a finite pulse and well-behaved functions

So—= [S/ =e' e
So(x)~0,

(2.2)

a a (oo as [x (~oo,
ax ax

(2.7)

S=So(sinesinp, cose, sinecosp), (2.3)

where the polar axis O=O corresponds to left circular po-
larization. The dynamical equations for the variables Sp,
8, p, and g, as determined from Eqs. (1.3), are found to be

and the polarization is specified by the direction s—=S/Sp
of the Stokes vector. This correspondence between polar-
ization and the direction of the Stokes vector is easiest
seen on the Poincare sphere. The Stokes vector de-
scribes the intensity and polarization of the field but not
the absolute phase. So corresponding to the four real
fields in Eqs. (1.3) we consider the three Stokes parame-
ters S and the absolute phase g. Furthermore we intro-
duce spherical polar coordinates in Stokes-vector space,

then (2.6) yields

a@ 1 ay cosO .
Bx 2 Bx

(2.8)

To proceed further we consider the physical nature of the
nonlinearity. It is a function of the polarization and
specifically depends upon the magnitude of the circular
component; all polarizations with the same circular com-
ponent experience the same nonlinearity. Then since
birefringence is present we consider a polarization that is
everywhere linear but in a direction which can depend
upon space and time. In Stokes-vector space this corre-
sponds to taking e=n/2 and P as of. yet unrestricted.
With 8=m/2 Eq. (2.8) requires that ag/ax =0, and the
third of Eqs. (2.4) then imPlies aP/at =0. Thus P and So
are only functions of x and (tj is only a function of t, in
which case the last of Eqs. (2.4) is consistent only if ag/at
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is a constant, that is,

g(t)=At+/, , (2.9)

Substituting this intensity profile back into (2.12) gives

cosg(x)=1 —2sech [(—', )' a(x —xo)],
(2. 17)

where A is a constant to be determined and $0 is an arbi-
trary absolute phase. The remaining equations of motion
then reduce to

P"+ P' —2a sing=0,
So

So
(2.10)

+So — +a cosP —A=O,
4 So 2

1 So
2 So

whose integrating factor is simply So. Upon integration
we obtain

1 1 So' 3cosP= — — +—So —2A
2 So 2

(2.12)

where the prime denotes differentiation with respect to x.
Taking the derivative of the second of these equations,
using the first to eliminate P", and then the second to
eliminate (P'), gives a first-order equation for cosP,

So 1 1 „3 2(cosP }'+ cos4+ —So +—So —2ASO =0,
0 2a So 2

(2.11)

si(x) =0,
si(x)=1 —2 sech [(—', )' a(x —xo)] .

(2.18)

As x ranges from —00 to + ~ the unit Stokes vector in-
scribes a great circle on the Poincare sphere in the 1-3
plane. In other words, the direction of linear polarization
rotates as a function of position in the pulse, and as one
moves from the leading to the trailing edge it makes a
complete rotation of 180' (in real space). Furthermore, in
the far wings, the polarization lies along the birefringence
axis defined by e&, awhile at the peak it lies along the or-
thogonal birefringent axis. The intensity and polariza-
tion profiles, Eqs. (2.16) and (2.18}, are depicted in Sec.
III along with more general solitary wave solutions.

In terms of the electric field amplitudes this solitary
wave becomes

sing(x) =2 sech[( —', )' a(x —xo)]tanh[( —', )' a(x —xo)],
and from (2.3) and (2.17) we deduce the following expres-
sions for the unit Stokes vector:

si (x)=2 sech[( —,
' )'~ a(x —xo)]tanh[( —', )' a(x —xo }],

where the integration constant has been set to zero. Sub-
stituting this expression for cosP back into the second of
Eqs. (2.10) gives a closed expression for the unknown in-
tensity

2

ei(x, t)=2a exp[i( —,'a t +$0)]sech[( —', )' a(x —xo)]

Xtanh[( —,
')' a(x —xo)], (2.19}

2Z Z'+ —+—y —2A
Z 3

2

4a — Z'+ —+—y —2A4 t Z 3

2

Z 1
X — +—

2
(2.13)

Here Z =[(+SO)'], y =So, and the prime denotes
differentiation with respect to y. One can easily verify
that a solution is given by Z(y)= A y ——,'y, which can
be integrated with respect to So to yield the intensity
profile

So(x)=2A sech [A(x —xo)], (2.14)

where A and xo are arbitrary real constants. Substituting
this profile back into (2.12) and then into (2.10) deter-
mines /=0, n and A= A +a, which are the single
decoupled solitons (1.4) and (1.5), respectively. Another
nontrivial solution to Eq. (2.13) is

e2(x, t)=2a exp[i( ', a t +g )o]sec—h[(—', )' a(x —xo)],

which is the first known mixed-type solution of Eqs. (1.3).
Equations (2.19) represent a stationary solitary wave, but
one can always apply the Galilean transformation (2.5) to
obtain a solution propagating at an arbitrary velocity. In
Sec. IV, using an alternate approach, we extend these
solutions to a four-parameter family.

III. HIROTA APPROACH

The Hirota method which has been used in studying a
number of nonlinear wave equations including the U(1)
NLSE (Ref. 1} can be extended to treat the coupled non-
linear Schrodinger equations (1.3}.

Considering the solutions obtained in Sec. III we look
for solitary waves of the form

A= —,'a, Z(y) =—', a y ——,'y5 2 2 2 1 2 (2.15) e, (x, t) =exp[i( A t +go)]e, (x),
e2(x, t) =exp[i ( A t +Po) ]e2(x),

(3.1)

&o(x)=4a sech [(—,')'~ a(x —xo)] . (2.16)

which upon integration also gives a hyperbolic-secant in-
tensity profile, an unexpectedly simple result, where A is a real constant and e, (x) and ez(x) are as-

sumed to be real. Substituting Eqs. (3.1) into the equa-
tions of motion (1.3) we obtain
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2a'
2 2 2+(ei+e2)e, = A ie),

Bx
2

+(e, +e2)e2 ——A2ez,
Bx

where we have defined

(3.2)

f„'„'=4A (exp(28, )+4A &exp(28&),

{2) A 2 {2) g {2) A 2P {2)
xx 1 & xx 2

which gives

f' '=exp(28, )+exp(282), g' '=0, h' '=0.

(3.11)

(3.12)

A2 A2 a2 A2 A2+a2 (3.3)
To third order in e, taking into account (3.9) and (3.12),
we obtain

and again recall that the intensity has been rescaled so
that a+b =1. It is assumed A )a so that A1 and A2
are both real; A is otherwise arbitrary. Later we find this
restriction on A implies a minimum energy threshold for
the formation of these bound states.

To solve Eqs. (3.2) we make a change of dependent
variables from the electric field components e, (x) and

e2(x) to the functions f (x), g (x), and h (x), where

f(3) 0

g„'„"=A )g'"+8&2A, A, ( A, —A, )exp(8, +28, ),
(3.13)

h„'„'= A&h' ' —8&2A) A2(A) —A2)exp(82+28) ),
to which corresponds the solution

e=— e=—
1 ~ 2f f

and f satisfies the relation

e) +e2 ——2(lnf)„„,

(3.4)

(3.5)

f (&) (}

A1 —A2

A1+ A2
exp(8, +282), (3.14)

fg.. 2f.g. +g—f..= A )fg

fh„„—2f„h„+hf„„=A 2fh,

g +h =2f (lnf }„„,
(3.6}

and we look for solutions to these equations in the form
of power series in a parameter e,

where hereon the subscript x denotes partial
differentiation. From Eqs. (3.2), (3.4), and (3.5) we obtain
the following coupled equations for f, g, and h:

h' '= —2&2A2 exp(82+28) ),
A1+ A2

and in a similar manner we find at fourth order

A1 —A2
exp(28, +282),

A1+ A2

g")=o, h"'=o. (3.15}

n=1 n=1 n=1

(3.7}

f =1+ y e"f'"', g= y e"g("), h = y e"h'"'. At this point we assume the series can be truncated, that
is, we postulate a solution with all the higher orders set to
zero. Then putting a=1 we have

Substituting (3.7) into (3.6) we deduce relations connect-
ing the different f'"', g'"', and h'"' at each power of e.
At first order we obtain

f (x)= 1+exp(28( )+exp(282)

f"'=0 g"'= A ig")
xx 7 xx 1 ~ xx 2 (3.8)

'2
A1 —A2

+ exp(28, +282),
A, +A2

for which we consider the following solution:

f"'=0, g")=2&2A, exp(8, ),
h "'=2&2A 2exp(82),

(3.9)

A1 —A2
g (x) =2&2A ) exp(8) ) 1+ exp(28&)

A1+ A2

(3.16)

where we have defined h (x) =2&2A2exp(82) 1— A1 —A2
exp(28, )

A1+ A2

8, —:A, (x —x,()), 8z =—Ai(x —xzo), (3.10)

with x,o and x20 arbitrary constants. To second order in

e, taking into account (3.9},we find

Substituting (3.16) into Eqs. (3.6) verifies that this is
indeed a solution, thus justifying our assumption. The
electric field amplitudes according to (3.1) and (3.4) are
then
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e, (x, t)=

ez(x, t)=

A] —A2
exp(28, )

A]+A2
2

A) —A2
1+exp(28, )+exp(28z)+ exp(28, +28z)

A)+A2

2&2Azexp(iA t+ipo+82) 1—

A] —A2
2&2 A 1 exp( i A t +i $0+81) 1+ exp( 28z )

A]+A2
'2

A) —A2
1+exp(281)+exp(28z)+ exp(281+ 28z)

A)+A2
(3.17)

which represent well-behaved solutions that go to zero as

~

x ~~. As before, one can always apply the Galilean
transformation (2.5) to obtain a solution propagating at
an arbitrary velocity; for simplicity we discuss only the
stationary case. Equations (3.17) represent a four-
parameter ($0, A, xip, xzp) family of polarization modu-
lated solitary waves. The first parameter is simply the in-
itial absolute phase; the remaining three are best inter-
preted by considering some special cases.

If we take the limit x2p~ao with x,p constant, Eqs.
(3.17) reduce to

ei (x, t) =&2 A1expI i [( A 1+a )t + ito] I

X sech[ A1(x —x10)],

ez(x, t) =0,
(3.18)

which is just the single decoupled soliton (1.4) with am-
plitude A, and position of maximum x,p. Taking the
limit x &p

~ ~ with x2p constant we find

ei(x, t}=0,
ez(x, t) =&2 Azexpti [( A z

—a )t + $0] I

X sech[ A z(x —xzp )],

(3.19)

e, (x, t)=&2A, expti [( A, +a )t +1(0~1r])

X sech[ A, (x —x10 —5 )],
ez(x, t) =0, (3.20)

which is again (1.4) but with a phase shift of vr and a dis-
placement of 6 in the position of the maximum, where

A2 —A]
ln

A] A2+ A)
(3.21)

Similarly in the limit x &p
~—~ with x 2p constant we

find

e, (x, t)=0,
e (2xt)= v2 Aezxp i[[(Az —a )t+itrp]J

(3.22)

which is the other decoupled soliton (1.5) with amplitude
A 2 and position of maximum x 2p. In the limit
x 2p ~—~ with constant x &p we obtain

where

A2 —A)
ln

A2 A2+ A)
(3.23)

which is again the other decoupled soliton (1.5). Such a
phase shift and displacement of the maximum is typical
behavior for multisoliton solutions. It is then clear that
(3.17) describes a bound state of the two solitons (1.4) and
(1.5). Then one can think of A 1 and Az as the ampli-
tudes of the two constituent solitons and likewise x&p and

xzp as their respective "locations. " The definition of the
locations of the individual solitons is however somewhat
ambiguous due to the displacements (3.21) and (3.23).

Let us consider further special cases. If we set

e, ( xt)=0,

ez(x, t) =2a exP[i (a t + 1(0)]

Xsech[&2a(x —xzp)] .

In the limit a~O A
& A2 = A, and we obtain

(3.24)

e(x, t ) =&2 A eoexp[i ( A t + $0) ]sech[ A (x —xp )],
(3.25)

where xp and ep are defined by

exp( —2 Axp)—:exp( —2Ax, p)+exp( —2Axzp),
(3.26}

eo—:(exP[A (xp —x,o)],exP[A (xp xzp)]),

and ep describes a linearly polarized wave.
Returning to the general bound-state solutions (3.17)

we deduce from (3.1), (3.5) and the first of Eqs. (3.16),

e& + e2 dx=4 A&+A2

4[( A 2 a2)1/2

X 10 ( } +Xp X20 ( } +Xp1/2 3 1/2

2Q 4a

we obtain the solutions (2.19) discussed in Sec. II, apart
from the phase transformation e, ~—e, under which
Eqs. (1.3) are invariant. If A =a then A1=0, and we

again obtain a single decoupled soliton

X sech[ A z(x —xzo —5')], + ( A 2 +a2 )1/2] (3.27}
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and so these are finite energy pulses, and since these solu-

tions are only defined for A )o, we find a minimum en-

ergy threshold

f (
~
ei

~
+

~
ez

~

)dx &4&2a (a&0) . (3.28)

The intensity profile described by Eqs. (3.17) can exhib-
it interesting forms including a double peak structure de-

I

pending on the parameters A, x,o, and x20. This is easily
understood since these solutions are a superposition of
the two solitons (1.4) and (1.5) with possibly different lo-
cations. Nevertheless the polarization profile can still be
viewed in a simple manner. In terms of spherical polar
coordinates in Stokes-vector space the polarization
profile is described by

A 2( A, + A i )exp[ —A i(x x io)] A 2( A i A 2)exp[ A i(x x io) )8=—,P(x)=2 arctan2' A )(A i+ A2)exp[ —A2(x x2o)~+ Ai(A )
—Ap)exp[A2(x x20)~

(3.29)

and, as with the simpler solutions discussed in Sec. II,
this profile inscribes a great circle on the Poincare sphere
in the 1-3 plane as x ranges from —00 to ~. At the trail-
ing edge the polarization lies along the birefringence axis
of e„and as one moves through the pulse the plane of
polarization rotates until at some point it lies along the
orthogonal birefringent axis defined by e2. Proceeding
through the pulse the rotation continues until at the lead-
ing edge the polarization is once again along the first
birefringence axis. In Figs. 1(a)—1(d) are depicted intensi-
ty and polarization profiles for A2 ——2A, =2 and

x,o= —x2o =—5, with differing values for 5. The solid
lines indicate the intensity profiles while the dotted lines
the angle of rotation from the e, birefringence axis in real
space; this is one half the rotation angle in Stokes-vector
space, the second of Eqs. (3.29). In Fig. 1(a), where
5=3.00, the two constituent solitons are widely separat-
ed. The polarization is essentially constant throughout
each pulse but orthogonal for the two pulses, lying along
each of the two birefringence axes. Only in the wings is
the polarization modulated, and as discussed previously,
goes through a full cycle 0'~180' as x ranges from —Oc

8.0
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180 8.0

(b)

180

8.0- - 135 8.0- - 135
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FIG. 1. Dimensionless (normalized by a+b) intensity (solid line) and polarization (dotted line) profiles of bound-state solitary
waves with varying separation 5 of the constituent solitons. (a) 5=3.00, (b) 5=0.90, (c) 5=0.30, (d) 5= —0.14.
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to ~. In Fig. 1(b), on a different horizontal scale, the
separation is decreased to 6=0.90. The constituent soli-
tons begin to overlap and the polarization becomes
modulated in this overlap region. In Fig. 1(c), where the
separation is 5=0.30, one still observes the double peak
structure but a smoother polarization modulation. The
last figure, with 6= —0. 14, which is the case discussed in
Sec. II, exhibits a symmetric intensity profile and a kink-
like polarization modulation.

It is also interesting to note that Eqs. (3.2) can be
viewed as a quantum-mechanical problem for a bounded
potential —(ef+ez). In this interpretation e, (x) and
ez(x) are energy eigenfunctions with eigenvalues —A f
and —A2, respectively. Then in the usual manner one
can deduce the orthogonality relation

a J dx e, (x)e2(x)=0, (3.30)

and so the integral vanishes for a&0.

IV. DISCUSSION

Using a Stokes-vector formalism and then a general-
ized Hirota technique we have obtained the first mixed-
type solutions to the coupled nonlinear Schrodinger equa-
tions which govern optical pulse propagation in a

birefringent fiber. These describe polarization modulated
solitary waves whose polarization profiles are convenient-
ly pictured in Stokes-vector space where they simply in-
scribe a great circle on the Poincare sphere. It was
shown these are bound states of two solitons which sepa-
rately have constant and uniform orthogonal polariza-
tions along the two birefringent axes. Furthermore there
exists a minimum energy threshold for the formation of
these bound states.

Of considerable interest is the question of stability.
The numerical work of Blow et al. has shown that the
two decoupled solitons (1.4) and (1.5) are both separately
stable for A less than about a, which is below the ener-

gy threshold for the formation of bound states. However,
for A greater than about a, above the threshold, they
observe an instability in one of the two decoupled soli-
tons, and for certain initial conditions find that the pulses
evolve into mixed-type nondispersive solitary waves. It
would be interesting to see if the energy threshold exactly
corresponds to this bifurcation and if the analytic solu-
tions presented here are stable.
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