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An analytical function is derived which can serve as a criterion of the instability boundary of
both optical-bistable (OB) systems and laser systems with an injected coherent signal (LIS). By
means of the criterion, we analyze, in various asymptotic limits, the instability regions of OB and
LIS in the parameter space. In both good- and bad-cavity conditions of LIS a full hysteresis loop
between coexisting stable states is observed for the first time.

I. INTRODUCTION

The study of optical systems exhibiting bistability'
and laser oscillators driven by an external coherent
field ' has been a very active field in the last two decades.
Recently, the instability manifested by optical bistability
(OB) and by lasers with an injected signal (LIS) has at-
tracted much attention. " It has been found that a
large variety of behaviors, such as quasiperiodicities, un-
stable pulsations, and chaos, may appear in the regions
where instability functions. The theoretical and practical
importance of such kinds of erratic behavior has been re-
peatedly emphasized.

A number of publications have contributed to showing
the instability as well as the numerous bifurcations in the
instability regions of OB and LIS by taking various com-
binations of parameters. ' ' Moreover, many kinds of
approximations have been used to reduce the complex in-
itial Maxwell-Bloch equations to lower dimensions.
However, to date, no result about the global structure of
the instability regions of OB and LIS has been reported.
The reason is that, on the one hand, the Maxwell-Bloch
equations are essentially multidimensional, and on the
other hand, there are so many parameters involved in the
problem.

Lugiato et al. shed much new light on the understand-
ing of the instability problem. They analyzed the boun-
daries of the instability regions of OB and LIS in the
Gaussian radial distribution approximation' and in the
plane-wave approximation. ' Nevertheless, still only a
small part of the parameter space has been examined
since the mathematical form suggested for determining
the instability boundary is implicit. In Refs. 18 and 19
the instability condition of OB in the limit of large small-
signai gain was given explicitly.

The main purpose of the present paper is to suggest an
explicit criterion in terms of which a description of the
global structure of the instability regions of OB and LIS
in the parameter space becomes available. The publica-
tion is organized as follows. In Sec. II we present the
model and the general theory defining the explicit cri-

II. GKNKRAI. THEORY

A. Optical bistability

We consider an optical undirectional ring cavity filled
with a passive medium, consisting of homogeneously
broadened two-level atoms, and driven by an external
coherent optical signal. Considering only the single-
mode case, applying the plane wave approximation, and
taking the mean-field limit, we can reduce the Maxwell-
Bloch equations to

x = —k [(1+i0)x —y +2Cp],

p =xD —(1+ib, )p,
D.= —y[(x'p +xp*)/2+D —1],

(2.1)

where all the variables and the parameters are dimension-
less. x and p, being proportional to the output field and
the atomic polarization, are complex numbers, while the
normalized atomic population D is real and positive.
Then the equations are essentially five dimensional. The
system parameters C, k, and y designate the smali-signal
gain, the cavity linewidth, and the atomic population de-
cay rate, respectively. Both k and y are scaled to the
homogeneous linewidth y~. Given the frequencies of the
external field, the atoms, and the cavity as coo, cu„, and
co„respectively, we scale the atomic detuning and the
cavity mistuning as b =(co„—coo)/y~ and 8=(co,—coo)/(kyt). Therefore there are six independent pa-

terion function of instability boundary. In Sec. III, in
terms of the criterion function, the instability boundary
of OB in various limiting cases are specified. Section IV
contributes to the discussion of the instability of LIS. In
Sec. V we summarize the results and indicate various ap-
plications and extensions of our theory.

It is emphasized that in the presentation we focus on
the formulation of the instability boundary. We do not
proceed further into detail about what happens in the in-

stability regions, though we are sure that various erratic
behaviors can emerge only in these regions.
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rameters (C, k, y, 8, b„and y) involved in the problem.
The incident field y is taken to be positive. It seems to be
an extremely difficult task to clarify the instability prob-
lem of five-dimensional coupled nonlinear differential

I

equations in a six-dimensional parameter space.
In spite of the nonlinearity of the coupled equations,

the explicit stationary solutions of Eqs. (2. 1) can be
worked out,

y =
~
x,

~
I[i+2C/(1+~'+ lx, I'}]'+[8—»C/(1+~ +

I
x.

I
}] I

D, =(1+9,')/(1+6, '+
)
x,

)

'),
p, =(1 ib, )—x, /(1+6 +

~
x,

~

) .

(2.2}

Based on the explicit solutions, one may apply linear stability analyses and, in principle, reveal the instability regions.
The equations of the linearizations of Eqs. (2.1) about the steady state (2.2) turn out to be

D

0
—2Ck

0
—(1—id, ) x,'

yp—,'/2 —yp, /2 —yx,'/2 —yx, /2 —y

—k (1+i0) 0 —2Ck
0 —k(1 —i8) 0

D, 0 —(1+id, )

5x
5x"
5p

5p'
5D

(2.3)

with

x =x, +5x, p =p, +5p, D =D, +5D,
which lead to the characteristic equation

A, +a, A, +a2A, +a~A, +a4A, +as —0,
where

a, =2k+y+2,
a2=k (1+8 )+(2y+1+b +yx )+2k(y+2)

+4kCD,

(2.4)

(2.5)

ters C, k, y, 5, 8, and x2. (Here it is convenient to em-

ploy x 2 instead of y as an independent parameter. )

lt is, obviously, impossible to solve Eq. (2.5) analytical-
ly and obtain explicit solutions of the eigenvalues. How-
ever, a general discussion about the instability of the
steady solutions (2.2) may be possible without seeking the
precise solutions of A, . By the Routh-Hurwits criterion '

one may clarify the instability conditions. However, the
many inequalities provided there are not convenient for
specifying the instability boundary in the space of control
parameters. Therefore, we proceed in the following way.
First, some necessary conditions for (2.2) to be stable are

a, =y ( 1+b, '+x ') +2k (2y+ 1+5'+ yx ')

+k'(1+ 8')(y+ 2)

+4kCD(y+k + 1)—Cyk (p'x +px'),
(2.6a)

a), a2, a3, a4 &0,

a5)0 .

(2.7a)

(2.7b)

The steady state may lose its stability via Hopf bifurca-
tion. Assume, at the critical situation, we have

i(p'x —px*)= —2bx /(1+6, +x ),
(p*x +px*)=28,x /(1+6, +x ),

(2.6b)

and having D provided in Eqs. (2.2), all the coefficients in
(2.6a} are presented explicitly in terms of the six parame-

a4 ——2ky(l+b, +x )+k (1+8 )(2y+1+b +yx )

+2kCD [2k (1—68)+2y(k + 1)+yx ]

+Cky[i(h+k8)(p'x —px')
—(k + 1)(p *x +px *}]+4k C D

as=yk [4C D[D —(p'x+px')/2]

+(1+8'}(1+6,'+x')+4CD(1 —b, 8) j .

Here and henceforth we replace p„p,', D„and
~
x,

~

2

simply by p, p', D, and x, respectively. Considering

A, =iv, v) 0 . (2.8)

v —a2v +a4 ——0,4 2

a]v —a3v +a5=0 .4 2

(2.9a)

(2.9b)

According to the requirement that (2.9a) and (2.9b) must,
at least, have an identical solution, we may transform
Eqs. (2.9) to

(a2 —v )/(as/a, —v )=a,a4/as,2 2 =

(a2 —as/a&)v =a4 —as/a]2= (2.10)

leading to the critical condition of Hopf bifurcation,

f =(aia2 —as}(a3a4 —a2as) —(ala4 —as) =0.2=

(2. 1 1)

Substituting A, in (2.5) by (2.8), a pair of equations are
justified,
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In fact, it is easy to verify that

f )0 (2.12)

is one more necessary condition for the stability of (2.2).
It is emphasized that Eqs. (2.7) and (2.12) are only neces-
sary conditions for the stable steady solutions. They are
not sufficient. For instance, it is possible that Eq. (2.5)
has two pairs of conjugate complex roots with positive
real parts and one negative real root in the case of
a „.. . , a5,f & 0. At any rate, the violation of any condi-
tion of Eqs. (2.7) and (2.12) provides a sufficient condition
for the instability of the steady state.

There are two points worth noting to this end.
(i) All the necessary conditions of Eqs. (2.7) and (2.12)

are not equally important. Starting from a stable region
and varying the parameters continuously, there are only
two possibilities to alter the stability of the system. First,
one eigenvalue passes the origin, or second, a pair of con-
jugate complex eigenvalues cross the imaginary axis. In
the former case a& changes its sign first while in the latter
case it is f that first alters its sign. In any case, anyone
among a &, az, a3, and a4 can never be the first one turn-
ing negative as the system crosses the instability bound-
ary. Therefore a], a2, a3, and a4 have no relation with
the boundary condition of instability. Only the critical
conditions a~ =0 and f =0 can serve to define the insta-
bility boundary. Moreover, one may easily verify that

d(y )/d(x ) cca5 .

Hence, a ~ & 0 represents, in y-x space, the segment of the
solutions with a negative slope that we are not concerned
with. We are interested only by the solutions with a posi-
tive slope. Hence forward, when we talk about instability
we always mean positive-slope instability, i.e., the insta-
bility on the branches where a»0. Thus among so
many (six) necessary conditions only the unique condition
(2.11) is essential for the instability boundary. (By the
Routh-Hurwits criterion one should consider five ine-
qualities, none of which can be regarded as the most im-
portant one. )

(ii) Though Eqs. (2.7) and (2.12) are not sufficient for
(2.2) to be stable, one may identify the stability of the
steady solutions in many practical cases. Before proceed-
ing further let us give a definition of connected regions.
Region A and region 8 are regarded as connected if and
only if one may pass from one to the other via any path,
by varying the parameters continuously and retaining the
signs of a, , . . . , a5 and f through the whole path. It is
obvious that a region connected with a stable region must
be stable. In many simple cases one may easily justify the
stability of the solutions (e.g., as x ~ ~ or as b =0=0).
Thus in some complex situations it might be possible to
verify the stability of the solutions by proving the connec-
tion of the given regions with certain known stable re-
gions. This procedure will be shown to be powerful in
many practical cases. Together with a proof of the con-
nection, Eq. (2.12) can serve as both a necessary and
suScient condition for the stationary solutions to be
stable. The instability boundary is given by Eq. (2.11).

The condition for the instability boundary has been an-
alyzed by Lugiato et al. Up to Eqs. (2.9), our approach is

only slightly different from their method [cf. Refs .16 and
17]. In fact, Eqs. (2.9) are essentially the same as Eqs.
(3.15) in Ref. 17. However, in Ref. 17, v appears in a pair
of equations in an complicated way that led the authors
to conclude that in most cases an analytical form for the
elimination of v is not available. ' The simple form of
Eqs. (2.9) leads us to the opposite conclusion: In any case
(apart from v=0, which indicates a~ =0) an analytical el-

irnination of v can be realized easily.
From Eqs. (2.5)—(2.12), the mathematical procedures

need only an elementary calculation and a little trick.
However, from the physical point of view, we have car-
ried out an extremely important jump. The physical im-

pacts of the realization of Eq. (2.12) can be noted as fol-
lows.

(1) For the first time, we obtain an analytical and expli-
cit criterion defining the instability boundary. Previous-
ly, various asymptotic limits have been used individually
to detect instability basins by chance. Now all these lim-
its can be studied together in terms of a single function f.

(2) Equation (2.12) is exact, and no further approxima-
tions reducing the dimension of the variable space are
needed.

(3) The function f can be regarded as a potential. In-
stability may arise in all the basins where the value of the
potential is less than zero. Then by studying the level
curves of equal potential and the basin structure of the
function f it becomes possible to predict the global struc-
ture of the instability regions.

(4) Moreover, the new approach can be directly extend-
ed to many practical situations which will be cited in Sec.
V.

B. Laser with a coherent external optical signal

With the same approximations stated for OB, we may
drive the Maxwell-Bloch equations

x = —k [1+i5)x —y +2Cp],

p =xD —(1+ih)p,
D = —y[(x'p+xp')/2+D +1];

(2.13)

D, = —(1+6,')/(1+6, '+
I x,

I

'),
p, = —(1 ib, )x, /(1+6 +

I
x, I

—) .

Replacing Eq. (2.6b) by

i(p*x —px*)=2bx /(1+6 +x ),
(p'x +px') = —2x /(1+6 +x'), (2.15)

and D by Eq. (2.14), Eqs. (2.6a), (2.7), and (2.12) make

Eqs. (2.13) are identical to Eqs. (2. 1) apart from D+1 re-
placing D —1 in the last equation. The difference indi-
cates that now the medium is active rather than passive.
The steady solutions of (2.13) read

I [[1—2C/(I+a'+
I x, I

')]'

+[8+23,C/(I+5, '+
I x,

I

')]']'", (2.14)
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sense in the case of LIS.
To conclude this section we present three figures,

which may provide some intuitive information about the
function f. In Figs. 1 and 2 we use the parameters taken

by Lugiato et al. in Ref. 16. The perfect coincidence of
the segments of negative f in our case with the instability
regions denoted in Ref. 16 is evident. In Fig. 3 we find
that the function f falls down into negative regions twice.
We predict that in region 2 an instability island which is,
generally, not easy to find in LIS must exist.

III. INSTABILITY OF OB

In this section and the following sections we focus on
the instability problem in various asymptotic limits,
which include most previous results of instability as spe-
cial cases. In the presentation, most limiting cases are
realizable and of practical interest, while some of them
may not be physically meaningful. Nevertheless, an un-
derstanding of all the limiting cases must be theoretically
useful for clarifying the global structure of the instability
regions in the parameter space.

A. 6=8=0

Now we consider purely absorptive OB. Equations
(2.3) can be separated into two independent sets of equa-
tions:

300.

0 6

5X=5p=0 is always stable. Thus the linearization of
Eqs. (2.1) is essentially three dimensional. Instead of Eqs.
(2.7) and (2.12), we now have

and

b„b2, b3 &0 (3.2a)

f =b, b2 b3) 0— (3.2b)

as the stability conditions of the steady solutions, where

-3QQ '

FIG. 2. Laser with an injected signal. f is plotted against

~

x'
~

. Parameters used are C =20, k =0.5, y =0 05, 8=2, and
b, =1, which were used in Fig. 6(a) of Ref. 16. The validity of
(2.12) is justified.

5D
Ds

'vpx

—1 x, 5p

—yx —y

—k —2kC 0 5x

(3.1a)

b, =k+y+1,
b2 ——k +y+ky+yx, +2kCD, ,

b3 ——ky+2kyCD, +kyx, 2kyCp, x, —.
(3.3)

Qp s
—1 $p

—k —2kC 5x
(3.1b)

y =x, [1+2C/( 1+x, )] . (3.4)

Unlike Eqs. (2.7) and (2.12), the conditions (3.2) are both
necessary and sufficient for the stability of the solutions

with all variables in set (3.1a) being real while those in
(3.1b) are imaginary. In (3.1b) the steady solution

It is easy to check that

b„b, ,f )0

5
xl 07. 2Q

io-

10
X

Reg
0 2 6,

FIG. l. Optical bistability. Function f, defined in (2.11),
plotted against

~
x

~

. The parameters are chosen as C =75,
k =0.5, y=2, 0= —9, and 6=1, which were used in Fig. 4(a)
of Ref. 16. The region of negative f is perfectly identical to the
unstable segment in Ref. 16.

-29 .

FIG. 3. Laser with an injected signal. Parameters used are
C =20, k =0.1, y=0.01, 6= —5, and 5=5. f falls into the
negative region twice. In region 2 an instability island may be
expected.
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Hence, the steady solutions (3.4) must be stable in the re-

gion b 3 & 0. The condition b
& & 0 represents the

negative-slope branch in the triple-valued state equations.
Therefore the global structure of the instability region in

the full resonance case is completely clarified. In fact, the
purely absorptive OB is a well-known model. Our result
is not new. However, here we apply our new approach to
this simplest case and the result is an elementary part of
the forthcoming rich and general results.

B. x2»k, y, h, H, C =O(1)

f =(a la2 a3 }( 3a5 a2a5 }» (3.6)

These results are consistent with the conclusion that the
steady state should be stable as x ~ oo (i.e., y ~ ~ } since
then the system must be completely controlled by the
external driven field.

With two stable samples (b =8=0 and x ~ oo ) in
hand we may confirm the stability properties in more
complicated situations by considering the connections.
We put most of results in Table I. In Table I the site

( A, B) means the limit

A »8 »other parameters=O(1) . (3.7)

The results can be summarized as follows.
(i} In all the sites denoted by "2," the system is stable

and single valued. All these regions are connected with
the region x &) 1.

(ii) All the regions denoted by "1"are connected with
the region 6=0=0, and then the solutions with positive
slope are always stable.

Apart from cases 1 and 2, there remain few limits in
Table I. We will show that the limits k &)y»1 and

y »k &&1 give the same instability boundary. Thus we
denote them together by "3." Now let us study cases 3,
4, and 5 in detail, and leave the simplest cases (1 and 2)
for readers to check by themselves. Here we only remind
readers of the following. If the limit C »1 is taken, the
upper and the lower branches should be distinguished.
The upper branch covers the domain

In the asymptotic limit we have

a& ——2k +y+2, a2 ——yx, a3 ——y(1+2k)x
3.5,'

a4=ky[2+k(1+8 )]x, a5=k y(1+8 )x

(Here and henceforth, we use the sign of equality whenev-
er it is valid in the leading order. ) It is apparent that
a], . . . , a~ & 0. A direct calculation shows

l~ & Y. ~ ~'

/'~ » Ii~1/i 2

2 2 2 2

2 Z 2 2 Z

2 2 2 2 2

1 1 4 Z

8* /c .',
2 2 1 1

2 2 4 1

2 2 4 1

2 2 4 5

2 2 1

2 4

a~ ——2k, a2 ——(1+8 )k

a 3
——(1+8 )( y+ 2)k +4k CD,

a, = [(1+8')(2y+1+b, '+ yx')+4CD(1 58)—
+4yCD —2yC(i+68)x /(1+6, +x )

+4( 2D ]k

a5 yk I4C——D[D —(p'x+px')/2]

+(1+8')( I+&'+x ')

+4C(1+62)(1—b8)/(1+6, 2+x')
I .

(3.10)

Equation (2.11}can be simplified to

f =a&a2(a3a4 —a2a5) ~a3a4 —a2a5 (3.1 1)

The sign of f depends on the concrete values of C, b„, 8,
y, and x . The situation becomes complex as well as in-

teresting. Equation (3.11) can be analyzed thoroughly.
However, in the present paper we prefer to require fur-
ther limits to simplify the formula even more rather than
proceeding to a general analysis.

Besides the limit k » 1, let us consider a further limit

k))y &) I .

Now a3 and a4 in Eqs. (3.10) can be further reduced to

a3=y(1+8 )k

TABLE I. The stability properties of OB in various limiting

cases. The site ( A, B ) means the limit 3 »8 » l. The regions
denoted by "1"are connected with the region 5=8=0, and the
regions denoted by "2" are connected with the region x »1.
The stability behavior in regions 3, 4, and 5 is described in Secs.
III C—III E, respectively. In the last column, the letters u and I
represent the words upper and lower, respectively.

x & 2C[( 1+6, )(1+82)]'~2

while the lower branch covers

1+3 &x )0.

(3.g)

(3.9)

and then

(3.12)

a4=yk (1+8 )(2 ) 4CD—
(1+b,2+x ')

C. k »1 f ~(a3a4 —a2a5~a3a4~a4 . (3.13)

This is a very bad cavity condition. The coefficients of
Eq. (2.5) can be specified as

The sign of f is identical to that of a4. The necessary and
sufficient condition for the stability of the steady state is
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a4 &0, namely,

x'(1+58}& (1+8')(2+x')(1+52+x 2)

4C(1+52)
(2C)

(3.14)

a4=yk [(1+8 )(2+x )+4CD

—2C(1+b8)/(1+ 62+x')] .

Equation (3.18) can be reduced to

f =a1a2a2a4 ~ a4 & 8,

x'(1+6,8) &2(1+6,2) . (3.1 5)

[It is obvious that one may reach the parameter region
where (3.14) is valid, starting from the region 8=6,=O,
by fixing x and C and retaining the signs of a, , a2, a3,
a4, and f via the path in the b, -8 plane
(0,0)~(0,8)~(b, 8). Thus the parameter region (3.14)
must be connected with the region 5=8=0 so far as the
solutions with a positive slope are considered. ] With
(3.14} one may describe the instability boundary in C-b,
8-x space. Here we restrict ourselves to the following
conclusions.

(i) A direct verification shows that positive-slope insta-
bility can never be observed in the entire region 58 &0
(i.e., in the second and fourth quadrants and on the 8 and
b, axes in the b, -8 parameter plane}.

(ii) For small C (for instance, C &2), (3.14) is always
valid, and then one can never find instability.

(iii) For large C and in the upper branch, where we
have, approximately, x &2C[(1+6 )/(1+8 )]' [cf.
Eq. (3.8)], Eq. (3.14) is valid identically. The entire upper
branch is stable.

(iv) For large C and in the lower branch, Eq. (3.14) can
be replaced by

f ~a5a4 a2a5) (3.20)

where a&, a2, and a4 are, obviously, not negative. A
sufficient condition for the turning point (a5 =0) to be
unstable is

which is exactly the same as Eq. (3.13). Then the limits

y » k »1 and k » y » 1 give the same instability
boundary. Thus both of them are denoted by "3" in
Table I. Generally, the limits A »B » 1 and
B » A »1 may provide rather different instability be-
haviors. (For instance, the instability boundary in the
limit C »k »1 is completely different from that in the
limit k » C » l. )

Let us study the case y » C »1. Now one should dis-
tinguish the upper and lower branches.

In the upper branch, Eq. (3.8) is valid, and then we can
reduce (3.17) to

a2 ——yx, a5 ——[(1+2k)x —2kC]y,

a4=[2kx +k (1+8 )x —2k C(1+68)]y, (3.19)

a, =yk'[ —4C'(1+6')/x'+(1+8')x'] .

Equation (3.18) may be replaced by

According to (3.9) and (3.15), the condition under which
instability arises in the lower branch can be specified as

(1+618))2,
leading to

a5 ——(1+2k)[(1+6 )/(1+8 )]' —k &0,

producing

(1+8') & (1+b,2)(2+1/k)' . (3.21)

bO)1. (3.16)

D. y &&1

In this asymptotic case Eqs. (2.6a) reduce to

a1 ——y, a2 ——(2+x +2k)y

a, = [(1+62+x')+4k +2kx'(1+8')

+4kCD —2kCx'/(1+ 2 '+x')]y,
a4 = [2k (1+6,'+x')+ k'(1+8'}(2+x ')

+4kCD(k + 1)

—2k'C( 1+b 8)x 2/(1+ 32+x 2)]y .

Equation (2.12) can be written as

1 2 3 4 2 5) ala4) & 0 .2

(3.17)

(3.18)

In the limit y))k )&1, a2, a3, and a4 can be further
simplified to

In this case instability always first appears near the turn-
ing point. The segment near x =0 is always stable.

It is possible that instability may first appear far away
from the turning point. In this case, a more precise insta-
bility boundary in the upper branch can be drawn by
directly employing Eq. (3.20).

In the lower branch, Eq. (3.19) should be replaced by

a2 =(2+x +2k)y,

a5 ——[4kCD —2kCx /(1+5 +x2)]y,
(3.22)

a4 = [4kCD ( k + 1)—2k C ( 1+b 8 )x 2/(1+ &2+x 2
) ]y,

a5=4yk C D(l+b, x)/(1+ b, +x ) . —

Now in the leading order the form of the function f reads

f =a, a2(a5a4 —a2a5) —(a, a4) 2

which is still complex. However, at the turning point of
the lower branch (x =1+9 and a5=0), the instability
condition can be greatly simplified as

f ~a4(a2a3 —a1a4}

=y k C (k +2—kh8)(k +1+6, +kh8} &0, (3.23)

which yields

a2 ——2ky, a3=k (1~8 ), 60) 1+2/k (3.24)
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or

(3.25)

Equation (3.24) is identical to Eq. (3.16) as k » 1. Ac-
cording to (3.25), 4 and 8 must be in the second or fourth
quadrants (68 & 0) and the absolute minimal value of 8 is

8&2v'1+k /k . (3.26)

First, let us discuss what happens in the upper branch.
It is surprising that apart from replacing a, =y by
a, =2k +2+ y (now we do not take the limit y »1), we
completely recover (3.19). Since the positive number a,
does not affect the instability boundary, Eqs. (3.20) as
well as (3.21) make sense in the single limit C»1. An
interesting conclusion is that for the large value of the bi-
stability parameter C, the instability boundary in the
upper branch is almost independent of y, the ratio of the
longitudinal atomic decay rate to the transversal one.

Figure 4 shows the instability boundary in b;8 space
given by (2.12), where the remaining parameters are tak-
en as C =75, k =0.5, and y=2. The parameter values
are the same as those used in Ref. 16. In Ref. 16 instabil-
ity was not found in the quadrant 68& 0. Here, by draw-
ing the curve f =0, one may immediately find the insta-
bility region in the third quadrant. We confirmed our

Equations (3.24) and (3.25) as well as (3.21) serve merely
as sufficient conditions for the instability of the lower
branch and the upper branch, respectively, since in both
cases only the turning points have been taken into ac-
count. However, in many circumstances, instability
arises first at the turning points, then Eqs. (3.24), (3.25),
and (3.21) may be used to define the instability boundary.
The region (3.25) is denoted by "4"in Table I.

E. C»1

theoretical result by directly simulating Eqs. (2.1). It is
found that the trajectory oscillates as soon as the parame-
ters are forced to cross the boundary and to get into the
shaded region. However, outside of the shaded region
the trajectory approaches the stationary solution asymp-
totically. We are interested by the fact that in Fig. 4 the
instability region already qualitatively coincides with that
predicted by (3.21) though the bistability parameter
chosen is not really large. The figure is not affected much
by varying y. We draw the figure only in a half of b, -8
plane since Eqs. (2.6)—(2.12) are symmetrical against the
inverse b„8~ b„—8—. It is not Eqs. (2.1) themselves
but only the instability boundary of their steady solutions
that have this symmetry property. Increasing C, the in-
stability boundary is expected to be closer and closer to
Eq. (3.21). In Fig. 5 we take C =500 and keep k and y
unchanged. The instability boundary for positive b is
perfectly identical to the approximate result (3.21). As
b, &0, the boundary differs from (3.21) significantly. The
reason is that with negative b the function f does not
take the minimal value at the turning point. In region B,
a segment of the upper branch loses stability while f at
the turning point is still positive, and then the part of the
upper branch near the turning point is still stable.

The same discussion can be carried out to the lower
branch. However, by a careful calculation we find out
that in the leading order the function f vanishes identi-
cally. Thus it is necessary to proceed to the next-to-
leading order. The calculation becomes a bit longer. In-
stead of showing the detail of the calculation we directly
display some results in Table I, and only remark that the
instability boundary in domain "5" is rather different
from those predicted by "3"and "4"in Table I.

5

. 3

-2

3

--4

-5
FIG. 4. OB; parameters used are C =75, k =0.5, and y=2.

Between the two full curves triple-valued solutions exist. In the
hatched region one can observe positive-slope instability. The
dotted curve is drawn according to (2.11). In strip A, negative f
falls into the negative-slope region.

FIG. 5. Same as Fig. 4 with C =500. In the hatched region a
segment of the upper branch is unstable. On the left of the dot-
ted curve, which coincides with (3.21) very well, the turning
point of the upper branch has negative f and loses stability. In
region B, an unstable island appears in the upper branch while
the part near the turning point is still stable because of positive
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IV. INSTABILITY GF LIS TABLE II. Same as Table I for the case of LIS.

Now we should take into account Eqs. (2.6a) and
(2.14). First, we prefer to study the simplest nonmistun-

ing case.

A. b =0=0

5x

5p

5D

—k —2kC 0
D, —1 x, 5p

5D
(4.1)

and

As in the case of OB, we may separate the lineariza-
tions of (2.13) into two independent sets of equations,

//g 4 /"„~' 0' /c c

1/] Fg~P/g 3 3 2 2 2

~ &/xi~/ii

/'. » &Eild, »
3 P/gag/g 2 2 2 1

2 3 2 2/+/g 2 2 ]

2 2F/g~2

/c 2 2 2 2 2 2

C 3 4 5 1 2 2 +/g~g~

—k —2kC 5x

5p D, —1 5p
(4.2)

The first set describes the linear dynamics in real variable
space while the imaginary parts of x and p are evolved by
the second set. Unlike OB, now the second set of equa-
tions can be unstable if

x, &2C —1.
A direct calculation shows that in the segment

0&x, &max(g~, g~),

g) ——[(C +4C)' —2C]/2,

(4.3)

(4.4)

B. x ))1
In the limit x »1 we recover precisely Eqs. (3.5) and

(3.6). It can be concluded that solution (2.14) is stable.
In fact, so far as the stability properties are concerned,

LIS is distinguished from OB only by changing the signs
of D, and p, . Therefore, in all the limits in which D, and

p, do not play an essential role in (2.6a) and (2.12), the
stability properties of LIS must be identical to those of
OB. It is the case as 6 » 1, 0 » 1, and 1/C » 1.

In Table II we list the results for various possible
asymptotic limits of LIS. The general meaning [( A, B )

gz ——{[(k +y ) + 8k y C] ' —( k +y ) I /( 2y ), (4.5)

the first set loses its stability. g, ,gz come from the condi-
tions b3 &0 and f &0, respectively [cf. Eq. (3.3)].

If 2C & 1, we have a unique stable solution. As 2C & 1,
there exist three branches of solutions, the lower branch
(0 & x, & g ~ ), the upper branch (2C —1 & x, ), and the
middle branch (g &x, &2C —1). The lower branch and
the middle branch are unstable while the upper branch is
stable. There is an interesting point worth mentioning.
In the part of the middle branch

max(g, ,gz) &x, &2C —1,
the steady state is unstabilized by the imaginary set of
equations. It means that the phase instability plays an
essential role. It does not so in the case of OB.

means A »8 »1] is the same as in OB. In the limits
denoted by "2," the steady solutions are always stable
and single valued. By "1"we mean that the solution
have the same stability properties as those of 6=8=0.
In case of LIS, the regions denoted by 2, are almost the
same as in OB. However, in the two cases regions 1 are
rather different. For LIS, in the limit where C is much
greater than other parameters [O(1)], the stability proper-
ties are identical to the full resonance case and are not in-
teresting. On the contrary, for OB, the limit C »1 pro-
duces rich instability bifurcation figures which substan-
tially differ from that of full resonance. On the other
hand, in the limits k «1 and y «1, OB gives rather
trivial behaviors "1"and "2," while LIS yield quite in-
teresting instability figures.

as ~yk

which reduce (2.11) to

f =(a, az —a3)a3a4a:a4 .

The stable region can be specified by

2C & (1+b, '+x ')'/(1+ b, ')

(4.7)

(4.8)

The following regions may be proved to be connected:

x »1 x, 6 )&1~6 &&1~6 &&1,
(4.9)

k « 1~k &&1, (1+6 +x~) &2C,

and then all these regions are stable. Therefore, Eq. (4.8)
is not only the necessary condition but also the sufficient
condition for the given positive-slope solution to be

C. k«1
In this limit, Eqs. (2.6a) give rise to

a i
=2+ y, a q

—(2y+ 1+b.'+ yx '),
a3=y(1+6 +x ),
a, = [2y(1+6,'+x') —4yC(1+6, ')/(1+6, '+x')]k,

(4.6)
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stable. Moreover, as

2C & 1+5 (4. 10)

the entire branches of positive-slope solutions must be
stable; then the laser in absence of injected field is below
threshold and the stable segment in the lower branch ex-
tends itself to x =0.

The equations

and

d (a5 )/d (x ) =0 (4.11a)

a5 ——0 (4.11b)

(1+6 )/2) C )Cb (4.12)

is satisfied, a full hysteresis loop can be found. The con-
clusion has been confirmed in Fig. 6, where C =20,
k =0.1, and y=0.01. The full curve gives the boundary
below which triple-valued solutions exist. The dotted line
shows the instability boundary; above that positive-slope
solutions turn out to be stable. The figure was drawn ac-
cording to the theoretical formulas (2.12) and (2.14). It
has been perfectly confirmed by directly simulating Eqs.
(2.13). In the dashed region we find that both the upper
and the lower branches are stable. It is surprising that
the stable segment in the lower branch can be extended

give a critical condition for the state equations to be tri-
ple valued. Solving x from (4.11a), and inserting it into
(4.11b), we may, finally, solve C& from (4.11b) in terms of
6 and 8. Whenever the condition

down to x =0. A full hysteresis loop between coexisting
stable steady states can be easily found in this parameter
domain. The evidence of this domain has never been re-
ported in the literature. An exciting and, possibly, prac-
tical interesting discovery by our theory is that a new

type of optical switch may be designed in LIS instead of
OB. However, to find this bistable domain the combina-
tion of parameters should be properly chosen. First, it is
easier to find full hysteresis loops in the region 50&0
than in b8) 0 (in the latter case only a very small bist-
able region can be found}. Second, the atomic detuning
must be chosen not too large as well as not too small. In
the former case we can not find triple-valued solutions,
while in the latter situation the low branch can not be
stabilized.

Though the parameter k used in Fig. 6 is not really
small, the coincidence between the exact result and the
approximate formula (4.10) is already satisfactory. De-
creasing k gradually, the instability boundary may be
closer and closer to the lines parallel to the 8 axis at
b =+&2C —1. An interesting phenomenon is that the
instability boundary is not a8'ected by 8 and y as k «1.
In Table II we represent this kind of stability property by
C4 3

D. k»1
Now we have

al ——2k, a&
——k (1+8 ),

a3 ——k (1+8 }(y+2}—2k C(1+6, }/(I+6, +x ),
a, =k'(1+ 8')(2y+1+ b,'+ yx')+4k'CD (1—58)

(4.13}
+4y k 'CD +2y k 'C ( 1+58 )x '/( 1+b, '+ x ')

+4k2( 2D2

aq ocyk 2

and

f =aia2(a3a4 a2as} a3a4 —a2as (4.14)

It is not difficult to analyze (4.14) thoroughly. Neverthe-
less, in the present paper we restrict ourselves to the sim-
plest cases. We may further simplify (4.14) by the follow-
ing auxiliary limits.

&- k»y»&
Then we obtain the stability condition as

f=a, a2a3a4

(x Q4

=yk (1+8) (2+x )

+4yk CD +2yk C(1+68)x /(I+5, +x ))0,
FIG. 6. LIS; parameters used are C =20, k =0.1, @=0.01.

Positive-slope instability appears below the dotted line, and
triple-valued solutions are available below the solid curve. In
the hatched region, bistability and also a full hysteresis loop can
be observed. The instability boundary (the dotted line) is ap-
proximately provided by (4.10).

leading to

x'(1+68)( —[(I+8')(2+x')(1+&'+x'}
—4C (1+b ') ]/(2C) .

(4.15)

(4.16)
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In the case of b, =0, all the positive-slope solutions (from
x =0) may be stabilized if the bistability parameter C
satisfies

In the upper branch the condition for the turning point
to be unstable reads

f ~a3a4
C &(1+8 )/2 .

2. k»1/7»1

(4.17)
=2yk'C [ (1+8')(2+ y ) —2[(1+b, ')(1+8')]'"]

X I [(1+5')(I+8')]'"+(I+68)] (4.20)

In this case we have

4k'C(1+ 6,')/(1+ 6,'+x') & 2k'(1+8') .

Under the condition

(4.18)

where we apply Eq. (3.8). The coefficient a4 is definitely
positive. Thus the sign of f is determined uniquely by
that of a3. Finally, the instability boundary of the upper
branch is specified by

2C&(1+8 ), (4.19) 1+6,'=(1+8')(1+y/2)' . (4.21)

positive-slope instability can never emerge, and then opti-
cal bistability may be expected in the domain
(1+8 )/2 & C & Cb, with Cb being provided in Eqs.
(4.11). This type of stability behavior is denoted by "3"
since the stability properties in this region is similar with
that of the region k &&1. Numerical results confirm
(4.19). In Fig. 7 we choose k =200, C =20, and y =0.01.
In the dashed region triple-valued solutions exist and
both the upper and lower branches are stable. A full hys-
teresis can be justified by directly solving the time-
dependent solution of the differential equations (2.13}.

3. k »C»1
To make the calculation more compact we assume that

both the upper branch and lower branch may be destabi-
lized first from the turning points. These assumptions are
verified by many numerical examples. Of course, they
are not always true. Nevertheless, here we simply use
these assumptions without specifying the conditions un-
der which the assumptions are valid.

a3 ——2k(1+6, )+2k (1+8 )+4kCD(k+1},
(4.22)

a4=k (z1 +8)z(1 +52)+4k CD(1 b, 8)+4kzC—D

a5 ocyk2

According to Eq. (2.12) and the limit y « 1, we have

Comparing Eq. (4.21} with (3.21), we find that b 8 com-
pletely alter their positions. In (3.21) of OB, the system
can be destabilized by increasing 8 while stabilized by in-
creasing b, for a given 8. Now in (4.21) of LIS, the be-
havior is completely the opposite. We denote this insta-
bility boundary by "4"in Table II.

As k &&C &&1, the entire lower branch must be unsta-
ble because of the fact that a3 as well as f must be nega-
tive.

E. y && 1 and y » 1

As the limit y « 1 is taken, we obtain from (2.6a)

a~ ——2k+2, a2 ——k (1+8 )+(1+6 )+4kCD +4k,

f =a3a4(a, a2 —a3}—(a, a4)2 (4.23)

fo Now all the previous calculations can be repeated. How-
ever, here we only give the results.

//////
.///~ /. /// !.
){)

I

I

I

I

t

I

-dP

1. 1/y »1/k »0
The instability boundary is determined by the sign of

03,

2C=(1+6, +x ),
which is the same as (4.10).

2. 1/y»k»1
Again, the instability boundary is related to the sign of

a3. The criterion reads

2C =(1~8')(I+6,'+x')/(1+6, '),
which is nothing but (4.18).

3. 1/y »C»1
FIG. 7. Same as Fig. 6 with k =200. Now Eq. (4.19) is

represented by the dotted line. In the hatched region, the entire
lower and upper branches are stable, and a full hysteresis loop
can be realized.

The entire lower branch must be unstable because of a&
and a3, that is not interesting to us. However, the stabili-
ty properties of the upper branch is unusual. Controlling
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the parameter properly, it may be found that the segment
near the turning point is stable while in the upper branch
an unstable island exists. It can be seen in Fig. 3. In
Table II we denote this domain by "5."

In the limit y ))1, Eqs. (3.17) and (3.18) can be used to
test the stability properties of the system by altering the
signs of D and p. Finally, the results are the following.

4- y»1/k»1
The sign of the function f is identical to the sign of a4,

and then the stability properties of the steady state is de-
scribed by Eq. (4.10).

5. y »k »1
It can be verified that altering the limiting orders

k »y » 1 by y »k »1 does not change the stability
properties of the state. Therefore, the instability bound-
ary in the present case is given by Eq. (4.16).

V. CONCLUSION

The main achievement in the presentation is the
derivation of the instability criterion (2.12). With this
criterion we have the potential capacity to study the glo-
bal structure of instability regions by an analytical
method which may be much more convenient than the
approaches used before. In principle, the basin structure
of the well-behaved function f, i.e., the global structure
of the instability domains of OB and LIS, can be analyti-
cally studied without resorting to any asymptotic limit,

though in the present paper we consider only various lim-
iting cases.

In this presentation we unify the discussions of OB and
LIS in various possible asymptotic limits, of which some
are analyzed previously in separate publications and by
different procedures. By listing the results of all possible
limits we may get general ideals about instability regions
in the parameter space. In both OB and LIS we reveal
five distinct regions where the steady state has diverse
stability properties. It is expected that these regions re-
vealed in the limiting cases can be extended to the
domain where various parameters have finite and practi-
cal values. This possibility has been confirmed by Figs.
4—7.

Though throughout the paper we perform only the
simplest discussions rather than general complicated cal-
culations, some interesting results have been already
manifested. In OB it seems that for the lower branch to
be unstable both atomic and cavity detunings should be
nonzero (b,8) m, m is a certain positive number) while
for the upper branch to be unstable a large enough cavity
mistuning is required (then one may destabilize the sys-
tem by raising 8). In the case of LIS, we find, for the first
time, some regions where a full hysteresis loop can be
realized.

The approach has a very wide application. For in-
stance, it can be easily applied to OB and LIS with multi-
photon processes, and the systems where more than one
mode is involved. Moreover, the application of the ap-
proach to maser systems is direct, and we expect that, this
application may lead to remarkable new results.
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