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This is the first of two papers that develop the theory of oscillatory spectra. When an atom is

placed in a magnetic field, and the absorption spectrum into states close to the ionization threshold
is measured at finite resolution, so that individual energy levels are not resolved, it is found that the
absorption as a function of energy is a superposition of sinusoidal oscillations. These papers present
a quantitative theory of this phenomenon. In this first paper, we describe the physical ideas under-

lying the theory in the simplest possible way, and we present our first calculations based upon the
theory. In the second paper, the theory is developed in full detail, proofs of all of the assertions are
given, and we describe the algorithm that was used to make the calculations.

I. HYDROGEN ATOM IN A MAGNETIC FIELD

A. Coordinates and Hamiltonian

For any one-electron atom placed in a uniform mag-
netic field pointing in the positive z direction, the motion
of the electron relative to the nucleus is usually described
in a frame of reference that precesses about the z axis at
the Larmor frequency. ' Coordinates for the electron are
generally denoted q; usually cylindrical or spherical coor-
dinates are used, so that q~(p, z, ts)) or (r, 8,$). In the
precessing frame the Hamiltonian is

1 Ze eBH= p- + p .
2m, (p +z ) gm, c

The z component of angular momentum L, is con-
served, and so the kinetic-energy term in 0 can be writ-
ten as

2 P~+P' +(
2 2)

me 2mep
(1.2)

B. Measurements of the absorption spectrum

Garton and Tomkins were the first to observe diamag-
netic effects in high-n Rydberg states, and more precise
measurements were later made by Lu et al. Some of
their measurements are reproduced in Fig. 1. The lower
part of the figure shows the absorption spectrum of the
atom in the absence of a magnetic field. Each peak corre-
sponds to a transition from the ground state into one of
the high-n states. Transitions into levels between n=31
and n -80 are well resolved. At higher photon energies,
the Rydberg levels are too closely spaced to be resolved,

and the azimuthal angle P is an ignorable coordinate. In
the low states of atoms, the diamagnetic term is usually
negligible; however, in high-n Rydberg states, this term is
the source of interesting effects.

and we see a smooth average-absorption curve. There is
no discontinuity at the ionization threshold: the
average-absorption coefficient behaves continuously as
the photon energy increases and the final states change
from discrete bound states to continuous free-electron
states.

When the magnetic field is turned on, the lower-energy
levels (n -30—40) are split by the diamagnetic term. One
can see that this splitting has an orderly pattern. For lab-
oratory field strengths, this splitting is well described by
first-order perturbation theory.

In this experiment, higher levels (n -40—100) were not
fully resolved, and at first glance the absorption spectrum
appears to be very complicated. However, more recent,
higher-resolution experiments carried out by the Mas-
sachusetts Institute of Technology (MIT) group have
shown that many of the simple patterns that appear in
the lower levels persist to some extent in these higher lev-
els as well.

Our present interest is in the absorption spectrum near
the ionization threshold. There one sees that the absorp-
tion coefficient is an oscillatory function of energy. As
the magnetic field strength B increases, the "wave-
length, "or peak-to-peak energy spacing A,E of these oscil-
lations, increases, and the amplitude of the oscillations
also increases.

Higher-resolution measurements of near-threshold ab-
sorption in the hydrogen atom in a magnetic field have
recently been carried out by the University of Bielefeld
group, and one recent set of observations is reproduced
in Fig. 2. At this higher resolution, the smooth oscilla-
tions seen in Fig. 1 are no longer visible, and the absorp-
tion as a function of energy seems to be quite chaotic.

In fact, however, this absorption signal is not at all
chaotic: underlying it is a rather unexpected type of or-
der. Let us denote the observed photon absorption plot-
ted in Fig. 2 as A (E) (it is the measured photon-
absorption rate in arbitrary units). The Fourier trans-
form of this quantity, converting from energy to time as
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FIG. 1. Absorption spectrum of the barium atom close to the ionization threshold (from Ref. 2). Photon energy increases toward
the left. Two distinct regions of the spectrum are visible. The arrow on the right points to a group of energy levels in the classically
regular regime. Here the Rydberg levels are split in an orderly manner by the diamagnetic term. The arrow on the left points to os-
cillations that are visible in the spectrum in the classically chaotic regime. This paper provides a quantitative theory of such oscil a-
tions.

the independent variable, is denoted by A ( T),
E

A(T)=constX f exp( fETIA)A—(E)dE,

where E& and Ez are the lower and upper limits of the ex-
perimental measurements. This Fourier-transformed ab-
sorption signal, calculated in Ref. 5(b), is shown in Fig. 3
as the dotted line. Sharp peaks are visible at distinct
points, T„,on the time axis. The largest and lowest-
period peak corresponds to the oscillations seen by Gar-

ton, Tomkins, and Lu, while the other peaks correspond
to regular sinusoidal oscillations that have a shorter
wavelength on the energy axis. Hence the seemingly
chaotic absorption signal shown in Fig. 2 is actually a su-
perposition of several distinct sinusoidal oscillations of
wavelength kz'" J ——2Ir(J'I /T„.

The beginning of an interpretation of this phenomenon
was provided by Edmonds. He showed that the oscilla-
tions observed by Garton and Tomkins were correlated
with a periodic orbit of the electron moving under the
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FIG. 2. Absorption spectrum of the hydrogen atom in a rnag-
netic field B=5.96 T [from Ref. 5(b)]. Photon energy increases
to the right. The zero-field and actual ionization thresholds are
indicated. The initial state was 2p„and the final states have
L, =m%=0. At this higher resolution, the oscillations that are
visible in Fig. 1 are not apparent to our eyes. They are still
present however, as is shown by the Fourier transform.

FIG. 3. The dotted line is the absolute square of the Fourier
transform of the absorption spectrum [from Ref. 5(b)]. The unit
of time is T„the cyclotron period of the electron. The sharp
peaks show that A(E) is dominantly a superposition of
sinusoidal oscillations. Each peak occurs at a time T& that cor-
responds to the time duration of a closed orbit that begins and
ends at the nucleus. The vertical lines are our theoretical
spectral-oscillation amplitudes

~ C„~' computed at E=O (Ref.
25).
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Hamiltonian (1.1). Motion along the p axis is periodic,
and the period of this motion turns out to be equal to T, ,
the period of the largest peak in Fig. 3. Hence this classi-
cal periodic orbit is manifesting itself in the quantum
spectrum as a sinusoidal oscillation in the average ab-
sorption as a function of energy, A (E).

Pursuant to this observation, classical trajectories were
computed in Ref. 5(b), and it was found that most of the
large peaks shown in Fig. 3 occur at times T„which are
equal to periods of classical periodic orbits that begin and
end close to the nucleus.

It so happens that the period T, is equal to -', of the cy-
clotron period for an electron in a magnetic field, so that
the wavelength of the oscillations in A(E) is equal to —', of
the spacing between Landau levels. Recognizing this,
and perhaps thinking that the oscillations were caused by
quasibound resonance states, Edmonds gave the name
"quasi-Landau resonances" to this phenomenon.

More recently, Reinhardt attempted to make quanti-
tative calculations of the absorption spectrum. It is
known that the absorption spectrum A(E) can be related
to a certain correlation function: let 1(, ) be the initial
state of the atom, let D be the relevant component of the
dipole operator, and let K(t, t') be the evolution operator
for the Hamiltonian (1.1). Then it can be shown that the
observed absorption spectrum is proportional to the
Fourier transform of the quantity

II. RELATIONSHIP BETWEEN CLASSICAL
TRAJECTORIES AND QUANTUM SPECTRA

OR WAVE FUNCTIONS

A. Semiclassical eigenfunctions
and the Einstein-Brillouin-Keller-Marcus scheme

p(q) =VS(q),

S(q):=-f p(q') dq' .

(2.1a)

(2.1b}

From the function S(q), together with a density function
p(q) (which is also calculable from the family of trajec-
tories and initial conditions), one can construct a wave
function

P(q) =
i p(q) l

'"exp[iS(q) ~&] (2.2a)

The ideas underlying our analysis will be more clear if
we brieAy review the correspondence between wave func-
tions and families of trajectories. " As is well known,
given an appropriate family of trajectories, we can associ-
ate with that family a vector field p(q}—the momentum
as a function of position. If the trajectories are obtained
from Hamiltonian equations of motion from properly for-
mulated initial conditions, then associated with this field
is a "characteristic function" S(q), such that

k(r)=(DQ, if'(r, O)
~
Dg, ) . (1.3)

In some of his calculations, Reinhardt replaced
~
DP; )

by a wave packet initially centered close to the nucleus,
and he made some estimates of what the propagator
would do to such a packet. In a semiclassical approxima-
tion, the packet will move along classical trajectories;
some of those trajectories are periodic, and they return to
the nucleus after time T„.Therefore the matrix element
k (t) may have peaks at times t =T„corresp ondi ng to the
periods of periodic orbits, and the Fourier transform
A(E) would be expected to have oscillations of wave-
length A.E ——2vrh/T„. This physical picture is helpful in

many ways, but the attempt to obtain quantitative re-
sults from it was only partially successful.

The purpose of these papers is to provide a quantita-
tive theory of the Garton-Tomkins-Edmonds
phenomenon: we want to explain the existence of oscilla-
tions in the average-absorption spectrum of an atom in a
magnetic field, and we want to show the relationship of
such oscillations to classical periodic or closed orbits. In
this first paper, the physical ideas are discussed in the
simplest possible way. Since we know that the spectral
oscillations are correlated with classical trajectories, we
naturally give attention to the correspondence principle,
and the general relationship between wave motion and
particle motion. We shall see that classical trajectories in
this system are generally chaotic. The classical limit of
quantum mechanics for chaotic systems is not yet very
well understood. Nevertheless, we shall show that a fa-
miliar correspondence principle, used in a less familiar
way, leads to a quantitative theory of oscillatory spectra.

and this wave function approximately satisfies the
Schrodinger equation.

Usually, in practice, trajectories fold back over each
other in such a way that more than one path passes
through each point; then the vector field, characteristic
function, and density function have several branches, and
the wave function is a superposition of several terms,

Q(q)= g ~
pk(q}

~

' expi S&(q)/fi p&
——

k 2
(2.2b)

Here IMk is the Maslov index, and it represents the rela-
tive phases of various terms in the superposition.

This approximation is commonly used to calculate en-

ergy eigenvalues and wave functions associated with reg-
ular trajectories. A regular quasiperiodic trajectory
winds around in such a way that it by itself forms the re-
quired vector field p(q) [Fig. 4(a)]. This vector field sup-
ports a wave function of the form (2.2b) [Fig. 4(b)]. Care-
ful examination of boundary conditions and phase rela-
tionships reveal that such a wave function can only be
constructed if action integrals 81, around distinct closed
paths ck are quantized,

~Pk
&k ——f,„pk(q').d q' = ail, + (2.3)

This procedure (the Einstein-Brillouin-Keller-Marcus, or
EBKM, quantization scheme) therefore connects each in-

dividual eigenfunction to an individual quasiperiodic tra-
jectory.
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Let us return now to the probletn of oscillatory spec-
tra, and the Garton-Tomkins-Edmonds phenomenon.
From the early papers on this subject one might get the
impression that appropriate applications of this quantiza-
tion scheme would provide an explanation of the oscilla-
tions seen in the spectrum. Edmonds, Rau, ' "' and
Starace' ' ' discussed the effect in terms of quantization
of action integrals on a periodic orbit, and Al-Laithy
et al. ' "' considered the possibility of quantization of a
second action variable representing motion across a
periodic orbit. '

However, such an approach cannot be applied. Calcu-
lations show that in the relevant energy range, very few
or perhaps none of the trajectories in the energy range of
interest are quasiperiodic. Figure 5 shows a trajectory of
the Hamiltonian (1.1) with a strong magnetic field and
with energy just below the ionization threshold. This
typical chaotic trajectory does not form any sort of
smooth vector field p(q), and action integrals associated
with this trajectory cannot be defined, so there is no way
to build a wave function upon it using the EBKM

scheme. Presently there exists no semiclassical theory
connecting individual energy levels with individual irreg-
ular trajectories. As a consequence, it is not easy to say
what properties individual eigenfunctions will have in the
classical limit. ' ' A different approach is needed.

B. Semiclassical Green's functions
and the Snite-resolution approximation

An important idea comes from the nature of the experi-
ments: in those measurements individual energy levels
were not resolved; instead, an average absorption was
measured to a band of states within the finite resolution
of the laser. While presently no orderly pattern to indivi-
dual eigenvalues has been seen, a simple pattern does ex-
ist for the spectrum at finite resolution —sinusoidal oscil-
lations appear that are correlated with classical trajec-
tories.

In these papers we shall obtain a semiclassical theory
that describes the quantum spectrum at finite resolution.
%'e consider measurements in which individual levels are
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FIG. 4. (a) Regular trajectory of an atomic electron in Coulomb and diamagnetic fields (there is also a weak electric field pointing

in the —z direction, but it has little eC'ect). The path followed by the electron is represented in cylindrical coordinates. This trajecto-
ry is one of the typical types that are associated with the regular part of the spectrum (n =30, B—a few teslas). The momentum field

has four branches. Associated with this momentum field is a semiclassical wave function given by Eq. (2.2b). (b) Quantum wave

function correlated with the trajectory shown in Fig. 4(a). The wave function is large and oscillatory in the region of (p, z) space oc-
cupied by the trajectory, and exponentially small in the rest of space. The number of oscillations in the wave function is correlated
with classical action integrals. This wave function was calculated directly from quantum mechanics. The semiclassical approxima-
tion discussed in the text would give almost exactly the same result.
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FIG. 5. Irregular trajectory of an atomic electron in Coulomb and diamagnetic fields. This is characteristic of the type of trajecto-
ry that occurs near the ionization threshold. There is no way to associate a smooth vector field with this trajectory, and therefore no
way to build an eigenfunction from it.

X exp tSk(q q'}«—iStk (2.4)

Here we have explicitly noted the dependence of the clas-
sical functions S and p upon the selected initial point q'
as well as the final point q. The sum is again over all tra-
jectories leading from q' to q, each of which corresponds
to a branch of the trajectory field.

We need to know how this approximation to the
Green's function changes as the energy changes. The
classical functions Sk(q;q') and pk(q;q') are evaluated on
the (kth) trajectory of energy E leading from q' to q. As
the energy changes slightly, this path shifts. A well-
known theorem in classical mechanics asserts that if the
end points are held fixed, then the change of Sk(q, q')
with E is given by

r

not resolved, but in which fluctuations are seen in the
average absorption as a function of energy.

The starting point of the theory is the Green's function
Gz+(q; q') —the wave produced at q by a steady source of
outgoing waves of energy E at q' (Fig. 6). A semiclassical
approximation to Gz+(q;q') can be constructed from tra-
jectories of energy E that propagate radially outward
from q'. When the trajectories are propagated for a finite
time, they form the required vector field p(q), and the
semiclassical approximation to the Green's function is

Gz (q q'}=c2 I pk(q q')
I

'"
k

trajectories can travel from q' to q. Normally the most
direct path will arrive after a short time, and then there
will be a sequence of other, ever-more-convoluted paths
from initial to final points. According to Eq. (2.4}, each
such path would contribute a term to the Green's func-
tion. As Tk increases, each term would become ever
more sensitive to small changes in the energy, oscillating
with a wavelength A,z 2mklTk. ——Perhaps in the limit
A~O an infinitely complicated interference structure
could arise.

Suppose, however, that we only want to calculate
Gz+(q;q') to a finite resolution in energy. A finite-
resolution Green's function would be an average of
Gz+(q;q'} over a small energy range, and the averaging
could involve a weighting function g (E E'), —

Gz(q;q') = f Gz+ (q;q')g (E E')dE' . — (2.6)

Since long-period orbits produce terms in (2.4) that would
be averaged to zero by such a process, it follows that they
could be neglected in the calculation of the finite-
resolution Green's function.

The above argument helps to justify our fundamental
proposition.

A semiclassical approximation to a finite-resolution
Green's function Gz(q;q') can be calculated by including
in the sum (2.4) only those terms arising from trajectories
which travel from q' to q in a finite time Tk (T,„.The
resolution hE associated with this function GE is related
to T,„byhE T,„=2M.

t}Sk(q; q')

BE
=Tk 7 (2.5)

where Tk is the time required for the particle to travel
from q' to q on the (kth} orbit of energy E. It follows
that as E changes, the real and imaginary parts of the
kth term in (2.4} oscillate with a wavelength in energy
equal to 2M/Tk.

As it stands, Eq. (2.4) is not yet very helpful. For if the
trajectories remain within a bounded region of space,
then typically at any given energy an infinite number of

C. Green's function and the spectrum

1. Density of states

p(E) = ——I lm[Gz+(q, q)]dq .1
(2.7)

A simple and well-known formula permits us to calcu-
late the density of states from the Green's function,



38 EFFECT OF CLOSED CLASSICAL ORBITS. . . . I. 1901

To obtain a semiclassical approximation to the finite-
resolution density of states, we could use Eq. (2.4) togeth-
er with Eq. (2.7). Actually, the function GE+(q;q) con-
sists of two parts: (i) a singular term arising from the fact
that the source point q' is the same as the field point q
and (ii) a set of semiclassical terms of the form (2.4), each
of which represents waves that propagate out from the
source point q', travel around in space for a while, and
later return to pass through the field point q, which is at
the same spot as the source point. When the integral
(2.7) is evaluated, it is found that the singular term in
Gz+(q;q) gives the familiar "phase-space-volume" formu-
la for the density of states,

po(E) = (2M) "dQ(E)/dE, (2.&)

where Q(E) is equal to the volume of phase space sur-
rounded by the energy surface H(p;q) =E.

The semiclassical terms (2.4) in GE(q;q), representing
waves returning to the source point, give oscillatory
corrections to the density of states. When the integral
(2.7) is evaluated using the stationary-phase method, it
turns out that only periodic orbits contribute
significantly, and each such orbit contributes a term of
the form

P k (E) &k (E)»n[~k (E)/~+ gk 1 . (2.9)

From Eq. (2.5), it follows that this term oscillates as a
function of energy with a wavelength equal to
2m'/Tk (E), where Tk(E) is the period of the orbit.

The full semiclassical approximation to the density of
states is then given by the sum of the slowly varying
"phase-space" term plus the oscillatory "periodic-orbit"
terms,

P(E) =Pa(E)+ r Pk(E)
k

(2.10)

FIG. 6. (a) Schematic representation of the Green's function
as the wave at q raising from a source at q' ~ It can be calculated
from the properties of the trajectory of energy E from q' to q.
(b) If two distinct trajectories of energy E propagate from q' to
q, then G(q, q';E) is a sum. (c) As the energy changes the tra-
jectory from q' to q changes slightly, and the classical action
changes according to BS/BE = T.

It should be emphasized that in this method it is not
claimed that any relationship exists between individual
orbits and individual quantum states. It is rather that
when (2.4) is used in (2.7), then each term in (2.4) contrib-
utes a sinusoidal oscillation to p(E). Restricting the sum
(2.10) to a finite set of orbits, we then obtain a semiclassi-
cal approximation to the finite-resolution density of
states. If the sum (2.10) "converges, " then at certain dis-
tinct energies, oscillations from many terms in (2.4) inter-
fere constructively, thus leading to sharp peaks at the
semiclassical eigenvalues.

Gutzwiller' and Balian and Bloch' were the first to
develop a theory of this type, and the approach was later
applied by Berry and Tabor to regular systems, ' and by
Berry to certain chaotic systems. ' Generally those au-
thors were seeking individual eigenvalues for chaotic sys-
tems, and they found that summations over very large
numbers of periodic orbits would be required. Therefore
it is not yet known whether this really provides a practi-
cal scheme for computing individual eigenvalues. (Ques-
tions about convergence, and about the limits A~O and
Tk~ ~ also arise. )
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2. Oscillator strengths

Spectroscopic measurements at finite resolution do not
give the density of states. Instead, they give an average
oscillator-strength density. For a well-resolved discrete
transition between initial state l(, and final state ltf, the
oscillator strength is defined as

ization threshold.
Each of these aspects of the problem leads to useful

simplifications. Finally, it is important to note that be-
cause the semiclassical approximation and an associated
stationary-phase approximation are not appropriate in
the vicinity of the nucleus, we find that not only periodic
orbits, but also closed orbits, must be included.

(2.1 1)

where D is the component of the dipole operator in the
direction of polarization of the exciting electromagnetic
field. The rate of absorptiop of photons, or the rate of
production of atoms in excited states, is directly propor-
tional to this oscillator strength.

When transitions occur from a single initial state to a
group of unresolved final states, then the total transition
rate is proportional to an average oscillator-strength den-
sity, defined approximately as

Df(E)= fff p(Ef)g(E Ef)dEf— (2.12)

where again g(E Ef) i—s a convolution function with
width in energy comparable to the resolution of the laser.

Just as for the density of states, a simple formula re-
lates the oscillator-strength density to the Green's func-
tion,

Df (Ef ) =ff;p(Ef )

2m, (EI E;)—
Im (D it; ~

G~+
~

D g, ) .

(2.13a)

The same formula relates the average oscillator-strength
density to the finite-resolution Green's function

2m, (E E,)—Df(E)= —
2 Im(DQ;

~
Gz

~
DP;) . (2.13b)

We shall show that this formula, together with the semi-
classical approximation (2.4), using orbits of duration up
to some ma, ximum T, provides a practical method for
computing the spectrum.

Several aspects of this problem make it simpler than
the problems studied in Refs. 16—19. (1) We are not try-
ing to calculate individual eigenvalues or the oscillator-
strength to individual final states. We only want the ab-
sorption spectrum to a resolution comparable to (or we
hope a little better than) that obtained in the experi-
ments. (2) The initial state is localized. Therefore we
only need GE(q;q') in a limited domain of space. (3)
Close to the nucleus, a semiclassical approximation can-
not be applied. However, in this region the diamagnetic
field can be neglected, so the Hamiltonian is spherically
symmetric. (4) It follows that in this region, the angular
dependence of

~
DP; ) and of Gz

~
DP; ) is simple. Their

expansions in partial waves typically contain between one
and three terms. For this reason we actually use a semi-
classical approximation to GE

~
Df; ) rather than to Gz

itself. (5} We only make a calculation of the absorption
spectrum in a narrow range of energies, close to the ion-

III. THEORY OF OSCILLATORY SPECTRA

A. Central idea

Equations (2.13b) and (2.4) lead to a simple physical
picture as well as a quantitative theory explaining how
oscillations in the absorption spectrum are correlated
with closed classical orbits. (See Fig. 1 of accompanying
paper. ) When the atom absorbs a photon, the electron
goes into a near-zero-energy outgoing Coulomb wave.
This wave propagates away from the nucleus to large dis-
tances. For r ~ 50ao the outgoing wave fronts propagate
according to semiclassical mechanics, and they are corre-
lated with outgoing classical trajectories. Eventually the
trajectories and wave fronts are turned back by the mag-
netic field; some of the orbits return to the nucleus, and
the associated waves (now incoming) interfere with the
outgoing waves to produce the observed oscillations.

Specifically, Eqs. (2.4) and (2.5) tell us that as the ener-

gy changes, the imaginary part of each term in (2.4) oscil-
lates with a wavelength on the energy axis of
AE 2M/Tk. ——Here T& is the duration of a closed orbit
which begins and ends in the vicinity of the nucleus, such
that the corresponding waves overlap with the initial
state.

A useful general concept can be abstracted from these
formulas. Even in a classically chaotic system, order ex-
ists on a finite time scale. For any finite time, the solu-
tions q(t, q ) to smooth classical equations of motion (2.1}
are smooth functions of the initial conditions. As time
increases, these functions may become so stretched and
convoluted that for all practical purposes the relationship
between the initial point and the final point is lost. How-
ever, if trajectories are examined on a limited time scale,
then the smooth relationship will be clear (Fig. 7).

One of the consequences of this finite-time order in
classical mechanics is the orderly sinusoidal oscillations
that occur in finite-resolution quantum spectrum. Sur-
rounding each c1osed orbit is a family of orbits traveling
in step with that orbit, but gradually moving away from
it. Associated with each such family of orbits is a propa-
gating wave, which is as orderly as the family of orbits. '

Thus, though we might not be able to construct a wave
function from a single chaotic orbit (such as the one
shown in Fig. 5), or from a family propagated for a long
time [as in Fig. 7(b)], there is a wave associated with a
family propagating for a short time. Interference of these
waves with the outgoing wave and with each other pro-
duces oscillations which are visible in the spectrum if it is
measured to finite resolution.

B. Quantitative formulas

To obtain a quantitative description of the observed
spectral oscillations, several rather detailed technical
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beled by m and an index k (we refer to the k th closed
orbit in the mth subspace). For each such orbit, the com-
puter returns the following.

OThe initial and final values of the polar angle

g rng m
i f

OThe (two-dimensional) action on the path from the
initial point to the final point on the sphere,

S2 ——f (p, r+p&8)dt
~The (two-dimensional) classical amplitude at the final

point on the orbit,

mk

2

J2(0)
J,(t)

1/2
=Pml

where the Jacobian is

(A2 is by definition positive. ) The Maslov index)u k
m

for each orbit was obtained by inspection of a graph of
the orbit.

(5) The returning waves propagate inward from the
sphere at 50ao toward the nucleus, where they overlap
with t, DQ,

~

. In this region the semiclassical approxima-
tion is no longer reliable. We make the approximation
that the returning waves are cylindrically modified zero-
energy Coulomb scattering waves. For r ~50ap the re-
turning waves (which originally went out from the
sphere, traveled to distances of 1000ap or more, then
turned around and came back to the original sphere) look
very much like wave functions for an electron that comes
in with zero energy from infinite distance at polar angle

8f interacting only with the Coulomb fteld

Df(E)=Dfo(E)+ g C~„sin(T„E+b~„).
m

(3.5)

Dfo, the smooth background term, is equal to the
oscillator-strength density that would be obtained in the
absence of a magnetic field,

4m, E,
Dfo(E =0)= — g ~

bI' I(n, l, l')
~

t'
(3.6)

Each oscillatory term arises from a closed orbit, la-
beled k . The amplitude and phase constants, C k and

, are calculated from the formula
m

This cylindrically modified zero-energy Coulomb-
m, Ofscattering wave is denoted g,

'
(r, 8, t). We need its

asymptotic form and its partial-wave expansion. Deriva-
tion of the required formulas is straightforward but long.

(6) Finally, the semiclassical returning wave on the
sphere r =50ap is set equal to a constant times

m, 8f(r, 8, t). The constant is evaluated by comparing the
value of the semiclassical returning wave at r=50, 8=Of

m, 8fwith that of P,
'

(r, 8=8f, P). Then the partial-wave
m, 8fexpansion of g,

' f allows us to continue the returning
wave in toward the nucleus. Only the first few terms in
this partial-wave expansion contribute to the overlap
with (Dg;

~

. The Bessel functions and integrals I(n, I, I')
enter the formulas a second time.

This argument leads to a simple formula for the aver-
age oscillator-strength density Df(E). We consider the
case that the initial state and light polarization are
chosen such that the states excited by the laser have a
unique value of L, =mA. Then the formula for the aver-
age oscillator-strength density near E=O is

C k exp(ib, k )=( E;)2' ~ n. r—b
' (sin8; sin8f )'

~ p k

yexpi S ——p +2(8rb)' — P(8; )P*(8f ),
2 b 4

(3.7a)

where

5'(8)= g ( —1)'b/ I(n, l, l')F& (8,0) . (3.7b)

I

accompanying paper. We hope the meaning of these
equations is clear from the preceding discussion. Nota-
tion is summarized in Table I.

C k and 6 k are obtained by evaluating the amplitude
m

and phase of the right-hand side of Eq. (3.7a).
Finally, T k is the time required for the k -th orbit

m

to travel out from and return to the boundary sphere.
Therefore Eq. (3.5) is a combination of a term that is

slowly varying with energy (constant, at this level of ap-
proximation) together with a set of terms having wave-

length in energy A,z 2+%IT k . The —a—mplitudes and

phase constants of each oscillatory term are all calculable
in a straightforward way from the properties of the corre-
sponding closed orbit, together with formulas for the di-

pole integrals I (n, I, i').
The derivation of Eqs. (3.5)—(3.7) is presented in the

IV. CALCULATION OF SPECTRAL OSCILLATIONS

We now use Eqs. (3.1)—(3.7) to calculate near-threshold
spectral oscillations for a hydrogen atom in a magnetic
field. We consider a field B=5.96 T, and we examine
three particular sets of transitions

2p p~m =0, E-O,
2p g)~m =0, E=0,
2s~m =0, E=O .

For the first of these, experimental measurements are
available, and we will compare our calculations to those
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Df (F)

Dfo(E)

mk

Cmk

TABLE I. Notation used in Eqs. (3.5)—(3.7).

Average oscillator-strength density, proportional
to the average rate of absorption of photons

Smooth background, equal to the average
oscillator-strength density in the absence
of external fields

Label for the k -th closed orbit in the subspace
L, =mh

Spectral-oscillation amplitude

Tmk Time for the (mk )th closed orbit to travel

out from and back to the boundary sphere

Absolute phase of the spectral oscillations

I{n, 1,1') Radial dipole integrals involving the initial
state R„~{r)and the regular zero-energy
Coulomb wave function J» +, [(8r )

' ~ ]/r ' ~

Coefficients for the partial-wave expansion
of ~DP;)

Radius of the boundary sphere; outside this radius
the waves propagate semiclassically

g mg mf

mk
m

ip „/' =A,

Pmk

For the (mk )the closed trajectory

Initial and final polar angles, where it passes
through rb

Classical action

Classical density, positive by definition

Maslov index

results. For the last two cases, measurements have not
yet been made.

We shall describe our calculations on the first case in
detail. The other cases are done by the same method, and
only minor modifications are required.

A. Transition 2p 0~m =0, E =0

1. Background spectrum

(4.2) of Ref. 8(a), Df; can be written as

Dg; =rR2t[( —,', )' Yzo+(3'}' Yoo) .

Expressing this in the notation of Eq. (3.2), we find

Dg; = g bl YI rR„I(r),

b2o =( ig
)', boo =(

3 )

(4.4)

(4.5)

For the initial state 2p„the wave function is

f; =R~t Yto

and its energy (in hartree units) is

(4.1)

and all other bI' are zero.
The smooth background absorption Dfo(E) is the ab-

sorption that arises in the absence of a magnetic field.
The relevant dipole matrix elements are defined in Eq.
(3.3). From Eq. (3.6), we find

E 1 (4.2) Dfo(E =0)=—,
'

I ,', [I(2,1,2)] + —,'[I—(2,1,0)] I . (4.6)

For transitions to final states with the same magnetic
quantum number mf ——m,- =0, the light must be polarized
with electric field along the z axis, so

These integrals are tabulated in paper II; the two re-
quired values are

D =z =r cosO . (4.3)
I(2, 1,2)=5.4142, I(2, 1,0}=1.3535 . (4.7)

We combine Eqs. (4.1) and (4.3), using familiar properties
of angular momentum eigenfunctions. Then, using Eq.

Therefore the background absorption is

Dfo(E =0)=4.2138 (hartrees) (4.8)
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Dfo(E) is a slowly varying function, and we shall approx-
imate it by the preceding constant value over the entire
energy range of our calculations. Superimposed on this
background are oscillations correlated with closed orbits
in the system.

2. Trajectories and closed orbits in the subspace m =0

To compute the oscillations in the spectrum we have to
study the classical trajectories of this system. Because
only m=O spherical harmonics appear in the expansion
of Dg, in Eq. (4.4), it is enough to restrict ourselves to
the m =0 subspace.

The natural time unit in this problem is the cyclotron
period

2am, c
T, = =6.0X10 ' s .

eB
(4.9)

The available experimental spectrum corresponds to tra-
jectories which return to the nucleus within a time
T & 10T,. We shall find those closed orbits.

For m=O, closed orbits may be said to begin and end
exactly at the nucleus. More conveniently, however, they
may be defined as those orbits that leave the sphere rb

and later reenter the sphere rb with p& exactly equal to
zero. (Note that they do not necessarily return in the
direction from which they left. ) Since m is always equal
to zero in the present calculation, the closed orbits can be
specified by a single label k instead of the double label
(mk ) used elsewhere.

We choose initial coordinates r =rb, 8=0;, and initial
momenta according to Eq. (3.4), with p&

——0 and E=O. 8,
is the initial polar angle from the z axis. In principle, all
the 8, from 0' to 180' should be examined. But because
the Hamiltonian has a symmetry in z, the trajectory go-
ing out at angle 0p can be obtained by a reflection about
the p=O axis from the trajectory going out at angle
180'—0p. Therefore we only need to launch trajectories
with 0 &0p&90'.

Even with these restrictions and simplifications, the
number of such closed orbits may be large. Nevertheless,
we can find the important closed orbits of the system.
Each closed orbit (which returns exactly to the nucleus) is
surrounded by neighbors which return to the vicinity of
the nucleus. The important closed orbits are those with
large classical amplitude factors A2. These amplitudes
are inversely related to the rate of divergence of neigh-
bors from the central closed orbit. In other words, the
important closed orbits are the ones from which the
neighbors diverge relatively slowly. We find these as fol-
lows. Trajectories are launched from the initial circle
r =rb in all directions between 0 and 90 with initial an-

gle spacing 60p for neighboring trajectories; then the tra-
jectories are computed and the coordinates (r, 8) and mo-
menta (p„,ps) are monitored. A trajectory returning to
the vicinity of the nucleus crosses the circle r = rb. If 58p
is small, we usually find families of neighboring trajec-
tories that cross the circle. The number of such trajec-
tories in a family is a measure of the divergence of this
family of trajectories. The greater the number, the more

stable this family. We call this number the "importance
number" for this family, and denote it by N; . In each
family of trajectories, there will be a central orbit which
satisfies p& ——0 when it reenters the sphere r =rb. This
closed orbit can easily be found by an iteration procedure
once two trajectories in the family are known.

After launching a few trajectories with initial condi-
tions (3.4), we quickly found that none of the trajectories
with initial polar angles 0; &25' return to the vicinity of
the nucleus in a time less than T,„=10T,. Therefore
we could focus on the region 25'& 8; &90'.

We launched 6501 trajectories from 25' to 90'
(b,8; =0.01) and found a few hundred closed orbits. Of
these, it turned out that 65 had an importance number
greater than or equal to 3. We used these 65 orbits in our
calculation, and discarded the rest. The mirror images of
these 65 orbits through the p axis are another set of 65
orbits (except for the one going exactly along the p axis).
Therefore we have a total of 129 closed orbits in the
m=O subspace. The 65 closed orbits with 8; &90' are
shown in Fig. 8. Presently we have not found any simple
systematic scheme for labeling and characterizing these
orbits.

Properties of the most important of these orbits are
listed in Table II. The full table is available on request
from the authors, and it has been filed with the Physics
Auxiliary Publication Service.

For each of the closed orbits found above, we comput-
ed the two-dimensional action integral S2 along the tra-
jectory from initial to final spheres, and the two-
dimensional amplitude factor A 2 (this latter quantity was
calculated using the method described in an appendix of
the accompanying paper). Also, as discussed in paper II,
the Maslov index for each orbit was computed by sum-
ming the number of extrema in the p motion plus the
number of crossings of the z axis. The period Tk of each
closed orbit was also computed. All these results are list-
ed in Table II. (We believe that all quantities are accu-
rate to the number of digits given, except for A2, which
may have an accuracy of +0.05, and N;, which is only
semiquantitative by definition. )

Examining this table, we notice that the square root of
the importance number is approximately proportional to
the semiclassical amplitude factor A 2. This is no
surprise, because both the importance number N; „and
the amplitude factor A2 measure the divergence of the
family of trajectories around each closed orbit. The im-
portance number is more intuitive and less rigorous, but
it is obtained quite trivially from a collection of trajec-
tories. It is helpful in giving a reasonable estimate of the
classical amplitude factor A2 for each closed orbit (Fig.
9).

We also note a loose connection between the period of
the closed orbit and the value of the semiclassical factor
A2 (Fig. 10). Longer, more complicated orbits usually
have smaller values of A 2. We note also that the
shortest, most stable, and most important orbit is the one
that goes along the p axis; its effect on the spectrum is
most prominent, and it was the first to be recognized.

Finally, we see that there are pairs of orbits (Nos. 32
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ty) using Eqs. (3.5}—(3.7). The resulting amplitudes and

phases of the spectral oscillations are also listed in Table
II.

The spectrum Df(E) calculated from Eqs. (3.5)—(3.7)
(using the 65 most important closed orbits} is shown in

Fig. 11. This result is supposed to be compared to the ex-
perimentally measured spectrum shown in Fig. 2. How-
ever, both theoretical and experimental spectra are so
wildly oscillatory that it seems to be impossible to com-
pare them directly.

It is more sensible to compare our calculated ampli-

tudes Ck and phase 6k with the Fourier transform of the
absorption spectrum, as computed in Ref. 5(b) and shown
in Fig. 3. Let us define

E2
Df(T)= 1 Df(E)exp( iT—E/A)dE,

Ei
(4.10)

where E, and E2 are arbitrarily selected limits, close to
E=O. If we insert Eq. (3.5) into (4.10), neglect the weak
dependence of Dfo, Ck, Tk, and b, k upon E, and evaluate
the integral, the result is

sin[ T(Ez E~ )/—2]
Df ( T)=Df (0)exp[ iT(E—

~ +E2)/2]

ib, k
ke

+ g exp
k i

i ( T —Tk —)(Ez+E& ) sin[( T —Tk )(E2 Et )/2]—
2 (T —Tk )/2

Cke

2L

(T+ Tk )(E2+E, ) sin[(T+ Tk )(E2 E, )/2]—
P (T+Tk)/2

(4.11)

8.0 3

6.0- I
'

e.o- I

20 I

0
-30

I

—20
1 I I

—IO 0
ENERGY

IO

&cm-[)
20 30

FKJ. 11. Computed absorption spectrum Df(E) as a func-

tion of energy based upon Eq. (3.5), including the 65 most im-

portant closed orbits. Here, as in Fig. 2, peaks and valleys do
not correspond to individual states, but to fluctuations associat-
ed with the sum of many oscillatory terms [Eq. (3.5)].

For positive T, the second sum can be neglected. Now if
I
Df (T)

I
is plotted against T, distinct peaks should

occur at each Tk, and the height of each peak will be pro-
portional to

I
C„I

Figure 3 shows the square of the Fourier-transformed
spectrum, A (T), as calculated in Ref. 5 from the experi-
mental measurements. This experimental result is com-
pared with our theoretical oscillation amplitudes

I Ck I

at E=O. Because the experimental spectrum is in arbi-

trary units, the experimental spectrum is normalized so
that the highest peak (at T=0.66T, ) matches the corre-

sponding theoretical one.

The largest and most interesting peaks are arbitrarily
labeled A —J and also A ', A ", and F+. These are corre-
lated with the closed orbits identified similarly in Fig. 8.

The orbit associated with the peak A is an orbit that
goes along the p axis. This orbit is the one which Ed-
monds recognized to be correlated with the "quasi-
Landau" oscillations observed by Garton and Tomkins.
Orbits associated with peaks 8-G were found more re-
cently by the Bielefeld University group.

The orbits labeled A and 8 are classically the two most
stable orbits of the system. (Stability is measured by the
value of the classical amplitude factor A2, more stable
orbits have larger values of A 2. } In Table I we find that
the classical amplitude factors A 2 for orbits 1 and 2 differ

by about a factor of 2. However, their oscillation ampli-
tudes Ck differ by an order of magnitude. Why?

This phenomenon is a quantum effect explained intui-
tively by Reinhardt, and quantitatively by our formulas
for Ck. The outgoing wave Gd+,

I DP, )is a combinati. on
of an s wave and a d wave (l=O and 1=2). The d wave
dominates, with an amplitude about four times larger
than that of the s wave. Orbit A has its initial and final
points at the peak of the d wave (8=90'), while orbit 8
has its initial and final points near the node of the d wave.
Therefore the waves propagating outward and back in
these two different directions have very different intensi-
ties, and their contributions to the spectrum are very
different.

The peaks marked A' and A" come from orbit A re-
peated once or twice. All of the closed orbits are quite
unstable, and each time a pencil of trajectories returns to
the vicinity of the nucleus, the trajectories are scattered
widely. Hence the classical amplitude A z and the oscilla-
tion amplitude Ck associated with two traversals of any
closed orbit are much smaller than that for the first
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traversal. Furthermore, amplitudes associated with re-
peated traversals should decrease in approximately a
geometric progression,

C A"
yC

A' C A'yC A (4.12)

The computations confirm this (see Fig. 3).
The peaks marked F and F+ are interesting, because

the corresponding experimental peak at T=6 is rather
small. The theoretical peak F is associated with a period-
ic orbit (8f ——8, ) having a rather large amplitude. Peak
F+ is an orbit of a totally different character: it starts
from a different 0; and follows a totally different path.
Note that it is a closed orbit of duration T, but not a
periodic orbit with that period —8f&8;. Each of these
two orbits produces a large-amplitude sine-wave oscilla-
tion in the spectrum. However, when we look at the ab-
solute phase 4k of these two oscillations, we see that they
are out of phase by almost exactly n.. Hence for E close
to zero, their effects almost cancel.

Overall, the agreement between theory and experiment
up to 6T, is very pleasing. Above 6T, the theory predicts
additional distinct peaks. The experimental data do not
show these peaks. We have no reason to believe that the
theory is less accurate for these longer-period orbits, so
we tentatively ascribe this discrepancy to problems of ex-
perimental resolution: longer period orbits produce
very-small-scale fluctuations in the spectrum, which
would be difficult to measure accurately.

The theory also gives predictions of the values of the
phases 6k associated with each oscillation in the spec-
trum. These phases have not yet been extracted from the
experimental data.

B. Other initial states

We consider now the transitions 2p + &
~m =0,

E=O and 2s~m=0, E=O. Perusal of Eqs. (3.5)—(3.7)
shows that the initial state g; enters the formula in only
two ways: through the coefficients bi' in the partial-
wave expansion of ! DP; ) and through the radial matrix
elements I (n, I, l'). Hence once the information about the
classical closed orbits is available, calculation of spectra
with various initial states is quite trivial.

We show in Fig. 12 the predicted magnitudes of the
spectral-oscillation amplitudes Ck for 2s and 2p +, ini-
tial states. The amplitudes associated with each closed
orbit change quite substantially because of the changes in
the angular distribution of Gz ! Df;) on the initial
boundary. For example, when l(t; is the 2s state, then
only light linearly polarized along the z axis produces
final states with m=O. Therefore D!P;) has a nodal
surface in the plane z=0. As a consequence, the oscilla-
tions associated with Edmonds's trajectory A completely
disappear. In contrast, the oscillations associated with
trajectory 8 are quite prominent (recall that they were
too small to measure when the initial state was 2p, ). Pre-
dictions of the phases 6k of some of these oscillations are
given in Table II.

V. CONCLUSION

A theory is now (at last) available which quantitatively
accounts for the oscillations observed in the absorption
spectrum of a hydrogen atom in a magnetic field. The
theory gives information about the finite-resolution spec-
trum from examination of classical trajectories of the sys-
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tern. (As presently applied, the theory says nothing about
individual discrete or quasidiscrete states of the system. )

A more general remark is relevant to the study of
quantum properties of classically chaotic systems. Even
in such a system, when trajectories are examined on a
limited time scale, a kind of order is retained: surround-
ing each closed orbit is a family of orbits which propa-
gate together for a finite time. Thus finite-time order is
manifested in the finite-resolution spectrum: associated
with each such family of orbits is a propagating wave
which produces interference oscillations that are visible
in the absorption spectrum.

In fact, this general principle applies to regular as well
as chaotic systems. Whether one looks at the density of
states, the average oscillator-strength density, or any oth-
er facet of a quantum spectrum, when one examines the

quantity at finite resolution, then the quantity will show a
smoothly varying background plus a superposition of
sinusoidal oscillations; each oscillation will have a wave-
length on the energy axis equal to A.E ——2M/T, where T
is the period of a periodic (or possibly a closed} orbit of
the corresponding classical system.
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