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Radiative quenching of He(2 S) induced by collisions with ground-state helium atoms

B.Zygelman and A. Dalgarno
Harvard S-mithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138

(Received 11 February 1988)

The semiclassical, optical potential, and quantal distorted wave theories of collision-induced radi-
ative quenching are discussed and the relationships between them are presented. The three pro-
cedures are applied to the calculation of the cross sections at thermal collision energies of the pro-
cess He(2 'S)+He(1 'S)~He(1 'S)+He(1 'S)+h v. Several choices of the potential energy curves
of the excited A 'X+„state of the He2 molecule are employed. The accuracy of the semiclassical
and optical potential methods is assessed by comparison with the quantum-mechanical theory. It is
shown that the cross sections are sensitive to the barrier in the A 'X+ potential but the major uncer-
tainty in the predicted cross sections lies in the adopted transition dipole moment.

I. INTRODUCTION

The cross section for the quenching of metastable heli-
um by ground-state helium atoms

He(2'S)+He(1 'S}~He(l 'S)+He(1 'S}+hv (1)

was measured at thermal energies by Phelps, by Bartell
Hurst, and Wagner, and by Payne et al. ' who obtained a
mean value of 3&10 cm . The measured value is con-
sistent with theoretical semiclassical calculations by
Browne, Allison, and Dalgarno though because of the
sensitivity of the thermal cross sections to the height of
the barrier that exists in the potential energy curve of
the A 'X+ state of He& along which the atoms initially
approach the calculations have limited accuracy. Subse-
quently many studies have been carried out of the poten-
tial energy curve of the A 'X+ state and reliable esti-
mates of the barrier height have been made.

Measurements are in progress to determine the
quenching cross sections at energies up to 400 meV. We
report here the calculation of the cross sections using an
improved potential energy curve in a semiclassical
theory, a local optical potential theory and a fully
quantum-mechanical theory of the process. We show
formally the relationships between the three theories.

II. FORMALISM

In the center of mass frame of the nuclei, the Hamil-
tonian for the system is given by

Hi„, ———g r E,
1

1/2

K(X

where aK, a „are the destruction and creation operators
for a photon of momentum Sc and polarization a, respec-
tively. e„ is the polarization vector, and Vis the normal-
ization volume. We regard the process as a transition in-
duced by the radiation field from the A 'X+ state of the
He& molecule formed by the approaching atoms to the
X 'X~+ state in which the atoms separate. We write for
the system wave function

i
4) =F,(R)X,(R, r)

i
0)+ g F„(R)X&(R,r) i

~a),

(4)

where X,(R, r) and X&(R,r) are eigenstates of the fixed-
nuclei Hamiltonian H, I, corresponding to the A 'X+ and
X 'X~+ Born-Oppenheimer states, respectively, in a body-
fixed frame, F, (R) and F„(R)are the amplitudes for the
relative nuclear motion, and

i
0) and

~

tta) are the kets
for the photon vacuum and single-photon states. The an-
satz (4) is valid at low collision velocities where the cou-
pling to other channels is negligible. If nonadiabatic
efFects are ignored the amplitudes F,(R) and F„(R)
obey the coupled equations

V„+V, (R) EF,(R)= g F—(R)U„(R),
2p

KCX

H = — V„+H„(R,r)+H„~+H;„, ,
21M

(2)

where p is the reduced mass. V„ is the gradient operator
for the relative nuclear motion. H, i(R, r) is the fixed-
nuclei Hamiltonian for the electrons, whose coordinates
are collectively labeled by the vector r, H„z is the Hamil-
tonian for the radiation field, and H;„, is the radiation-
matter coupling. We approximate H;„, by including the
coupling with electrons only, and using the dipole ap-
proximation. In the length gauge we have

where

U„(R)= i—1/2

D(R)R e a

V„+Vq(R)+fico EF„(R}=F,—(R)U„(R),
2p

(&b)

(5c)
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and V, (R), V&(R) are the potential energy curves of the
A 'X+ and X 'X+ states respectively. D (R ) is the radial
transition dipole moment between them. E is the initial
energy of relative motion, and co is the angular frequency
of the emitted photon. We rewrite (Sb) as

F„(R)= f d R 'G+(R, R')F, (R') U„(R'),

where G+(R, R') is a retarded Green's function which
obeys the equation

Vg+ Vg(R)+Ace EG—+(R,R')=5 (R—R') (7)
2p

and 5I(b) is the phase shift. The total wave function (4)
must be symmetric under the interchange of the He nu-

clei so that F, (R)= F—, ( —R), and F, (R)=F, ( —R),
where we have used the fact that the A 'X+ state is an-

tisymmetric and the X 'X+ symmetric under nuclear in-

terchange. We now recognize that the interaction with
the radiation field is weak and solve equations (5a) and
(5b) in the distorted wave approximation. Then F, (R) is

the solution of (Sa) with the coupling term taken equal to
zero and we may express it in the form

F,(R)= g P J(c os 8)( 2J+1)i &~
J=1

and satisfies the retarded boundary condition so that F„
contains only outgoing waves in the limit as R ~ 00. It is
convenient to express this Green's function as a sum over
partial waves. Since Vb contains no bound states we get

sj(k, R)
)& exp[i 5J(a)]

a

k, =+2@—[E—V, ( ~ )],
(loa)

d2

dR
—2@[Vg(R) —Vq( ao )]+k fI(kR) =0,

kl, =v 2@[E fi~ Vt, ( ~ )—], —

gI+(kR) is the irregular solution with the boundary con-
ditions at large R,

m=1
6+(R,R')= g g YI (8,$) YI* (8', p')

b 1=0m = —I

fl(kbR ()gI (kt, R) }

RR'
(8)

where YI (8,$) are spherical harmonics. f&(kR) is a reg-
ular solution of the homogeneous radial equation

where sj(kR) is the regular solution of the homogeneous
radial equation, with phase shift 5z(a), obtained from Eq.
(Sa). The summation over the partial waves in (10a) is re-
stricted to odd values of J in order to insure the correct
symmetry for F,(R). The asymptotic form for (10a) is

ikz —ikz
F,(R)- — e ' —ev'2

ik 8
+[f(8,P) f (8 ~, y—+~)]

(lob)

' 1/2

g (kR)-+ 2
I

7T

l~
expi kR — +5&(b)

2

' 1/2
2 lm.

f&(kR)- — sin kR — +5,(b)
n.

j
2

(9b) exp(ikbR)F„(R)-
R f„(8,$),

where

(1 la)

Inserting (10a) and (8) into (6) we get the asymptotic form
for (6)

f„(8,$)= g Y( (8,$) g MJ ((k„kg)(2J+1)
Im J= 1 V k~kq

i5J(b) i5J(a).J + 1e e i

I J 1 l J 1
Xe„(m)&(21+1)4m (1 lb)

In the summation, m is restricted to the values 0, 1 and e, (m) is the mth component of the spherical tensor of rank
one, J is restricted to odd integers, and

QQ

MI &(k„kl, )= dR sj(k, R)D(R)fI (k&R) . (1 lc)
Qk, kq

The cross section for the collision-induced transition He(2 'S)+He(l 'S)~He(1 'S)+He(1 'S)+fico is obtained by
summing

~
f„(8,$)

~

over all final states that conserve energy with the initial state, and dividing the result by the flux
in the incident channel. The He(2 'S)+He(1 'S) channel is a linear combination of the A 'X+ and C 'Xs+ states; since
the excited gerade state is not allowed '.o make a radiative transition to the gerade ground state, the flux in the incident
channel is twice the flux in the A 'X+ channel.

We get

f (2~}3 2pk, f 2p

2

+BE Ace
~ f. (8,$)—~'= f2p dc'
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where

do 8 mp

den 3 k

'2

, ~ g [JMJJ,(k„kb)+(1+1)MJJ+, (kg, kb)],
C

(12)

hE is the energy defect of the transition at 8 = ~, and co,„is the maximum angular frequency of the emitted photon.
In deriving (12) we have used the continuum limit for the sum over photon states, g„~(V/8n ) g J d a E.xpres-
sion (12) is identical to that obtained from the Fermi Golden Rule. ' Equation (12) provides the spectrum, do /dc@, of
the emitted radiation, in addition to the total transition cross section.

An approximation that does not require an integration over the total spectrum is the optical-potential, or opacity,
method. We derive it by first inserting the expression (6) for the amplitude F„(R) into Eq. (Sa} to get an
integrodifferential eigenvalue equation for the amplitude F,(R)

Vq+ V, (R) EF—,(R)= g Jd R'G+(RR')U„(R')U„(R}F,(R') .
2p KQ

(13)

The right-hand side of (13) contains a complex, nonlocal potential, V(R, R') —= +„G+(R,R')U„(R') U„(R) that
arises because of the interaction of the electrons with the vacuum. The real part of the potential induces a shift in the
eigenvalue V, (R). Since the electron-radiation coupling is weak, this shift is very small and we ignore the real part of
V(R, R') in (13). The imaginary part of V(R, R') is an absorptive potential, occurring because the excited electronic
state can emit a photon and decay to the ground state. We call it the optical potential. Its presence introduces a corn-
plex phase shift in the elastic scattering solutions of (13) and the quenching cross section can be expressed in terms of
the imaginary part of the complex phase shift. However, the optical potential is nonlocal. In calculations using the op-
tical potential method, " it has been replaced by a local potential by introducing an approximation which is essentially
classical, as we now demonstrate.

Because the term U„(R )U, (R) appearing in (13) is real, the optical potential is proportional to the imaginary

part of the retarded Green's function, which can be expressed as

k, f((kR )fi(kR ')
ImG+(R, R')=n. g g Y& (8,$) Yi' ( , P' I}dk 5 — +%co hE— (14)

This result is obtained by using a spectral representation for the retarded Green's function and the identity
1/(x +i e)~P/x in 5(x—) as e~O. Using (14) we obtain for the nonlocal optical potential

kmax ~ m =1
V, ,(RR')= g fdQ„J dk g Q YI (8$)YI' (8', p')

a i =0m = —1

~3(k) f((kR )f((kR ')
X 3, D(R)D(R')(R.E'„)(R ' E„),

C

where cu(k) =k, /2@+ AE k /2p, . In o—rder to con-
struct a local potential we now make the semiclassical ap-
proximation that the values of k that give the largest con-
tribution in (15) are given by k /2p =bE +k, /2p
+Vb(r) V, (r) —The freq. uency term co =

I
hE(R)

I

can now be taken outside the k integral. Using the com-
pleteness property of the radial function fi(kR) and the
identity

m=1 I

Yl (8,$)Y; (8',p'), =5 (R—R')
1=0m = —I

Va + Vg (R ) EF~(R)=——A (R )F,(R) . (18)

o = g (2J+1)[1—exp( —
4riJ )],

k,
(19}

The optical potential, in the form given in (18), has been
used extensively in previous studies of radiative charge
transfer processes. "

The cross section for the radiative quenching is given
b 11

we get

V, , (R,R')= —5 (R—R'}A(R),

A (R)=—', D'(R) I
AE(R)

I

c

and Eq. (13) becomes

(16)

(17)

71J —— J dR
I sJ(k, R)

I
A (R) .

2k. 0
(20)

where gJ is the imaginary component of the phase shift
of the Jth partial wave of the solution to (18). The sum
over J is restricted to odd integers. Because the right-
hand side of (18) is small, we can use the distorted-wave
approximation to obtain an expression for the phase shift
gJe
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Replacing the sum (19) by an integral, sJ(k, R ) in (20), us-

ing the JWKB approximation to it, and recognizing that

gJ is small, we obtain the semiclassical cross section

1/2

0 =2'll 2p
E

A (R)
[1—V, (R)/E —p /R~]'i

(21)

where R, is the classical turning point and E is the kinet-
ic energy. Expression (21) was used in the calculation by
Browne, Allison, and Dalgarno.

III. POTENTIAL CURVES AND DIPOLE MOMENT

The calculation for the quenching cross sections re-
quires accurate potential curves of the X 'X+ and A 'X+
electronic states of the He2 molecule. With the exception
of a shallow van der Waals minimum, the X 'Xg ground
state is repulsive. For it we adopt the potential curve
used by Sando and Dalgarno in their study of the ab-
sorption spectrum for 600-A photons by thermal helium
atoms. The potential curve for the A 'X+ excited state
exhibits a repulsive hump at a nuclear separation of ap-
proximately 3.1 A, and for nuclear separations less than 3
A it contains an attractive well with a depth of =2.5 eV.
In addition to the bound states supported by the well, the
potential barrier at 3.1 A give rise to numerous quasi-
bound levels. These quasibound levels are responsible for
the rich structure seen in the absorption spectrum of He
gas at thermal temperatures. This hump was first pre-
dicted, theoretically, by Buckingham and Dalgarno' and
later, by additional calculations carried out by Allison,
Browne, and Dalgarno, who obtained a barrier height of
0.084 eV at an internuclear separation of 3.17 A. A more
refined ab initio calculation for the A 'X+ state was per-
formed by Guberman and Goddard who obtained a bar-
rier height of 0.0607 eV at an internuclear separation of
3.09 A. More recently, ab initio calculations using a
multiconfiguration self-consistent central field method
were carried out by Sunil et a/. for He2 potential energy
curves including the A 'X+ state. They obtained a bar-
rier height of 0.058 eV at an internuclear separation of
3.09 A, a value which is consistent with the calculation of
Guberman and Goddard.

In studying the absorption of 600-A photons by a low-
temperature helium gas, Sando and Dalgarno derived a
semiempirical potential curve of the A 'X+ state valid in
the range of internuclear separations between 2 and 3 A.
Their absorption data analysis led to a potential barrier
of 0.049 eV which is about 0.011 eV smaller than the ab
initio calculations mentioned above. Semiempirical po-
tential curves of the A 'X+ were derived by Brutschy and
Halberland using data from high-resolution differential
cross section measurements of the elastic scattering of He
with He(2'S, 2 S). Their analysis led to a barrier height
of 0.047 eV with an accuracy of + 0.002 eV, —0.001 eV
at R =3.1+0.05 A. Most recently, semiempirical poten-
tial curves of the A 'X+ state were constructed by Jordan
and Siska based on an analysis combining scattering and

spectroscopic data with ab initio theory. Their analysis
arrived at a barrier height of 0 0502+0 001 eV at
R =3.132+0.02 A.

Because of the persistent discrepancy of about 0.01 eV
for the barrier height between the ab initio and semi-
empirical calculations, we have calculated the quenching
cross sections of (1) using both ab initio, and semiempiri-
cal potential curves for the A 'X+ state. In Fig. 1 we
compare the various potential curves for the A 'X+ state
in the region of internuclear lap (R ( 10ap.

The transition dipole moment connecting the A 'X+
and X 'X+ state was calculated by Allison, Browne, and

Dalgarno using both a length and velocity formulation.
At nuclear separations less than 5ao the two formulations
give different values for the dipole moment and the calcu-
lated dipole moment is unreliable in this region. This un-
certainty in the dipole moment, at small internuclear dis-
tances, translates into uncertain quenching cross sections
of process (1) at higher collision energies. Sando' used a
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FIG. 1. (a) Potential energy curves of the A 'X+ and X 'Xg+

states of the He2 molecule. The A 'X+ potential is taken from
Ref. 8 and the X'Xg+ ground state is taken from Ref. 6. (b)
Repulsive hump in the 3 'X+ state. Solid circles are ab initio
calculations of Allison, Browne, and Dalgarno (Ref. 2). The
dashed line is the ab initio calculation of Guberman and God-
dard (Ref. 4), and the solid line is the semiempirical result of
Jordan and Siska (Ref. 8).



38 RADIATIVE QUENCHING OF He(2 'S) INDUCED BY. . . 1881

dipole moment that is an average of the values obtained
from the length and velocity formulations, given in Ref.
4, and adjusted it so that the dipole moment converges to
the united atom value. We use a dipole moment that has
the correct united atom limit, and for distances between
lao and 9ao we use a cubic spline fit to the length formu-
lation values obtained in Ref. 2. For separations greater
than 9ao, we fit the dipole moment to an exponential
form D(R)=11.65exp( —0.639R). However, in order to
assess the effect of the uncertainty of the dipole moment
on the quenching cross sections, we have also carried out
calculations using the values obtained from the hybrid
formulation of Sando. ' We find that the hybrid formula-
tion dipole moment gives a quenching cross section, for
thermal collisions, different from the above form by no
more than 15%.

clear from this figure that the majority of the emitted
600-A photons, at this collision energy, arise from the
resonance J=ll partial waves. In Fig. 3(b) the total
spectrum of all partial-wave contributions, up to J=23,
for a collision energy of 90 meV is presented. In both
Figs. 3(a) and 3(b) the photon spectrum peaks in the vi-

cinity near 600 A, a property that is consistent with pre-
vious studies of the Hez spectrum. Using the semiclas-
sical assumption that the frequency of the emitted photon
is equal to the energy difference between the A 'X+ and
X 'X+ states at the internuclear distance where the radia-

g 0
tive transition occurs, we conclude that the 600-A photon
peak is due to the large probability for the system to un-

IV. RESULTS AND DISCUSSION

l4—

1.2—

I r r r I r I I I I
~

r r r I r I

/
r r I

r & r I I r I t r ) I r r I r r r

In Fig. 2(a) we plot the calculated cross sections for
process (1}. In this figure the cross sections are obtained
using the optical-potential (OP} model, and are given in
the collision energy range from 20 to 120 meV. At low
collision velocities the He(2'S)+He(l 'S) system does
not have enough kinetic energy to penetrate the potential
barrier of the A 'X+ state, and the quenching transitions
occur in the region of internuclear separation greater
than 3.1 A. Above collision energies of 50 meV the sys-
tem penetrates the potential barrier and samples regions
where the A 'X+ state contains a deep attractive well. In
this region there is a sharp rise in the cross sections and
numerous resonances appear which are due to quasi-
bound rotational-vibrational states of the He2 molecule in
the A 'X+ electronic state. In this figure we also plot the
results obtained with the semiclassical approximation.
At collision energies greater than 45 meV the semiclassi-
cal approximation gives somewhat smaller cross sections
than the optical potential model, and it does not provide
an accurate description of the resonances. At collision
energies below 40 meV the semiclassical approximation
agrees well with the cross sections obtained using the
optical-potential (OP) approximation. In this energy
range the transitions occur at nuclear separations greater
than 3.1 A, a region where the energy defect between the
A 'X+ and X 'X~+ is almost constant, and the semiclassi-
cal method provides a good approximation. In Fig. 2(b)
we present the quantum distorted-wave method (QM)
cross sections of (I), and we compare them to the cross
sections obtained using the Op model. In obtaining the
QM cross sections we have integrated, in (12), only over
the part of the photon spectrum near 600 A.

In Fig. 3 we present the calculated spectra, using Eq.
(12), of the photons emitted by process (1) at the relative
collision energies of 51.95 and 90 meV. At a collision en-
ergy of 51.95 meV there is a resonance in the cross sec-
tion due to the presence of the rovibrational (v=16,
1=11) quasibound state in the A 'X+ electronic state.
The spectrum of the J=11 partial wave is compared, in
Fig. 3(a), to the spectrum obtained by summing the con-
tributions coming from all partial waves with J& 11. It is
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FIG. 2. (a) Cross sections for process (1). The solid line is the
result using the length formulation radial dipole moment and
the dotted line the result using the hybrid dipole moment. The
cross sections correspond to the optical-potential expression
(19). The triangles are the results obtained using the semiclassi-
cal approximation. The resonances are labeled by the quantum
numbers {v, J), where v is the vibrational quantum number and
J is the rotational quantum number. (b) Comparison between
the total quenching cross sections obtained using the optical po-
tential (solid line) approximation, and the quenching cross sec-

0
tions with the emission of =600-A photons obtained using the
quantum-mechanical method (dashed line), given by Eq. (12).
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FIG. 4. Comparison between partial cross sections for the
0

quenching cross section (1) with the emission of 600-A photons
obtained using the quantum-mechanical expression Eq. (12) (tri-
angles) and the partial cross sections obtained using the
optical-potential approximation (open circles). The collision en-

ergy is 120 meV.

sections of (1) for a collision energy of 120 meV as a func-
tion of the total angular rnomenturn J of the system, and
we compare the partial cross sections obtained by the OP
and QM theories. Again, we have integrated over the
spectrum where it peaks, near 600 A, to obtain the QM
value. The difference between the OP and QM cross sec-
tions, at lower values of J is due to the omission of the
contributions corning from the longer-wavelength pho-
tons. For larger angular momenta the incoming system
cannot penetrate the centrifugal barrier near 3.13 A, and
the integrated spectrum of the 600-A photons then gives
an identical value to the OP method total cross sections.
In Table II we compare the rate coefficients for (1) given
in Ref. 4 to the ones obtained by our calculation.

In a beam-cell experiment, the rate coefficient can be
expressed in the form of an effective cross section

(vo)
(22)

Vb

ABD OP

250
500

1000
2000
4000
8000

16000
32 000

0.14
0.56
1.27
1.99
2.54
2.90
3.10
3.20

0.68
1.59
2.62
3.44
3.96
4.23
4.32
4.32

TABLE II. Rate coeScients of process (1), in units of 10
cm' s ', for He in thermal equilibrium at temperature T (K).
In the second column are values obtained in Ref. 4 [Allison,
Browne, and Dalgarno (ABD)], in the third column are the re-
sults obtained using the optical potential (OP) approximation,
and the potential curve for the A 'X+ state, given in Ref. 2. All
results use the length dipole moment.

FIG. 5. Thermal-averaged cross sections for process (1) at a
cell temperature of 300 K. The dotted line is the results for the
total effective cross sections. The solid line is the effective cross

a
sections for (1) with the emission of 600-A photons. Both re-

sults use the semiempirical potential curve for the A 'X+ state
given by Jordan and Siska (Ref. 8). The dashed line is the total
quenching cross sections obtained by using the ab initio poten-
tial given by Guberman and Goddard (Ref. 4).

where Ub is the speed of a beam of metastable atoms, and
the target has a Boltzrnann distribution of velocities. The
theoretical values of P are plotted in Fig. 5. The dotted
line is the total effective cross section and was obtained
by using the OP approximation. Because the experimen-
tal setup is designed to measure the emitted 600-A pho-
tons in (1) we included the results for the effective cross
sections with the emission of photons near 600 A using
the QM method given by (12). These results are plotted
by the solid curve, and this effective cross section is about
20% smaller at higher beam velocities than the total
effective cross section. Both results are obtained using
the semiempirical curves of Jordan and Siska for the
A 'X+ state. The dashed line represents the OP approxi-
mation results obtained using the ab initio calculation po-
tential curve of the A 'X+ state of Guberman and God-
dard. The ab initio potential curve has a slightly higher
repulsive hump, by about 0.011 meV, than the semi-
empirical curve of Jordan and Siska. The cross sections
are quite sensitive to the height of this hump, and the
beam-cell averaged cross sections obtained using the ab
initio potential curve of Guberman and Goddard are
about 33% smaller at low beam velocities than the cross
sections obtained using the semiernpirical potential of
Jordan and Siska.

The accuracy of the predicted cross sections is limited
by uncertainties in the transition dipole moment. The ac-
curacy is less at higher relative collision velocities for
which the radiative transitions occur at smaller internu-
clear distances. An improved calculation of the dipole
moment function would permit a precise prediction of
the quenching cross sections and rate coefficients.
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