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The influence of saturation and Stark shifting on the collisionless coherent anti-Stokes Raman

scattering (CARS) spectra of Q-branch vibrational transitions has been studied theoretically and ex-

perimentally. These processes can significantly affect the magnitude and the spectral distribution of
the CARS signal at the input power levels required to obtain detectable signals in typical low-

pressure CARS experiments. The theory is developed with use of the Placzek approximation and

rotation-vibration Bloch equations are obtained. The Doppler effect, nonresonant susceptibility,

and spatial variation of power density in the probe volume are neglected. The Rabi frequency is

found to increase with the square root of the final-state vibrational quantum number while the Stark

frequency is nearly independent of this quantity. In order to understand the nature of some of the

effects observed in scanning CARS, approximate analytic solutions are given for simple cases and

CARS output spectra are obtained as a function of detuning. A Rabi-split response spectrum is

found for all J with a Stark-induced asymmetry favoring the lower-frequency peak. Although the

orientational degeneracy is lifted by both the Rabi and Stark terms, only a very weak dependence on

the rotational quantum number is found in the spectral distribution; this allows use of the unsa-

turated rotational-quantum-number scaling in the saturated regime. It is apparent that the devia-

tions due to saturation are weak for rotational temperature measurements while they are important

for vibrational temperature measurements. Experimental results for low-pressure (2-5 mbar) nitro-

gen are also discussed. Appreciable deviations due to saturation and Stark effects are found for

pump laser and Stokes power density products greater than 30 (GW/cm ) . Semiquantitative agree-

ment with theory is obtained for the observed dependences on power and on rotational and vibra-

tional quantum numbers. A method allowing quick correction of saturated experimental data is

proposed.

I. INTRODUCTION

Saturation of the Raman transitions is, together with
dielectric breakdown, one of the main limiting mecha-
nisms in the quantitative application of coherent anti-
Stokes Raman scattering (CARS) as a diagnostic tool.
The saturation phenomenon, which has received consid-
erable attention recently, ' ' involves significant redistri-
bution of the populations of the states coupled by the Ra-
man transition during the application of the driving
pump fields (laser and Stokes fields). It is often observed
as a consequence of the high pump intensities mhich are
required to obtain measurable anti-Stokes signals from
low-concentration molecular species. Concomitantly, be-
cause of low species concentration, there are typically no
significant changes in the pump fields. In the absence of
collisions, the regime which we will consider in this pa-
per, there can also be sidebands (Rabi oscillations) which
develop on the nonlinear signal due to the dynamical na-
ture of the population redistribution. The problem be-
comes dificult to analyze mhen electronic resonance
enhancement is present; this case has received attention
recently, ' ' but will not be covered here.

In addition to the dynamic population redistribution
due to the saturation process, there is also a shifting'

of the energies of the levels involved in the Raman pro-
cess due to the separate presence of the laser and Stokes
fields. For simplicity in further discussion we mill de-
scribe the dynamical population redistribution as a Rabi
process and the optical shift effects as a Stark process;
both are a consequence of the electric dipole term in the
coupling between the radiation field and the molecules.

This paper will develop the theory of CARS saturation
by reducing the problem to an effective two-level model
appropriate to conditions where single-photon resonances
are absent. The following results are obtained for vibra-
tional CARS.

(l) The Rabi frequency, and hence the degree of satura-
tion and broadening, are proportional to the square root
of the final-state vibrational quantum number. In con-
trast, the Stark shift of the transition frequency is found
to be nearly independent of this quantity.

(2) The CARS spectrum splits into two components
separated from the normal CARS polarization frequency
by the Rabi frequency.

(3) The flux dependence of the peak CARS signal due
to the Rabi process goes from 4,42 in the unsaturated
case to 4, in the fully saturated regime (l denotes the
pump laser field and 2 the Stokes field). The flux depen-
dence of the linewidth increases as (4,Nz)'
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(4) The effect of the Stark shifts of the two Raman lev-
els is to produce a negative shift in the Raman resonance
frequency. The shift, which temporally varies in magni-
tude as the pump pulses vary, is an additional source of
broadening and signal decrease.

(5) For Q-branch transitions, the optical shifts produce
effects which are found to be comparable to the dynami-
cal population redistribution terms; however, the magni-
tude of the saturation term can be reduced relative to the
optical shift terms by making the ratio of the laser inten-
sity to the Stokes intensity much larger or much smaller
than unity.

(6) Orientational degeneracy is lifted by both the Stark
and Rabi processes. This degeneracy lifting' is found to
only have a very weak effect on rotational quantum num-
ber in the orientationally averaged CARS spectra. Thus
the unsaturated rotational quantum number scaling of
the spectral intensities is appropriate in the saturated re-
gime.

We will also discuss observation of these processes in
experiments carried out in a low-pressure (2—5 mbar) ni-
trogen discharge, At these low pressures and with 10 ns

pump pulses, the radiation-molecule interaction can be
considered to be occurring collisionlessly. The laser,
Stokes, and anti-Stokes wavelengths are 532, 607, 473
nm, respectively, and are far from electronic resonances,
which lie beyond 200 nm. A strong dependence of the
saturation on vibrational quantum number has been ob-
served. Semiquantitative agreement has been found be-
tween theory and experiment for the dependence on
pump powers and on rotational and vibrational quantum
number. The theory has been extended to the multifre-
quency pump case in order to account for the use of a
multimode dye laser as the Stokes source. A more corn-
plete account of these experimental results has been pub-
lished elsewhere. ~0

II. THEORY OF SATURATION IN CARS

A. General considerations

It is very convenient, in the theoretical analysis, to
reduce the dynamical problem to one involving the two
states of the Raman transition. This can be done to a
high degree of approximation for molecules far from a
single-photon resonance in two ways, both of which lead
to the same result for the experimental conditions ap-
propriate to this paper. The first approach is simply an
extension of that used by Placzek ' in his classical
analysis of spontaneous Raman scattering. Placzek noted
that for a molecule far from electronic resonance, the
Born-Oppenheimer approximation can be used to express
the interaction of the radiation with vibrational and rota-
tional degrees of freedom in terms of the static electronic
polarizability calculated as a function of time-
independent nuclear coordinates. This analysis was ex-
tended by Garmire, Pandarese, and Townes to unsa-
turated stimulated Raman scattering and to the saturated
case by Giordmaine et al. In the second approach,
off-resonant density matrix terms are calculated by per-
turbation theory and substituted into the equations of

motion for the resonant density matrix terms. This
"adiabatic elimination" has been used both for two-
photon absorption (emission) and for the Raman case.
The second technique is more general than the first but
has the drawback that it cannot be readily related to the
available literature on many electron calculations of
molecular parameters. We will take the first approach
since it is valid for the experiments described here where
the optical frequencies are below the single-photon elec-
tronic resonances and the results can therefore be related
to calculated polarizability parameters. We will incorpo-
rate the Stark terms in our analysis as a straightforward
extension of the Placzek approach. The CARS term in
the polarization response will involve a sum over the
orientation states of the molecules in the fields. Since the
strong fields will lift the orientational degeneracy, we
must take these degeneracy lifting effects, which arise
both from the Stark and Rabi processes, into account in
our calculations.

The two-level Raman equations are very similar to the
spin- —,

' equations in magnetic resonance and the two-level,

single-photon equations often used in optics. ' ' The in-
teraction Hamiltonian for this reduced system is quadra-
tic in the fields and has diagonal (level shifting) and off-
diagonal (Raman coupling) terms in any unperturbed rep-
resentation. The diagonal terms are the normal optical
Stark terms while the off-diagonal terms lead to Rabi pro-
cesses. Feynman, Vernon, and Hellwarth have noted
that any two-level system can be treated by a three-space
Bloch vector model where the projections of any operator
in the three directions are simply decompositions of the
operator in terms of the three 2)&2 spinors. The evolu-
tion of the density matrix can be shown to have the form
of a torque equation in this three space with the result
that the trace of the square of the density operator is an
invariant. This vector model is a consequence of the fact
that the two-level system forms the simplest representa-
tion of SU(2) and the invariant operator is simply related
to the Casimir operator for this case. The invariance can
be expressed as the well-known quadratic conservation
law for the sum of the squares of half the population
difference between the two levels and the square of the
off-diagonal elements (polarizations). The vector model
also allows one to conclude that there is an additional in-
variant for the special case when the torque vector is con-
stant in direction. We shall see that this occurs in the ro-
tating wave approximation for constant field amplitudes,
or when the laser and Stokes amplitudes evolve identical-
ly in time on exact Raman resonance.

There have been a number of analytic solutions for the
evolution of the collisionless Bloch equation in the rotat-
ing wave approximation for various constraints on the
time-dependent external field. In the expository discus-
sions given in this paper, we will make use of the time-
independent exact solution, of the approximate solu-
tion26' off resonance for smoothly varying (adiabatic)
time dependences, and of the closed form solution on ex-
act resonance. ' On the other hand, for the detailed
studies of the expected CARS signals from various Q-
branch transitions in nitrogen, we will employ numerical
techniques.
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The CARS polarization P3 can be obtained from the
general equation

P3——XTr[pa(R)] E,

uiMUJM g( I @i I
+

I @z I
}

X(ha„„(JM
I
cos'e

I
JM &+aj, „), (7)

where N is the number density of active molecules, index
3 denotes the anti-Stokes component, and the other sym-
bols are defined as follows.

(a) The driving electric fields E are given by

E=e„E„, (2)

where the summation is implicit, e„ is the polarization
unit vector and E„ is the scalar amplitude of the pth
field. We write this amplitude as

E = '(E +—'+E' ')= —'(8 e " "+c c )P 2 P 2 IJ
(3)

where ( k ) denote the positive and negative frequency
components and 8„is the slowly varying part of the am-

plitude. We assume that the two input fields are linearly
polarized in the same direction e. We will also calculate
the polarization component in the direction e.

(b) The electronic polarizability tensor operator a(R) is
written in the Born-Oppenheimer approximation as a
function of internuclear separation R. With our selection
of field polarizations, we shall be making use, in Eq. (1),
of the component

a(R)=e a(R) e' . (4)

B. Density operator

The density operator evolution equation is given in the
collisionless regime by

Note that a(R) depends implicitly on the orientation of
the molecule in the field; a~~(R ) and a~(R ) are the tensor
components along the molecular axis and orthogonal to
it, respectively.

(c) The density operator p is obtained from its evolu-
tion equation as described in the following section.

2(J' —M')+ 2J —1

(2J +3)(2J —1)
(8)

Equations (7) and (8) agree with the result obtained by
Farrow and Rahn, ' except that we have retained the
rotationally-independent term. The contribution from
the rotationally-independent term will be comparable to
that from the rotationally-dependent term for Q-branch
transitions, but much smaller than it for 0- and S-branch
transitions.

The off-diagonal radiation field terms (Raman driving
and saturation effect) drive the vibration and produce the
CARS signal. For the case of near-Raman resonance, the
part of the off-diagonal portion of the interaction Hamil-
tonian which can resonate with the transition is given by

&& (aa„.„(J'M'
I
cos 8

I
JM &

+&j. , 5i', i }fiM',M (9)

We will neglect the rapidly varying antiresonant parts
of the off-diagonal elements, i.e., we make the rotating
wave approximation. Using (5), (7), and (9), we have for
the relevant density matrix elements

where ha„, = ( v
I a~~

—ai I
v'} and u, J,M are the vibra-

tional, total rotational angular momentum, and orienta-
tional (magnetic} angular momentum quantum numbers,
respectively. The angle 8 is taken between e and the
molecular internuclear axis. Note that for Q-branch
transitions, the transition Stark shift is due only to the
variation of the polarizability matrix element with vibra-
tional quantum number. Using known expressions for
spherical harmonics, we have

C(J,M)=(JM
I
cos 8I JM }

if2 = [W+JV, p] (5)
i = —bcop+Q&n
. dp (10)

where 0 and r are used to denote the nonradiative and ra-
diative parts of the Hamiltonian, respectively. In the
Placzek approximation, the radiative part of the Hamil-
tonian takes on the form

and

. de
i =2(Qzp —c.c. ),

,'a(R)E'+'E'—— where

We note that the force driving the vibration is given by
the derivative of the polarization Hamiltonian with
respect to the internuclear coordinate. There are two
basic effects of radiation on the molecular system: the
Stark shift and the Raman driving and saturation effect.

The Stark shift involves the terms in the Hamiltonian
which are diagonal in the vibration-rotation states v, J,M.
For the case of nitrogen, the ground electronic state is 'X,
so that there are no electronic contributions to the total
angular momentum. Only the very slowly varying parts
of the intensity contribute significantly to the diagonal
terms so that the diagonal part of the Hamiltonian may
be approximated by

and

+t (co& —co2)t
I Pv'J'M, vJM~ t

"=P JM, JM P 'J'M, 'J'M
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(15)

(16)

(17}

(18)
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Note that M'=M from symmetry requirements. For
simplicity in further discussion, we have suppressed the
quantum states in writing Eqs. (10)—(18). For the most
part in low-pressure CARS experiments, we deal with
resonances involving transitions between states of specific
vibrational and total angular momentum quantum num-
bers. In unsaturated CARS the states of specific magnet-
ic quantum number which are energy degenerate contrib-
ute in varying degrees to the strength of the CARS sig-
nal; however, their spectral positions and shapes are iden-
tical. In saturated CARS, the orientational degeneracy is
lifted by the optical fields and the spectral profiles can be
affected by the magnetic quantum number M.

In the case of a diatomic such as nitrogen, we only
have a single internuclear coordinate, and the polarizabil-
ity depends on its magnitude. If we expand about the
equilibrium internuclear position for small vibrational
displacements, we find to second order

2

a)( }= [(0+ „R q+2, q'+
dR R =Ro 2 dR2 R =Ra

(19)

where aiv —a~~(R:Rv} and similarly for ai. Here q is
the displacement from the equilibrium value:

q=R —Ro- (20)

Expressing (17) in terms of (19) and keeping only low-
order nonvanishing terms we find
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with hao=a~~o —az, for 0- and S-branch transitions,
where J'=J+2 and
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for Q-branch transitions.
Nonzero diagonal elements of the vibrational coordi-

nate q arise from odd-order anharmonic terms in the vi-
brational energy. It is expected that the second polariza-
bility term in (21b), which is a second-order correction, is
of the same order as the first term which is the product of
the first-order term in the polarizability and a term which
involves a first-order correction to the vibrational wave
function arising from the anharmonic potential.

Similarly for the Rabi-Raman term (16), we find

where D, is the dissociation energy and
1/2

(24)

where p is the reduced mass and co, is the harmonic con-
tribution to the vibrational frequency. Retaining only the
cubic contribution to the anharmonicity, we find froin
perturbation theory

1/2

i(kl —k2) r0„=— @,82e4'
@De

(v+ —,')

= 1.2 X 10 '
( u + —,

'
) cm, (25)

X &J'M Icos 8I JM&
dR R =Ro

d exp
+ &v'Iq Iv& . (22)

We will now consider the magnitude of the various
Stark shift terms given in (21a}and (2lb}. In order to ob-
tain nonvanishing diagonal elements of the term linear in
vibrational coordinate in (21b), we must take into ac-
count the anharmonicity of the vibration. We assume a
Morse potential of the form

&u Iq'I v&= (u+ —,')
PCOe

=0.21X10 "(v+—,') cm'. (26)

where the numerical value has been obtained using the
spectroscopic constants for nitrogen. Equation (25) to-
gether with the first derivative term in Eq. (21b) are
equivalent to the classical mechanical result of Rahn
et al. ' The quadratic term is nonvanishing in the har-
monic approximation and is given by

V(q) =D, (1—e ~~) (23} Again the numerical value is obtained using the spectro-
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scopic constants for nitrogen.
The components of the polarizability tensor have been

calculated for N2 as a function of internuclear separation
by Morrison and Hay. These authors give results for
both Hartree-Fock and generalized valence-bond (perfect
pairing) calculations; we consider only the latter as it
presumably represents a more accurate method. The po-
larizability and its first and second derivatives are given
in Table I. It is apparent from the table and Eqs. (25) and
(26) that for N2 the first-order term is about ten times as
large as the second-order term in (21b). In addition, it is
clear from the table and Eqs. (21a), (21b), (25), and (26)
that the 0- and S-branch terms can be almost one order
of magnitude larger than the Q-branch term for the
lower-J values. Note that the contribution of the second
polarizability derivative is small and is found only in the
calculation of Qz. Since its calculation is imprecise, it is
neglected in the numerical calculations which follow.

To estimate the magnitude of the Rabi-Raman term
(22), we note that in the harmonic approximation,

' 1/2

(u Iq Iu')= [(u+1)'~25„+,„+u'~'5„, „]
2pcoe

=0.32X 10 [(u +1)' 5„+&,.

+u'"5, , „.] cm . (27}

If the driving fields 1 and 2 are comparable in magni-
tude, then, for low v, the Rabi-Raman term is roughly an
order of magnitude smaller than the 0- and S-branch
Stark shifts while it is about an order of magnitude larger
than the Q-branch Stark shift. Also note that the Stark
shift Qz is independent of vibrational quantum number
while the Rabi-Raman term QR grows as the square root
of the quantum number of the upper state.

C. Anti-Stokes polarization

In Eq. (10), p is the Raman-induced coherence which
will drive the anti-Stokes polarization and n is the popu-

I

TABLE I. Polarizability and polarizability derivatives, after
Morrison and Hay (Ref. 36). The calculation of the second-
order derivative is very imprecise.

Parallel
Perpendicular
Difference

(10 cm')

2.0
1.4
0.6

dcx

dR R =Ro
(10' cm )

2.4
1.1
1.3

d cx

dR R =80
(10 cm)

—1.5
—0.1

—1.4

lation difference probability between the lower and higher
vibration rotation states. Note that p is complex with the
real and imaginary components being out of phase and in
phase, respectively, with the phase defined by the
diff'erence between the phases of the input driving fields.

The anti-Stokes radiation field is driven by the macro-
scopic polarization P3. Using the general equation for
the polarization, Eq. (1), we can write the component of
P3 in the direction of the input fields

P3(r, t) = 2N g —P„JM UJM

u, u', J,J', M

X(ba„„(JM
I
cos 8

I

J'M )
&(k& r —co&t)

+ai„„5JJ)8,e +c.c. (28)

Here only the laser field appears since it is the only fre-
quency component which beats with the Raman-induced
polarizability to produce the anti-Stokes polarization.
Note that the rotational dependence appears both in the
density matrix elements and in the polarizability operator
element; it is the product of these elements which is angu-
larly averaged by the sum over rotational states. We see
froin Eqs. (14) and (15) that only the density matrix ele-
ments which are off diagonal in the vibrational quantum
numbers can oscillate at cu, —tu2. The polarization can be
expressed as

—i [(2cui —A@2)t —2k) —k~ r]

x X p&u
I q I

u')
v, v', J,J', M R =Ro

dQy
(JM

I

cos 8I J'M)+ 5&J +c.c.
dR R =Ra

(29)

Note that p depends on v, v', J, J', and M.
Integrating spatially to get the output anti-Stokes field, squaring to get the intensity I3, and time integrating to get

the flux, we find

4,=f dtI,

f" « I@i
u, v', J,J',M

2
dna (JM

I
os OI J'M)+ 5J

d cxi

dR R =R0 dR R =Ro
(30)

where the 3 subscript denotes the anti-Stokes field and
where E is a constant which depends on cell length and
phase-matching conditions. The off-diagonal component
of the density matrix is complex, thus there can be varia-

tions in phase between the terms in the summation and
hence partial cancellation between terms. From Eqs. (29}
and (30) one can obtain the important quantities which
are measured experimentally: CARS line shapes when co2
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is tuned over the resonances, and spectral broadening of
the anti-Stokes field resulting from Rabi oscillations (ap-
parently not yet observed in CARS experiments). Some
of these effects can be described theoretically using ana-
lytic solutions; others require numerical computations.
These subjects are covered in the following sections.

D. CARS line shapes and power dependence where

2noQ~

[(hco) +(2Q~) ]

X I(biu) +Q„—(bru) cosy(t) —QRcos[2@(t)]I,

(33)

We now consider solutions to the Raman-Stark dynam-
ical Eqs. (10) and (11). These equations are similar to the
Bloch equations for a dipole-transition-coupled two-level
system except that the product of the dipole by a single
field amplitude is replaced by a factor which involves the
product of polarizability derivatives, the amplitude of in-

put field 1 and the amplitude of input field 2. The present
result also includes the Stark effect due to the two input-
exciting fields, a term generally neglected in the simple
two-level approximation.

Equations (12) and (13) are linear coupled equations
with time-dependent coefficients. The Rabi term Qz
varies in time as the product of the slowly varying field
amplitudes C, A'z. By slowly varying, we mean to imply
that the variation is slow not only with respect to the op-
tical periods but also with respect to the period of the
vibration-rotation transition. No assumption need be
made about the pulse variation in comparison to the time
1/bee. Ace also varies in time because of the optical Stark
effect term Qs which follows the time dependence of the
sum of the input intensities.

These equations obey the well-known 2X2 spinor or
Bloch-vector conservation law

Q2 [(ha)) +Qa]
p =2no

[(pro) +(2Qa ) ]
(34)

This solution is different, when Ace&&Q+, from the
adiabatic following solution which is appropriate for a
stnoothly varying pulse. As shown in Fig. 1,

~ p ~

has
two maxima off'set from b,co=0 by b,r0=+v'2Qtt, with
peak values of —,'no. The central minimum at hco=O has
a value of —,'no, thus the ratio of the side maxima to the
central minimum is —,. In addition to the Rabi splitting
of 2&2Q&, there is a broadening with a full width at half
maximum of 2&2(4+&17)'~ Qtt, which is of the order
of three times the Rabi splitting. The far wings are
Lorentzian (hro~&Qz ). Note that Agarwal and Sing'
and Lucht and Farrow' have calculated similar line

n02/6

If Qz t &&1, where t is the pulse length, we can drop the
oscillating terms and we find for the average value of

d/pi' 1 dn'
dt 4 dt

(31)

which is equivalent to the Casimir invariant for the two-
level representation of SU(2). The CARS signal is pro-
portional to

~P ~

'= ,'[no —n'(t)—], (32)

where no is the initial population difference probability
between the lower and upper vibration-rotation states.

Equation (32) shows that population change takes
place whenever a CARS signal is generated. Also,

~ p ~

can never exceed —,'no. In addition to saturation, there is
also power broadening of the CARS line. This broaden-
ing will be negligible compared to the pulse width trans-
form broadening provided Qzt &&1, where t~ is the
pulse duration. We now proceed with a detailed presen-
tation of the theoretical results.

-0.0 15

nos/6

hm tern-')

I I

0.0't 5

1. Square pulse ease

The exact solutions for constant driving field ampli-
tudes have been given previously. For this square pulse
case, we will describe the solution for

~ p ~

which, in the
nondegenerate case (i.e., J=O, M=O Q-branch transi-
tion), is proportional to the anti-Stokes signal. We will
find that certain spectral characteristics of the square
pulse are preserved for cases of more realistic pulse
shapes. The expression for

~ p ~

is

-0.015
+EM {CFA ~)

I 1

0.015

FIG. 1. Plot of
~ p ~

' vs hag (similar to CARS spectrum) for
square wave amplitude laser and Stokes pulses. (a) The Stark
effect is neglected and (b) the Stark effect is included. The
molecular parameters are for the (1,0,0)~(0,0,0) transition in N&

where the notation (u, J,M) is used. Also, I&
——4X10 W/cm

and I2 ——1.33&(10 W/crn .
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(35)

If the Stark-shift frequency chirp is negligible so that
hco=Aco, we then have

~p ~'=no2 f dt'e'~"'Q„(t') (36)

a form which is readily integrated for simple driving
pulse shapes. For a square wave pulse we can find the
unsaturated limit either from (36) or by expanding (33).
From (33), we obtain

2

2 2 R 2 ACO t
~ p ~

=4no sin
5N 2

for 0&t (t

shapes; theirs, however, are asymmetric due to non-

resonant background interference. When QR increases,

~ p ~, as given by (34), expands along the frequency axis
about hen=0, but its shape and amplitude are conserved
if the Stark effect is negligible.

In the limit where saturation is negligible, so that
n =no, we can readily solve (10) for p to find, for any

pulse shape and arbitrary Ace

~ p ~

'=no f dt'n„(t') exp i f ~to(t")dt-

dependent of t, as in the unsaturated case. Equation (40)
is a consequence of the fact that p executes many oscilla-
tions at frequency Qz during the pulse and that its aver-
age value is independent of these oscillations (i.e., of Qz
or, equivalently. , )r I,I2). It is apparent from (40} that,
in the fully saturated limit, shortening the pump pulse at
co, while holding the pulse energy constant does not
enhance the anti-Stokes signal.

Collisions strongly influence the CARS signal. In par-
ticular, differences in rotational and vibrational relaxa-
tion times play an important role in the dynamical behav-
ior. For atmospheric pressure N2 and nanosecond
pulses, Lucht and Farrow' have shown the signal to be
generated only at the beginning of the pulse. This is a
consequence of redistribution of molecular population
within the rotational manifolds of the upper and lower vi-
brational states coupled by the Raman transition. We
thus have n ~0 and p ~0 for t & ~„where v „ is the rota-
tional redistribution time. The CARS signal will be opti-
mized if redistribution is negligible during the pulse (i.e.,
if t &r„).

It can also be shown that far-ofl' resonance, such that
Aco»Q„, t~

' the anti-Stokes flux has the form

and

Ip
/

=4no
5N

'2
~

Aco t
sr.n for t &t

ip i
=noQ„t for t&t

In the case Atilt «1, Eqs. (37) simplify to

~ p ~'=n', QRt' for 0&t &t,

and

(37)

(38)

1
43——K34)42

(hto tr )
(41)

which is the same flux dependence as the unsaturated
case on resonance.

We have thus seen that the Rabi saturation manifests
itself in the anti-Stokes spectrum as (1) Rabi splitting, (2)
Rabi broadening, (3) a change, near line center, in the
dependence of anti-Stokes flux on laser and Stokes fluxes.

Using these square pulse results we can come. to some

simple conclusions concerning the dependence of the
anti-Stokes output flux on the laser and Stokes input
fluxes. Two limiting cases are the following.

(I) Unsaturated case, on resonance Using the . fact that
for a square pulse Q„t

ccrc,

42, we find from (30) and
(38)

43——K)4)42, (39)

43——K24, . (40}

Again, K2 is a constant. This equation shows that the
signal is proportional to the pump flux at co, . It is also in-

where K& is a constant. This is the normal unsaturated
result. This is also the ideal situation for CARS measure-
ments. Equation (39) remains valid so long as population
saturation or spectral broadening are avoided. To this
end, one has to limit the product Oz t~, which is
equivalent to limiting N&42. The signal flux is thus opti-
mized by using a large N& and a small N2. Qne also notes
that this flux does not depend explicitly on t, the pulse
duration.

(2) Saturated case, on resonance Using (30) and. (34)
with the provision Qz »

~

b, to ~, we find that

2. Arbitrary pulse shapes

In order to make the theoretical results more directly
comparable to experiment, we have numerically calculat-
ed the anti-Stokes flux for a Gaussian pulse. If the Stark
effect is neglected, we obtain the CARS spectrum as
shown in Fig. 2. The structure is similar in appearance to
the square-pulse case; the two distinct Rabi peaks are
maintained despite the fact that the Rabi frequency
varies throughout the pulse.

When the Stark-shift term is included, so that the tran-
sition frequency chirps during the pulse with a magnitude
similar to the Rabi frequency, we obtain the results
shown in Fig. 3. Apparent are an overall negative fre-
quency shift of the spectrum and an asymmetry in the
height of the Rabi peaks. The asymmetry in favor of the
lower frequency peak can be qualitatively understood by
noting that, for the lower frequency peak, the Stark shift
acts to maintain the lower Rabi shift resonance as the
lower Rabi frequency first increases then decreases dur-
ing the pulse. Lucht and Farrow have reported similar

experimental and theoretical line shapes. '

As we have noted earlier, the Rabi and Stark effects lift
the orientational degeneracy. In order to understand this
case, it is useful to express for a Q-branch transition the
Rabi frequency, using (8), (22), and (27), as
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1/2

dR
1 dna

R =Rp Pp dR R =Rp
+

0
-0.015

I
/

I

0
hgp (cm-')

0.015

FIG. 2. Calculated CARS spectra for peak power densities

I& ——6X10 W/cm' and I2 ——2X10 W/cm'. Pulses are Gauss-
ians with a full width at 1/e of 10 ns; Stark effect is neglected.
Collected flux is given in arbitrary units.

day d Qy
3

' =+pD dR R =R pN, dR

(47)

For nitrogen, in view of the discussion of Eqs. (21) and
(22), we can neglect the second derivative terms, so that
I &-I z ——I and A, (J,M)=A+(J, M)=A(J, M}.

A (J,M) has limiting values at M=O and M =J. These
are

1 10
4 2pi6N~

1/2 daj
8(8f(v+ I)1/2

dR R =Rp and

2J +2J —1

(2J +3)(2J —1)

(48)

X A~(J, M), (42) A (J,J)= I +11

2J+3

where

Att (J,M}= I ~ C(J,M}+1,
and

(43}

dna day

dR g =Ro dR & =Ro
(44)

and C(J,M) is given by (8). For N2, I „=(2.25
—0.86) /0. 86= 1.62.

Similarly, we can obtain, in the Morse potential ap-
proximation, using (8), (21b), (25), and (26), an expression
for the Stark frequency

' 'da, d Qy~s= ——3
' =+8 PD, dR R =Rp Pc@, dR R =Rp

The results for the limiting M values are plotted versus
J in Fig. 4. It is noteworthy that the ratio of maximum
and minitnum values of A ( J,M) is less than a factor of 2
and that these values straddle the J=O, M=O value.
Thus the degeneracy is in effect only weakly lifted, and
the addition of the orientational contributions for an ar-
bitrary J state will produce a CARS spectrum having
nearly the same form as that for the J=O, M=O case but
with a weight which is given by the square of the degen-
eracy factor, 2J + 1.

Figure 5 shows the calculation of the CARS line shape
divided by (2J+1) for the transitions (1,12,M)
~(0, 12,M), together with the curve from Fig. 3 [i.e., that
corresponding to the transition (1,0,0)~(0,0,0)]. The
slight difference between the two curves illustrates a weak
increase of saturation as a function of J. The ratio of cor-

where

X(
I
6t I

'+
I
8~ I

'}As(J,M), (45) P

lMl = 1

M=O

A, (J,M)=I, C(J,M)+1 (46)

IMI = J-i

IMI = J

0
0 10 15 20 25 30

0
-0.015

I

0
hm (cm ')

I

0.015

FIG. 3. Same as Fig. 2 except that Stark effect is included;
same vertical scale as in Fig. 2.

J
FIG. 4. Plot of limiting values for

I
M

I
=0,1 and

I
M

I
=J,J —1 of A(J, M) vs J. A(J, M) is the rotational-

state-dependent factor in the Rabi and Stark frequencies. For
J=O, we have A(0, 0)=(3I +1) or 1.54 for N2. When J~ao,
we have A (J~ oo, 0)=(

z
I +1) or 1.81 for N2 and

g (J~~,J~ ~ ) =1.
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FIG. 5. Same as Fig. 3 except that the transitions

(1,12,M)~(0, 12,M) are used (a). The curve of Fig. 3 is shown

for comparison (b).

responding CARS line amplitudes is here about 600. In
the absence of saturation, this ratio would be exactly 625.

E. Fourier analysis of anti-Stokes wave

We have so far considered the dependence of the
CARS output energy on the input frequency. In other
words, we have treated the tuning of the Stokes (or laser)
radiation as the spectral probe. It is also instructive to
consider the spectral character of the anti-Stokes radia-
tion at particular fixed values of the laser and Stokes fre-
quencies or, more pertinently, at a fixed detuning from
the Raman resonance. This output spectrum could be
measured with a spectrometer or by a heterodyne tech-
nique. That there will be more than one spectral com-
ponent is apparent from Eqs. (10) and (11)which, for con-
stant amplitude pumping fields, have two homogeneous
and one inhomogeneous solutions. We shall see that the
homogeneous solutions do not appear when we make the
adiabatic following approximation for Leo ~g Qz.
Agarwal and Singh' also have noted that the CARS sig-
nal spectrum should possess sidebands when cw pump
lasers with stochastic pump Quctuations are used.

The anti-Stokes spectral density is related to the spec-
tral density of the ofF-diagonal density matrix element as
follows:

dp
dt

=bcg p' 2QR(t)n, — (51)

g I I

~ ~ ~ ~

Stark shifting. S(v) is a sharply peaked function and, if
Qt »1, we may take it to have the form nt„5(v) .A
three-dimensional plot showing the location and ampli-
tude of the three peaks is presented in Fig. 6 as a function
of detuning from the molecular resonance. The curve
projecting onto the hen axis corresponds to the first term
in (50); this term peaks at bZo=+2Qa and is zero at
Aco=0. The second and third terms correspond to the
curves projecting onto the upper and lower hyperbolae,
respectively. They have peaks at +2Q„/&3 for the
lower and upper curves, respectively. They have a very
small value when the curves approach their asymptotes
(dashed lines), and these values then are close to the value
of the first term.

Note that when we sum the intensities of the three
spectral components we obtain an expression having the
same form as Eq. (34}. Thus for the square-pulse case the
intensity of the CARS signal at a given detuning is simply
a sum of the intensities of the district spectral features
which appear at the particular detuning.

We now turn to the question of the spectral character
of the anti-Stokes spectra expected for temporally smooth
laser and Stokes pulses at a fixed detuning from reso-
nance. For a suSciently smooth pulse applied o6' reso-
nance, we expect to find spectra consistent with the ap-
proxirnate analytic solutions given for adiabatic follow-
ing. In addition, on resonance we find a novel analytic
solution for the response which gives a spectrum with in-
terference peaks which follow an Airy-like pattern.

In order to readily obtain these approximate analytic
solutions it is useful to transform the Bloch equations (10)
and (11) into the well-known pseudovector form:

(49)

where v=co —(2', —c02). For a square driving pulse we
find

0
~
p(v)

~

ceno [4bco S(v)+(EQ+Q) S(v+Q} +2QR

r ~r
-2QR

4'

where

+(bee —Q) S(v —Q)], (50) ~ E

2QR

and

Q =(bc0) +(2Q„)
%9= aw

sin (vt }
&(v) =

Note that this equation holds even in the presence of

FIG. 6. Frequencies and amplitudes of the three peaks in the
anti-Stokes spectrum about the center frequency v=0 as a func-
tion of LS for square input field pulse shapes.
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I

dt
= —Ecop

dn

dt
=2Q„(t)p",

where

(52)

(53)

dQ„(t)
p dt (Q~)2

no
. 2- 3n

2Q„(t)
Eco

p' =2 Re(p), p"=2 Im(p)

and the Stark effect is now neglected.
In the vector model p', p", and n can be treated as the

components of a three-dimensional polarization-
population difference vector and 20&, 0, and hen treated
as the components of a second vector, the Rabi
frequency-detuning frequency vector. The rate of change
of the polarization-population difference vector is equal
to the cross product between the polarization-population
difference vector and the Rabi frequency-detuning fre-
quency vector. The conservation law (Casimir invariant)
given by Eq. (31) is an obvious consequence of this vector
form.

The adiabatic solution is found by assuming that the
input pulse varies sufficiently slowly so that we can
neglect the left-hand side of (51), to obtain

Leo p'=2Q„(t)n . (54)

n= no

2Qa(r)
6N

(55)

p =
2Qa (t)

no
AN

2Qa(r)
kN

(56)

If we further assume n, p'&&p" then from the conserva-
tion law (31}we find

It can be readily shown that the assumptions made in
obtaining (55)—(57) are valid when b, cot~ &&I indepen-
dent of the ratio 2Q+ (t)/b, co F. igure 7 shows plots of the
three terms, Re(p) = —,'p', Im(p) = —,'p", and n for Gaussian
laser and Stokes pulses for two cases: (a} unsaturated
hco=lOQ& m, „and (b) saturated b,co=0. 1Qa,„, where0„,„ is the Rabi frequency at the peak pump intensity.
The anti-Stokes spectrum is given by

2

~
E,(co)

L

'~ f dt e'"'6, (r)Re[p(r)] (58)

where, as before, v=co —(2', —co2).
It is apparent from the form of 8,(t) and Re[p'(t)]

that there is a single peak on the anti-Stakes spectrum at
co =2'

&

—ct)2. In the case of weak saturation, the spec-
trum is given by the Fourier transform of the product of
the laser field envelope squared with the Stokes field en-
velope. In the strong-saturation case, the spectral width
will be the spectral width of the laser pulse. Thus the un-
saturated anti-Stokes spectral distribution is broader than
the saturated distribution. These results are in strong
contrast to the square-pulse case where there are two ad-
ditional components, one of which can be strong, dis-
tinctly separated from the "driven" anti-Stokes peak at
~=2', —m2. Figure 8 shows the smooth pulse spectra
for the same two cases as in Fig. 7.

On resonance, when Aco=0, we have an exact solution
of (51)—(53) for a smoothly varying continuous pulse

n =nocos 2 f dt'Qa(t') (59)

p"= —nosin 2 t'0„ t' (60)

I I I~ g ~l I I I 0I I I I I I I I I I

t (ns) 30 t (ns)
(a)

30
I I I I I I I I I

I I I I I I I I I I

I I I I I I I I I
I I I I I I I I

t (ns) 30

I I I I

I I I I I I I I I 0
t (ns) 30 0

I I ! I

I I I I I I

t (ns)
(b)

I I 0
30 0

I I I I I ! I I I I

I I I I I I I I I I

t (ns)

FIG. 7. Approximate analytic solutions for polarization components and population differences for Gaussian pulses when
hoot~ = 10. (a}Weak saturation, 20&,„i'hco =0.1; (b} strong saturation, 20+,„/hm = 10.
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FIG. 8. Anti-Stokes spectra for synchronous Gaussian pump
pulses of identical width t~, and for Am t~ =10. (a) %'eak satura-
tion, 20&,„/Ace =0.1; (b) strong saturation, 20&,„/b, co = 10.

and

p'=0 . (61)

I

p'=no hen f dt'sin 2 J dt" QR(t")

From this result we readily see that p' & n o if hen t «1
for any value of the ratio QR, „/I5co.

Instead of (58), the anti-Stokes spectrum is given by
2

! E3(co)! ~ fdt e' '6I(t)Im[p(t)]

(62)

(63)

This solution is expected to be a valid approximation
for b,co&0 if p' «no To te. st this, we use the solution
(60) together with (52) to find an approximation for p' off
resonance

ones near +20+,„since the former come from the
wings of the pulse and are consequently weighed less
strongly by the I I(t) term in (58). An example of the re-
sulting "Airy pattern" spectrum is shown in Fig. 9. Note
that the square pulse spectrum would have just two sharp
peaks at 20~.

For Scot =1 we solve (51)—(53) numerically in the
time domain and Fourier transform to obtain the spec-
trum shown in Fig. 10. Note that this spectrum shows
the features of both limits, namely the peak at
co=2co, —co& for b,co t &&1 and the "Airy pattern" spec-
trum for hoot «1.

The spectral shapes predicted in Figs. 9 and 10 have
apparently not been observed experimentally. For them
to be observed, several requirements will have to be
satisfied, such as use of single-mode, short-pulse ((1—2 ns
long) pump beams and detection by means of either high-
ly dispersive spectrographs or heterodyne spectroscopy; a
square intensity distribution in the focal volume is also
desirable for clear separation of the spectral components.

Finally, interesting diffraction phenomena can be pre-
dicted to also follow from the spectral broadening of the
CARS signal at or very near resonance due to the trans-
verse intensity variations of the pump beams, because this
broadening is intensity dependent. Following are two
particular cases which are noteworthy.

(1) Collinear CARS with Gaussian pump beams. If ob-
served in the output plane of the focal volume element,
this broadening depends on the radial coordinate. The
spectral components with the largest shifts are found
near the axis and the unshifted ones in the beam wings.
Therefore, diffraction spreads out the broad spectral
components in the far field more than the unshifted ones.
Meanwhile, the unshifted components have a Natter in-
tensity distribution in the focal volume, hence they un-

dergo less diffraction than in the absence of saturation.
The CARS beam should retain circular symmetry. We
note that as diffraction takes the spatial Fourier trans-
form and because the spectral content is radially depen-
dent in the focal zone, the radial intensity distribution in
the far field is, to some extent, representative of the fre-

quency spectrum.

Several features of the spectrum are apparent from the
form of u I(r) and Im[p (t)] as given by (60). For
QR,„t~ &&1, Im[p(t)] is a rapidly varying function so
that we expect its Fourier transform to dominate the
spectrum and, therefore, there will be spectral com-
ponents extending over the range

2'~ —Q)z —20~ m~„& co & 2'
~

—coz+ 20' m~„

Further, since a spectral component v=~ —2~, +coz is
generated at times such that v=+QR (t), we expect each
spectral component ! v! & 2QR,„ to appear twice in the
pulse, once on the leading edge, and once on the trailing
edge. If these contributions are in phase, we see a peak in
the spectrum; if they are out of phase we expect a
minimum in spectral intensity. Further, the spectral
components

! v! &2QR,„will be weak compared to the

4& R, max.

~~
CO

CO

c c
0$ ~

V ~
CL

CO

I

—0.05
I I I

0
0 (cm')

0.05

FIG. 9. Anti-Stokes spectrum for a Gaussian pulse when
A~ t~ &&1 and QR, „t~ =30.
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were derived from calorimeter measurements. It was as-
sumed that the pump-beam divergence was twice the
diffraction limit. The maximum focal power densities
with the 500-mm achromat thus were 30 GW/cm for Ii
and 1 GW/cm for Iz. The ratio of anti-Stokes powers
generated in the discharge and reference cells was taken
electronically, and the square root of this ratio was calcu-
lated for each laser shot. Ten consecutive measurements
were taken and averaged at each point in the spectrum.
This spectrum was scanned in steps of 0.015 cm
Three adjacent spectral data points about line center
were averaged in order to reduce the noise. W'e used this
"peak" line amplitude for our measurement of the num-
ber density of quantum state population. Finally, when a
filter was placed in order to attenuate the pump beams,
with attenuation coefficients a, and az (with ai ~a2 be-
cause of dispersion} at frequencies to, and to2, respective-
ly, the spectrum was automatically multiplied by a&az
for normalized presentation.

3. Spectroscopy and data analysis

The frequency-doubled Nd: YAG pump at co, is single
mode, but the tunable dye laser Stokes source at co& con-
tains several adjacent cavity modes separated by -0.01
cm ' over a spectral range of -0.05 cm ' (FWHM).
Using these lasers, the Nz Q-branch lines at low pressure
are distinct, except for Q(0) and Q(1) [Fig. 13(a)]. Howev-
er, the lines are unresolved in the sense that their widths
are smaller than the dye laser linewidth, unless very
strong saturation broadens them [Fig. 13(b)]. Two limit-
ing cases thus can be distinguished.

(a) Low power (no and moderate saturation). The lines
are predominantly Doppler broadened, with a width of
=0.003 cm ', i.e., slightly less than the co2 mode spacing.
Our situation is the one most commonly found in applica-
tion of CARS to low-pressure gases, where the instru-

mental spectral resolving powers are in the range
0.05—0.3 cm '. There are two important consequences.

(i} We do not have the capability of verifying the sa-
turated spectral shapes predicted in Sec. II, which would
require the use of single-mode lasers as in recent experi-
ments of Lucht and Farrow. '

(ii) Numerical simulations must be carried out of the
behavior of unsaturated and moderately saturated line
profiles under excitation by multimode lasers in order to
understand the experimental results.

This second point requires a detailed discussion of the
experimental procedure. We recall that ten shots were
averaged at each point in the spectrum. We note that the
scrambling caused by the inevitable shot-to-shot laser
mode jitter and, when they are present, by the saturation
broadening and the Stark shifting, causes the vibrational
profiles to be sampled with a high degree of homogeneity,
i.e., as if the Stokes laser spectrum were continuous. This
conclusion remains valid even when the lines are not
broadened by saturation, although their widths then are
smaller than the mode spacing. Illustrative spectral
shapes obtained with a rnultimode Stokes model are cal-
culated below.

(b} High power (full saturation) This .limiting case
occurs when the broadening is larger than the Stokes

1.0—

LI

Ol

e

DI
I

lo
l

0.0
-(cu &-m&)

F)

N2

F2 0-, =F3

A

Kl

p[j
=F4

0.57— (b)

0.0
(CV q EQg)

FIG. 12. Experimental setup. T, CARS laser source table;
F& —F4, focusing achromats; C, reference cell; D, dichroic mir-
rors which reflect only the pump beams; D', dichroic mirror
reflecting anti-Stokes beam and transmitted pump beams; A,
anode; E cathode; A, , wavemeter; S, double monochromators for
signal and reference isolation.

FIG. 13. Experimental CARS spectrum of the U =3 U=2
branch of N2 in the postdischarge region of a 2.6-mbar, 80-mA
discharge using BOXCARS beam arrangement. (a) Spectrum
recorded with neutral density filters giving a factor of 4 reduc-
tion in both pump beams; (b) no pump beam attenuation; note
line intensity reduction and broadening.
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bandwidth. This case is simple to calculate since it is
then a good approximation to assume the laser to be
monochromatic.

To assess these effects, numerical calculations were car-
ried out with an extension of the techniques used to ob-
tain the results in Sec. II. The pump pulses were 10-ns
long and a nine-mode dye laser was assumed. The modes
were taken to be evenly spaced by 0.01 cm ' and had a
Gaussian envelope, in agreement with the results of an
earlier CARS study. It was assumed initially that the
modes had a constant amplitude but random phases
chosen by a random-number generator for each simulated
laser shot. Simulated CARS spectra of a single, nonde-
generate [i.e., Q(0)] line of the v=0 level were obtained
numerically for several values of the pump-power density
product [Figs. 14(a)—14(d)]. The line was assumed to be
isolated from other lines and the nonresonant back-
ground was neglected. Note that for degenerate lines
(J&0) the computation time becomes prohibitive and, as
we have seen in Sec. II, the impact of the J=0
simplification on the line shapes is negligible. The anti-
Stokes power was calculated for each point in the CARS
spectrum, i.e., for each value of co, —co2, with a step size
of 5&10 cm '. At low power, the dye laser mode

structure is revealed as each mode passes over the Raman
resonance. When the power is increased, this mode
structure is blurred by the saturation and the components
gradually merge into a single broad line, which is wider
than the original Stokes laser profile. Note that the phase
noise introduces spectral noise only when the intensity is
large and the line broadened [Fig. 14(d)), so that several
mode pairs simultaneously drive the density operator and
interfere with each other in a random fashion.

In order to also simulate the mode amplitude fluctua-
tions, the statistics of which are known to be exponen-
tial, the same cases were calculated with allowance for
random mode amplitudes in addition to the random
phases [Figs. 14(e)—14(h)]. These simulations closely
resemble those of Lucht and Farrow. ' Only one calcula-
tion was done for each point in the spectrum. The spec-
tra are seen to be very noisy under these conditions. It
should be pointed out that the noise model is not strictly
representative of our dye laser; the total power fluctua-
tions (60% rms) calculated by the model were 3 —S times
larger than those of the laser.

The result of the preceding calculations was then com-
pared to simulations done with a single-mode co2 beam to
assess the impact of the multimode character. For this
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FIG. 15. Square root of calculated CARS signal vs (IlI2)'
(solid line). To simulate the experimental method used for data
acquisition, we integrate the square root of the curves shown in
Fig. 14, as well as similar curves computed for complementary
values of (I&Iz)', over the central 0.05 cm '. The calculations
are normalized to (I&I&)' to simulate the experimental refer-
ence ratioing cell. For comparison, a similar plot was drawn us-
ing the square-root signal calculated assuming single-mode
pumps. In this case, both the central, O.OS-crn '-wide area un-
der the square-root curves ( —- —-) and the peak ( ———) are
plotted.

comparison, we plotted the square root of the peak am-
plitudes of the curves shown in Figs. 14(a) —14(d) and of
those obtained in a similar simulation using the same
pump powers but two single-mode sources. The results
are shown as a function of the square root of the product
of the pump-power densities (I,Iz)' assuming I, =3I2
(Fig. 15). The amplitudes near the peak of the multimode
plot were numerically averaged over the central 0.05
cm ' in order to better reflect the experimental pro-
cedure (see Sec. IIIA2). For the single-mode plots, a
similar average over 0.05 cm ' was also taken; in addi-
tion, the variation of the true peak of the spectra is
shown for comparison. We note that the three curves of
Fig. 15 tend to merge for the higher powers, i.e., when
the broadening becomes comparable to the multimode
Stokes bandwidth or larger. The onset of saturation,
however, is slower in the multimode case because the
Stokes energy is spread over a spectral range larger than
the CARS resonance. Also, it is seen that the two single-
mode curves have different slopes at moderate saturation
(i.e., below 2X10' W/cm ). If the peak spectral ampli-
tude is plotted, a faster initial decrease is seen. The onset
of saturation is practically the same for the two cases, but
the error is reduced if one integrates over the spectral
width. These aspects must be borne in mind when the
spectra are recorded with single-mode lasers. Finally, the

points calculated with mode amplitude noise [Figs.
14(e)—14(h)], which should exhibit more saturation, fall
within 5 —10% of those calculated with the phase fluctua-
tions alone. Saturation in this case is thus marginally
more significant and these points have not been
represented on the graph.

Strictly speaking, the influence of the Stark effect
should also be studied, i.e., different values of I& and I2
should be considered while keeping their product con-
stant. However, we know from the preceding section
that the main consequence of the Stark effect in the case
considered here, i.e., N2 Q-branch, is a translation of the
spectra, which should have little impact on the results for
the peak and integrated intensities.

B. Results

1. Rotational temperature

It is shown in Sec. II D that the rotational lines within
a given vibrational manifold experience very similar dis-
tortions. As a consequence, the rotational temperature
derived from CARS Q-branch contours is nearly indepen-
dent of pump power. This can be verified for the saturat-
ed case by reducing the data of Figs. 13(a) and 13(b). A
least-squares linear regression yields 359+8 K and
344+13 K, respectively, for the two spectra. The first
four lines, Q (0)—Q(3), were eliminated from the analysis
because of their partial overlap. Similar studies of the
v=0 and 1 bands have failed to establish, within experi-
mental accuracy, a systematic dependence of the CARS
measurement of rotational temperature on pump-power
density in the range I,I2 ——0.001—30 (GW/cm ) . This
conclusion is in agreement with the predictions of Sec.
III D.

2. Vibrational populations —total number densities

The measured number density difference is plotted in
a'rbitrary units in Fig. 16 versus (I&Iz)'~ for the first
three vibrational quantum numbers. The data were ob-
tained by summing the population differences in each ro-
tational sublevel observed. Small corrections were ap-
plied for the missing contributions from undetected lines.
Crossed beams (planar BOXCARS) were used. The data
are seen to compare quite well with the results of numeri-
cal predictions; the calculations were carried out using
the same assumptions as those of Fig. 14 (viz. nine-mode
dye laser, N2 molecular parameters, 10-ns-long pulses).
The effective horizontal scale for v=0, however, has to be
shifted by a factor of 1.8 from the theoretical one, be-
cause less saturation is seen experimentally than is calcu-
lated. This is quite probably because the simulations as-
sume a uniform power density at the focal volume,
whereas the laser beams actually have a Gaussian intensi-
ty distribution, the wings of which give an unsaturated
contribution. Lucht and Farrow' have shown that the
product I~I2 has to be about twice as large as in the flat
profile case to obtain the same signal with Gaussian
beams. Finally, Fig. 16 demonstrates that the saturation
threshold decreases with vibrational quantum number, as
predicted in Sec. IIB. Note that the theoretical curves
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FIG. 16. Ratioed CARS signals from a 2.6-mbar discharge
for v=0, 1,2 initial states vs the product of pump-beam intensi-
ties and numerical predictions for the same transitions (solid
lines). Numerical predictions are for a multimode dye laser.
The theoretical curves and corresponding experimental points
have been translated horizontally by a factor &u + 1 and verti-
cally by a factor of 2 for the v =2~ u = 1 transition and a fac-
tor of 3 for v =3 v =2.

17, assuming 10-ns-duration pump pulses. Advantage
was taken of the &v +1 dependence of the Rabi frequen-
cy versus (I,Iz )'~ (see Sec. II B) to make the plot applic-
able to all vibrational states.

The top of the figure gives plots of &v + 1(I
& Iz )'~ as a

function of (I,I2)' for several values of vibrational
quantum number. For known I, and I2. the quantity
(I,Iz)' is first calculated. The corresponding horizon-
tal line (a) intercepts the various u lines, giving the abscis-
sa (b) which is to be used for each vibrational state. The
resulting f (u) factor is then immediately found (c) from
the bottom curve. An example is given for (I,I2)'~ =1.3
GW/cm and v=6, which yields f (v)=1.39. Several
comments should be made concerning this figure.

(1) The power density product appearing on the scales
is theoretically determined assuming infinite plane waves.
Experimental values producing the same levels of satura-
tion are generally higher, by a factor which depends on
the experimental arrangement and conditions (beam qual-
ity, use of BOXCARS or collinear CARS, spectral band-
width of the Stokes, etc). Furthermore, if a molecule
different from N2 is probed, the saturation factors will be
different.

(2) However, because the general features of the result
are relatively insensitive to all these variables, the shape

corresponding to u = 1 and 2 have been shifted exactly by
the factor &v + 1 with respect to the v=0 curve

It is expected that Doppler broadening, which has not
been included in the analysis, does not cause the
discrepancy since it is small in comparison with the band-
width of the Stokes laser modes and with the Stark and
Rabi broadenings. Similar conclusions were reached by
Lucht and Farrow. ' Molecular motion, however, may
have an infiuence on the saturation if the transit time of
the rnolecules through the focal volume becomes compa-
rable to or shorter than the pulse duration. For N2, if we
assume that the static (translational) temperature is equal
to the rotational temperature, the transit time is approxi-
mately 100 ns at 550 K for our experimental conditions.
This time is 1ong compared with the pulse duration and
should have only a very small effect on the results. We
note that the situation is somewhat different for H2 at the
same temperature since the mean quadratic velocity is

approximately four times larger; in other words, the sa-
turated molecules are replaced with unsaturated ones in
20 ns. When this process is important, an inhomogene-
ous broadening effect is present which raises the satura-
tion threshold. This phenomenon is not simple and shall
be treated elsewhere.

Finally, assuming known temporal pump-pulse shapes
and peak intensities, it becomes possible to predict the
corrections which must be applied to the measurements
in order to extract the exact number density differences
AN ( v ) of vibrational states from the saturated values
b,N„,(u), using the formula

bN(v)= f(v)bN, (v),

where the factor f (u) is derived numerically. This factor
is plotted as a function of (I&I2)' at the bottom of Fig.

10

0.1

1 100

1.5—

2.0—

2.5—

3.0—

4.0—

5.0

FIG. 17. Determination of the correction factor f (v) in the
range 0(u (20 vs (IlI2) . The numerical results were calcu-
lated for Nz, assuming 10-ns-long synchronous Gaussian pulses,
monochromatic col and 0.05 cm ' bandwidth, nine-mode co2

beams (same conditions as Fig. 15).
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of the curve should remain approximately valid over a
fairly wide range of experimental conditions, assuming
the parameter (ItI2)' is suitably adjusted. With this
provision, we feel that the correction factor given by the
figure may be used for resolutions varying from single
mode to a few 10 ' cm ', diffraction-limited or multiple
transverse mode beams, collinear CARS or BOXCARS,
and any diatomic molecule.

(3) In order to determine the (I,Iz )'~ parameter
which is suitable for a particular experiment, it is recom-
mended that f (v) be carefully determined experimentally
for one or a few low-vibrational states. This can be done
by recording their line amplitudes under two distinct con-
ditions: (a) the nominal pump powers at which all molec-
ular states of interest are to be studied; generally, this
power is the highest possible in order to achieve the best
detection sensitivity and is assumed to be kept constant
for the entire study; (b) the lowest possible power still
permitting good detection sensitivity and absence of satu-
ration for low-vibrational states. Using the f (v) value(s)
thus obtained, Fig. 17 then can be used to find the per-
tinent (I&I2)'~ from which f(v) will be derived for all

other vibrational quantum numbers. The higher the vi-
brational state(s) used in the first step, the more accurate
the final coefficients. Finally, note that the curve has
been limited to f (v) & 5, beyond which there are strong
saturation and large spectral widths and shifts; therefore,
the validity of experimental data becomes questionable.

IV. CONCLUSION

We have calculated and experimentally observed the
consequences of vibrational saturation and Stark shifting
in rovibrational CARS spectra; the effects are quite
significant. They are, however, virtually independent of
rotational quantum number J in any given vibrational
manifold, which facilitates the measurement of rotational
temperature. Saturation increases monotonically as a
function of the vibrational quantum number v. Large
effects (up to 100%o) have been seen experimentally in a
typical CARS measurement of vibrational state densities
in a low-pressure nitrogen glow discharge. The correc-
tion factors necessary to derive the populations from sa-
turated measurements have been calculated and experi-
mentally verified.

High-lying vibrational states are usually detected un-
der conditions of relatively strong saturation because
they require use of the highest available pump powers
and because achieving good spatial resolution necessitates

tight focusing. Data correction is therefore necessary in
most low-pressure CARS work and the chart given in
Fig. 17 permits this correction to be calculated for N2 un-

der experimental conditions similar to those used here
(no collisions, single-mode cu, pump and multimode, 0.05
cm ' bandwidth co2 pump, and either BOXCARS or col-
linear beams). In addition, Fig. 17 should be applicable
to a wider range of experimental conditions covering,
e.g. , other molecules, or use of single-mode pump lasers.
However, its application should be restricted to inter-
mediate saturation power levels; above these powers,
differences may appear, in particular when the Stark
effect is more pronounced than in N2. Because of the ob-
served sensitivity to saturation, many previous CARS
low-pressure measurements probably will have to be re-
visited using correction techniques.

Effects not previously seen in conventional, off-
electronic resonance CARS include (a) spectral broaden-
ing of the CARS signal caused by the dynamic popula-
tion redistribution; (b) altered divergence of the saturated
spectral components present in the CARS signal beam
compared with the unsaturated case, viz. increased diver-
gence of the shifted components and reduced divergence
of the unshifted components. In folded BOXCARS, new,
well-defined signal beams appear.

Collisional damping has not been considered here. Our
analysis is therefore strictly valid only for pressures below
10 mbar. We have recently seen evidence of saturation in
multiplex CARS in flames under higher pressure condi-
tions; appreciable temperature measurement errors were
found to occur. A report of vibrational saturation in
multiplex CARS was also recently published and a rate
equation model of the saturation was presented. 's While
this approach of the problem may be valid at moderate
pump powers, we feel that a treatment of the multiplex
CARS case based on our model with the inclusion of
damping or, equivalently, the analysis of Lucht and Far-
row, ' is necessary.
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